1
|
Abdelsamie AS, Hamed MM, Schütz C, Röhrig T, Kany AM, Schmelz S, Blankenfeldt W, Hirsch AKH, Hartmann RW, Empting M. Discovery and optimization of thiazole-based quorum sensing inhibitors as potent blockers of Pseudomonas aeruginosa pathogenicity. Eur J Med Chem 2024; 276:116685. [PMID: 39042991 DOI: 10.1016/j.ejmech.2024.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Pseudomonas aeruginosa causes life-threatening infections especially in hospitalized patients and shows an increasing resistance to established antibiotics. A process known as quorum sensing (QS) enables the pathogen to collectively adapt to various environmental conditions. Disrupting this cell-to-cell communication machinery by small-molecular entities leads to a blockade of bacterial pathogenicity. We aim to devise QS inhibitors acting on the PA-specific PQS QS system via the signal-molecule receptor and transcriptional regulator PqsR (MvfR). In this manuscript, we describe the further optimization of PqsR inverse agonists by broadening the structural space of a previously described triazole-bearing lead compound and arriving at highly potent thiazole derivatives with activities against P. aeruginosa virulence factor pyocyanin in the nanomolar range. All new derivatives were profiled regarding biological activity as well as in vitro ADMET parameters. Additionally, we assessed safety-pharmacology characteristics of the two most promising compounds both bearing a 3-chloro-4-isopropoxyphenyl motive. Demonstrating an overall favorable profile, our new PqsR inverse agonists represent a valuable addition as optimized lead compounds, enabling preclinical development of P. aeruginosa-specific pathoblockers.
Collapse
Affiliation(s)
- Ahmed S Abdelsamie
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Saarland University, Department of Pharmacy, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany; Department of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622, Cairo, Egypt
| | - Mostafa M Hamed
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Saarland University, Department of Pharmacy, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Christian Schütz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Saarland University, Department of Pharmacy, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Teresa Röhrig
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Saarland University, Department of Pharmacy, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Saarland University, Department of Pharmacy, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Stefan Schmelz
- Department of Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department of Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Anna K H Hirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Saarland University, Department of Pharmacy, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Saarland University, Department of Pharmacy, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Saarland University, Department of Pharmacy, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.
| |
Collapse
|
2
|
Han X, Xu R, Gu S, Kong Y, Lou Y, Gao Y, Shang S, Song Z, Song J, Li J. Synthesis of Acrylopimaric Acid Triazole Derivatives and Their Antioomycete Activity against Phytophthora capsici. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:973-982. [PMID: 38166361 DOI: 10.1021/acs.jafc.3c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
To develop new antioomycete agents against plant pathogens, two series of acrylopimaric acid triazole derivatives from rosin were synthesized. The in vitro antioomycete activity of these derivatives was evaluated and screened against Pseudoperonospora cubensisi, Plasmopara viticola, Phytophthora sojae, Phytophthora infestans, and Phytophthora capsici. Compound 5m showed the highest antioomycete activity against P. capsici, with a half-maximal effective concentration (EC50) value that was lower than that of the positive control metalaxyl (1.391 and 1.815 mg/L, respectively). Compound 5m demonstrated satisfactory protective and curative efficacy against P. capsici in pepper in in vivo antioomycete activity studies. Physiological and biochemical testing showed that the action mechanism of compound 5m on P. capsici involved altering the morphology and ultrastructure of the mycelium, increasing cell membrane permeability, inducing dysfunction of the nucleus and mitochondria, and ultimately causing cell necrosis. In addition, the analysis of three-dimensional quantitative structure-activity relationship (3D-QSAR) revealed the significance of the molecular structure and charge distribution in the interaction between compound 5m and its target. Collectively, these findings indicate that compound 5m has the potential as an antioomycete candidate.
