1
|
Nowakowski M, Wiśniewska-Becker A, Czapla-Masztafiak J, Szlachetko J, Budziak A, Polańska Ż, Pietralik-Molińska Z, Kozak M, Kwiatek WM. Cr(vi) permanently binds to the lipid bilayer in an inverted hexagonal phase throughout the reduction process. RSC Adv 2023; 13:18854-18863. [PMID: 37350866 PMCID: PMC10282592 DOI: 10.1039/d2ra07851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Cr(vi) is a harmful, carcinogenic agent with a high permeability rate throughout the lipid membranes. In an intracellular environment and during interactions with cellular membranes, it undergoes an instant reduction to lower oxidation states throughout radical states, recognized as the most dangerous factor for cells. The cellular membrane is the most visible cellular organelle in the interior and exterior of a cell. In this study, liposomes and non-lamellar inverted hexagonal phase lipid structures based on phosphoethanolamine (PE) were used as model cellular bilayers because of their simple composition, preparation procedure, and the many other properties of natural systems. The lipid membranes were subjected to 0.075 mM Cr(vi) for 15 min, after which the Cr content was removed via dialysis. This way, the remaining Cr content could be studied qualitatively and quantitatively. Using the combined XRF/XAS/EPR approach, we revealed that some Cr content (Cr(iii) and Cr(vi)) was still present in the samples even after long-term dialysis at a temperature significantly above the phase transition for the chosen liposome. The amount of bound Cr increased with increasing PE and -C[double bond, length as m-dash]C- bond content in lipid mixtures. Internal membrane order decreased in less fluid membranes, while in more liquified ones, internal order was only slightly changed after subjecting them to the Cr(vi) agent. The results suggest that the inverted hexagonal phase of lipid structures is much more sensitive to oxidation than the lamellar lipid phase, which can play an important role in the strong cytotoxicity of Cr(vi).
Collapse
Affiliation(s)
- Michal Nowakowski
- Institute of Nuclear Physics Polish Academy of Sciences PL-31342 Krakow Poland
| | - Anna Wiśniewska-Becker
- Jagiellonian University in Krakow, Faculty of Biochemistry, Biophysics and Biotechnology PL-30387 Krakow Poland
| | | | - Jakub Szlachetko
- Solaris National Synchrotron Radiation Centre, Jagiellonian University 30-392 Krakow Poland
| | - Andrzej Budziak
- AGH University of Science and Technology, Faculty of Energy and Fuels Krakow Poland
| | - Żaneta Polańska
- Adam Mickiewicz University in Poznan, Faculty of Physics PL-61-614 Poznan Poland
| | | | - Maciej Kozak
- Adam Mickiewicz University in Poznan, Faculty of Physics PL-61-614 Poznan Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences PL-31342 Krakow Poland
| |
Collapse
|
2
|
Soni SK, Kumar G, Bajpai A, Singh R, Bajapi Y, Tiwari S. Hexavalent chromium-reducing plant growth-promoting rhizobacteria are utilized to bio-fortify trivalent chromium in fenugreek by promoting plant development and decreasing the toxicity of hexavalent chromium in the soil. J Trace Elem Med Biol 2023; 76:127116. [PMID: 36481602 DOI: 10.1016/j.jtemb.2022.127116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fenugreek is known to have good anti-diabetes properties. Moreover, several studies accounted that the trivalent form of chromium [Cr(III)] also have anti-diabetic properties. However, its hexavalent form i.e., Cr(VI) is known to be highly toxic and carcinogenic to living beings and retarded plant growth even if it is present in low concentration in soil. Many plant growth-promoting rhizobacteria (PGPR) are reported to have the potential to reduce the Cr(VI) into Cr(III) in soil. In view of the above, the present objective was designed to effectively utilize Cr(VI) reducing PGPRs for the growth and development of fenugreek plant in Cr(VI) amended soil, apart from reducing Cr(VI) in soil and fortification of Cr(III) in the aerial part of plants. METHODS The experiment was carried out to evaluate the effect of Cr(VI)-reducing PGPRs viz. Bacillus cereus (SUCR44); Microbacterium sp. (SUCR140); Bacillus thuringiensis (SUCR186) and B. subtilis (SUCR188) on growth, uptake and translocation of Cr as well as other physiological parameters in fenugreek grown under artificially Cr(VI) amended soil (100 mg kg-1 of Cr(VI) in soil). RESULTS The aforementioned concentration of Cr(VI) in soil cause severe reduction in root length (41 %), plant height (43 %), dry root (38 %) and herb biomass (48 %), when compared with control negative (CN; uninoculated plant not grown in Cr(VI) contaminated soil). However, the presence of Microbacterium sp.-SURC140 (MB) mitigates the Cr toxicity resulting in improved root length (92 %), plant height (86 %), dry root (74 %) and herb biomass (99 %) as compared with control positive (CP; uninoculated plants grown in Cr(VI) contaminated soil). The maximum reduction in bioavailability (82 %) of Cr(VI) in soil and its uptake (50 %) by the plant were also observed in MB-treated plants. However, All Cr(VI)-reducing PGPRs failed to decrease the translocation of Cr to the aerial parts. Moreover, the plant treated with MB observed diminution in relative water content (13 %), electrolyte leakage (16%) and lipid peroxidation (38 %) as well as higher chlorophyll (37 %) carotenoids (17 %) contents and antioxidants (18%) potential. CONCLUSION This study demonstrates that MB can lower the Cr(VI) toxicity to the plant by reducing the bioavailable Cr(VI), consequently reducing the Cr(VI) toxicity level in soil and helping in improving the growth and yield of fenugreek. Additionally, Cr(III) uptakes and translocation may improve the effectiveness of fenugreek in treating diabetes.
