1
|
Puri S, Juvale K. Facile synthesis of new N1-alkylated 1H-indazole-3-carboxamide derivatives as potential anticancer agents: In vitro, ADMET prediction, and SAR studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Ostapiuk YV, Schmidt A, Shehedyn M, Barabash OV, Demydchuk B, Batsyts S, Herzberger C. Bromoarylation of Methyl 2-Chloroacrylate under Meerwein Conditions for the Synthesis of Substituted 3-Hydroxythiophenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractMethyl 3-aryl-2-bromo-2-chloropropanoates can be prepared by Meerwein reaction from methyl 2-chloroacrylate and various arenediazonium salts under copper(II) bromide catalysis. The resulting readily available compounds were used as starting materials in reactions with substituted methanethiols for the construction of substituted 3-hydroxythiophenes which have not yet been accessible by other routes. Structural variety of the obtained 2-substituted 5-aryl-3-hydroxythiophenes has been achieved due to a wide range of available starting materials, including both anilines and thiols.
Collapse
Affiliation(s)
- Yurii V. Ostapiuk
- Ivan Franko National University of Lviv, Department of Organic Chemistry
| | - Andreas Schmidt
- Clausthal University of Technology, Institute of Organic Chemistry
| | - Maksym Shehedyn
- Ivan Franko National University of Lviv, Department of Organic Chemistry
| | - Oksana V. Barabash
- Ivan Franko National University of Lviv, Department of Organic Chemistry
| | - Bohdan Demydchuk
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine
| | | | - Colin Herzberger
- Clausthal University of Technology, Institute of Organic Chemistry
| |
Collapse
|
3
|
Rybak MY, Balanda AO, Yatsyshyna AP, Kotey IM, Starosyla SA, Bdzhola VG, Lukash LL, Yarmoluk SM, Tukalo MA, Volynets GP. Discovery of novel antituberculosis agents among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives targeting aminoacyl-tRNA synthetases. Sci Rep 2021; 11:7162. [PMID: 33785838 PMCID: PMC8010095 DOI: 10.1038/s41598-021-86562-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance is a major problem of tuberculosis treatment. This provides the stimulus for the search of novel molecular targets and approaches to reduce or forestall resistance emergence in Mycobacterium tuberculosis. Earlier, we discovered a novel small-molecular inhibitor among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazoles targeting simultaneously two enzymes-mycobacterial leucyl-tRNA synthetase (LeuRS) and methionyl-tRNA synthetase (MetRS), which are promising molecular targets for antibiotic development. Unfortunately, the identified inhibitor does not reveal antibacterial activity toward M. tuberculosis. This study aims to develop novel aminoacyl-tRNA synthetase inhibitors among this chemical class with antibacterial activity toward resistant strains of M. tuberculosis. We performed molecular docking of the library of 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives and selected 41 compounds for investigation of their inhibitory activity toward MetRS and LeuRS in aminoacylation assay and antibacterial activity toward M. tuberculosis strains using microdilution assay. In vitro screening resulted in 10 compounds active against MetRS and 3 compounds active against LeuRS. Structure-related relationships (SAR) were established. The antibacterial screening revealed 4 compounds active toward M. tuberculosis mono-resistant strains in the range of concentrations 2-20 mg/L. Among these compounds, only one compound 27 has significant enzyme inhibitory activity toward mycobacterial MetRS (IC50 = 148.5 µM). The MIC for this compound toward M. tuberculosis H37Rv strain is 12.5 µM. This compound is not cytotoxic to human HEK293 and HepG2 cell lines. Therefore, 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives can be used for further chemical optimization and biological research to find non-toxic antituberculosis agents with a novel mechanism of action.
Collapse
Affiliation(s)
- Mariia Yu Rybak
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine.
| | - Anatoliy O Balanda
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Anna P Yatsyshyna
- Department of Human Genetics, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Igor M Kotey
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Sergiy A Starosyla
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Lubov L Lukash
- Department of Human Genetics, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Galyna P Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Volynets GP, Tukalo MA, Bdzhola VG, Derkach NM, Gumeniuk MI, Tarnavskiy SS, Yarmoluk SM. Novel isoniazid derivative as promising antituberculosis agent. Future Microbiol 2020; 15:869-879. [PMID: 32662670 DOI: 10.2217/fmb-2019-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: A major focus of tuberculosis drug discovery is aimed at the development of novel antibiotics with activity against drug-resistant strains of Mycobacterium tuberculosis. Results: We have synthesized ten isoniazid derivatives and investigated for antibacterial activity toward M. tuberculosis H37Rv and isoniazid-resistant strain SRI 1369. It was revealed that only one compound, isonicotinic acid (1-methyl-1H-pyrrol-2-ylmethylene)-hydrazide (1), is active toward isoniazid-resistant strain with minimum inhibitory concentration value of 0.14 μM. This compound is not cytotoxic toward human liver cells (HepG2; IC50 >100 μM), demonstrates good permeability in Caco-2 cells. Accordingly to the results of plasma protein binding assay, unbound fraction of compound 1, which potentially exhibits pharmacologic effects, is 57.9%. Conclusion: Therefore, isonicotinic acid (1-methyl-1H-pyrrol-2-ylmethylene)-hydrazide is a promising compound for further preclinical studies.