Collapse
Affiliation(s)
- Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yue Kong
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
3
|
Wang D, Deng H, Zhang T, Tian F, Wei D. Open access databases available for the pesticide lead discovery. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105267. [PMID: 36464372 DOI: 10.1016/j.pestbp.2022.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Pesticide research is a multi-disciplinary collaborative study, and big data analysis based on integrating information from databases benefits decision-making in pesticide research. In the last 40 years, dozens of pesticide-related databases have been built up to describe their biological activities, toxicity, modes of action, and environmental risks, etc. However, these data are scattered and overlapping in different databases in multiple inconsistent formats, which is not convenient for information analysis and comparison. In this study, the content of 26 open access databases related to pesticide research was illustrated according to the information provided for the ligand-based drug design (LBDD) and receptor-based (or structure-based drug design, SBDD), and was summarized into three categories:1) the correspondence between the chemical structures and functional properties (biological activity, resistance, toxicity, environmental adaptation); 2) action mode study (target identification, target structures, and biological pathways); 3) computational servers for pesticide design. To our knowledge, this is the first review about the open access databases for pesticide research. The data classification could facilitate the information accessibility for pesticide research, and speed up the decision-making process in pesticide discovery.
Collapse
Affiliation(s)
- Daozhong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Hua Deng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Tian
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
4
|
Abdollahi-Basir MH, Shirini F, Tajik H, Ghasemzadeh MA. A Three-Component Process for the Synthesis of Tetrazolo[1,5-a]Pyrimidine-6-Carbonitrile Derivaties Using Amino-Functionalized UiO-66(Zr) Metal Organic Framwork (MOF). Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1955716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Farhad Shirini
- Department of Chemistry, College of Sciences, University of Guilan, Rasht, Iran
| | - Hassan Tajik
- Department of Chemistry, College of Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
5
|
Rasras AJ, El-Naggar M, Safwat NA, Al-Qawasmeh RA. Cholyl 1,3,4-oxadiazole hybrid compounds: design, synthesis and antimicrobial assessment. Beilstein J Org Chem 2022; 18:631-638. [PMID: 35706993 PMCID: PMC9174839 DOI: 10.3762/bjoc.18.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
A new chemical library based on the hybridization of cholic acid with the heterocyclic moiety 1,3,4-oxadizole was synthesized, and tested for antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi. Among the synthesized compounds, the most potent derivatives against S. aureus were 4t, 4i, 4p, and 4c with MIC values between 31 and 70 µg/mL, while compound 4p was the most active one against Bacillus subtilis with a MIC value of 70 µg/mL. Interestingly, compounds 4a and 4u exerted selective activity against Gram-positive bacteria. The synthesized compounds showed good activity against A. fumigatus and C. albicans and compound 4v exhibited selective activity against fungi only.
Collapse
Affiliation(s)
- Anas J Rasras
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, PO Box 19117, Al-Salt, Jordan
| | - Mohamed El-Naggar
- College of Sciences, Department of Chemistry, University of Sharjah, Pure and Applied, Chemistry Research Group, PO Box 27272, Sharjah, United Arab Emirates
| | - Nesreen A Safwat
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11371, Egypt
| | - Raed A Al-Qawasmeh
- College of Sciences, Department of Chemistry, University of Sharjah, Pure and Applied, Chemistry Research Group, PO Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
6
|
Yang L, Xu WB, Sun L, Zhang C, Jin CH. SAR analysis of heterocyclic compounds with monocyclic and bicyclic structures as antifungal agents. ChemMedChem 2022; 17:e202200221. [PMID: 35475328 DOI: 10.1002/cmdc.202200221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Infections caused by eukaryotic organisms, such as fungi, are generally more difficult to treat than bacterial infections. With the widespread use of antifungal drugs in humans and plants, resistance and toxicity have emerged. Therefore, it is desirable to develop new antifungal drugs with low toxicity that are not susceptible to the development of resistance. This review presents a summary of the past 2017 to 2021 years of research on heterocyclic compounds as antifungal agents for use in humans and plants, focusing on the structure-activity relationships (SAR) of these compounds. This review may provide ideas and data for designing and developing new antifungal drugs with fewer side effects compared with currently available drugs.
Collapse
Affiliation(s)
- Liu Yang
- Yanbian University, College of Pharmacy, CHINA
| | - Wen Bo Xu
- Yanbian University, College of Pharmacy, CHINA
| | | | | | - Cheng Hua Jin
- Yanbian University, College of Pharmacy, Gongyuan, 133002, Yanji, CHINA
| |
Collapse
|