Collapse
Affiliation(s)
- Galyna P Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology & Genetics, NAS of Ukraine, 150 Zabolotnogo St., Kyiv 03143, Ukraine
| | - Michail A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology & Genetics, NAS of Ukraine, 150 Zabolotnogo St., Kyiv 03143, Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry, Institute of Molecular Biology & Genetics, NAS of Ukraine, 150 Zabolotnogo St., Kyiv 03143, Ukraine
| | - Nataliia M Derkach
- Department of Nonspecific Lung Diseases Treatment Technologies, National Institute of Phthisiology & Pulmonology named after F.G. Yanovsky NAMS of Ukraine, 10, M. Amosova Str., Kyiv 03038, Ukraine
| | - Mykola I Gumeniuk
- Department of Nonspecific Lung Diseases Treatment Technologies, National Institute of Phthisiology & Pulmonology named after F.G. Yanovsky NAMS of Ukraine, 10, M. Amosova Str., Kyiv 03038, Ukraine
| | - Sergiy S Tarnavskiy
- Department of Medicinal Chemistry, Institute of Molecular Biology & Genetics, NAS of Ukraine, 150 Zabolotnogo St., Kyiv 03143, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology & Genetics, NAS of Ukraine, 150 Zabolotnogo St., Kyiv 03143, Ukraine
| |
Collapse
|
5
|
Kovalenko OP, Volynets GP, Rybak MY, Starosyla SA, Gudzera OI, Lukashov SS, Bdzhola VG, Yarmoluk SM, Boshoff HI, Tukalo MA. Dual-target inhibitors of mycobacterial aminoacyl-tRNA synthetases among N-benzylidene- N'-thiazol-2-yl-hydrazines. MEDCHEMCOMM 2019; 10:2161-2169. [PMID: 32206244 PMCID: PMC7069510 DOI: 10.1039/c9md00347a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
Effective treatment of tuberculosis is challenged by the rapid development of Mycobacterium tuberculosis (Mtb) multidrug resistance that presumably could be overcome with novel multi-target drugs. Aminoacyl-tRNA synthetases (AARSs) are an essential part of protein biosynthesis machinery and attractive targets for drug discovery. Here, we experimentally verify a hypothesis of simultaneous targeting of structurally related AARSs by a single inhibitor. We previously identified a new class of mycobacterial leucyl-tRNA synthetase inhibitors, N-benzylidene-N'-thiazol-2-yl-hydrazines. Molecular docking of a library of novel N-benzylidene-N'-thiazol-2-yl-hydrazine derivatives into active sites of M. tuberculosis LeuRS (MtbLeuRS) and MetRS (MtbMetRS) resulted in a panel of the best ranking compounds, which were then evaluated for enzymatic potency. Screening data revealed 11 compounds active against MtbLeuRS and 28 compounds active against MtbMetRS. The hit compounds display dual inhibitory potency as demonstrated by IC50 values for both enzymes. Compound 3 is active against Mtb H37Rv cells in in vitro bioassays.
Collapse
Affiliation(s)
- Oksana P Kovalenko
- Department of Protein Synthesis Enzymology , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine . ; ; ; Tel: +38 044 5265589
| | - Galyna P Volynets
- Department of Medicinal Chemistry , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine
| | - Mariia Yu Rybak
- Department of Protein Synthesis Enzymology , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine . ; ; ; Tel: +38 044 5265589
| | - Sergiy A Starosyla
- Department of Medicinal Chemistry , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine
| | - Olga I Gudzera
- Department of Protein Synthesis Enzymology , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine . ; ; ; Tel: +38 044 5265589
| | - Sergiy S Lukashov
- Department of Medicinal Chemistry , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology , National Institute of Allergy and Infectious Disease , National Institute of Health , 5601 Fishers Lane, MSC 9806 , Bethesda , MD 20892-9806 , Maryland , USA
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology , Institute of Molecular Biology and Genetics , The NAS of Ukraine , 150 Zabolotnogo St , 03143 Kyiv , Ukraine . ; ; ; Tel: +38 044 5265589
| |
Collapse
|