Collapse
Affiliation(s)
- Sumit K Soni
- Department of Microbial Technology Division, CSIR, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Crop Improvement and Biotechnology Division, ICAR, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow 226101, India.
| | - Govind Kumar
- Crop Production Division, ICAR, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow 226101, India
| | - Anju Bajpai
- Crop Improvement and Biotechnology Division, ICAR, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow 226101, India
| | - Rakshapal Singh
- Department of Microbial Technology Division, CSIR, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Biological Central Facility, CSIR, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Yashi Bajapi
- Crop Improvement and Biotechnology Division, ICAR, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow 226101, India
| | - Sudeep Tiwari
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, P.O.B. 653 Beer-Sheva, Israel.
| |
Collapse
|
3
|
Salinitro M, Mattarello G, Guardigli G, Odajiu M, Tassoni A. Induction of hormesis in plants by urban trace metal pollution. Sci Rep 2021; 11:20329. [PMID: 34645888 PMCID: PMC8514553 DOI: 10.1038/s41598-021-99657-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Hormesis is a dose-response phenomenon observed in numerous living organisms, caused by low levels of a large number of stressors, among which metal ions. In cities, metal levels are usually below toxicity limits for most plant species, however, it is of primary importance to understand whether urban metal pollution can threaten plant survival, or, conversely, be beneficial by triggering hormesis. The effects of Cd, Cr and Pb urban concentrations were tested in hydroponics on three annual plants, Cardamine hirsuta L., Poa annua L. and Stellaria media (L.) Vill., commonly growing in cities. Results highlighted for the first time that average urban trace metal concentrations do not hinder plant growth but cause instead hormesis, leading to a considerable increase in plant performance (e.g., two to five-fold higher shoot biomass with Cd and Cr). The present findings, show that city habitats are more suitable for plants than previously assumed, and that what is generally considered to be detrimental to plants, such as trace metals, could instead be exactly the plus factor allowing urban plants to thrive.
Collapse
Affiliation(s)
- Mirko Salinitro
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Gaia Mattarello
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Giorgia Guardigli
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Mihaela Odajiu
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
4
|
Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094461. [PMID: 33922303 PMCID: PMC8122799 DOI: 10.3390/ijerph18094461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Soil pollution with heavy metal is a serious problem across the globe and is on the rise due to the current intensification of chemical industry. The leather industry is one of them, discharging chromium (Cr) in huge quantities during the process of leather tanning and polluting the nearby land and water resources, resulting in deterioration of plant growth. In this study, the effects of biochar application at the rate of 3% were studied on four maize cultivars, namely NK-8441, P-1543, NK-8711, and FH-985, grown in two different tannery polluted Kasur (K) and Sialkot (S) soils. Maize plants were harvested at vegetative growth and results showed that Cr toxicity adversely not only affected their growth, physiology, and biochemistry, but also accumulated in their tissues. However, the level of Cr toxicity, accumulation, and its influence on maize cultivars varied greatly in both soils. In this pot experiment, biochar application played a crucial role in lessening the Cr toxicity level, resulting in significant increase in plant height, biomass (fresh and dry), leaf area, chlorophyll pigments, photosynthesis, and relative water content (RWC) over treatment set as a control. However, applied biochar significantly decreased the electrolyte leakage (EL), antioxidant enzymes, lipid peroxidation, proline content, soluble sugars, and available fraction of Cr in soil as well as Cr (VI and III) concentration in root and shoot tissues of maize plant. In addition to this, maize cultivar differences were also found in relation to their tolerance to Cr toxicity and cultivar P-1543 performed better over other cultivars in both soils. In conclusion, biochar application in tannery polluted soils could be an efficient ecofriendly approach to reduce the Cr toxicity and to promote plant health and growth.
Collapse
|
5
|
Dubey S, Saxena S, Chauhan AS, Mathur P, Rani V, Chakrabaroty D. Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (Oryza sativa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:380-390. [PMID: 31792790 DOI: 10.1007/s11356-019-06760-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are one of the most critical epigenetic regulators of gene expression which modulate a spectrum of development and defence response processes in plants. Chromium (Cr) contamination in rice imposes a serious concern to human health as rice is used as staple food throughout the world. Although several studies have established the differential response of miRNAs in rice during heavy metal (arsenic, cadmium) and heat or cold stress, no report is available about the response of miRNAs during Cr stress. In the present study, we identified 512 and 568 known miRNAs from Cr treated and untreated samples, respectively. Expression analysis revealed that 13 conserved miRNAs (miR156, miR159, miR160, miR166, miR169, miR171, miR396, miR397, miR408, miR444, miR1883, miR2877, miR5072) depicted preferential up- or down-regulation (> 4-fold change; P value < 0.05). Target gene prediction of differentially expressed miRNAs and their functional annotation suggested the important role of miRNAs in defence and detoxification of Cr though ATP-binding cassette transporters (ABC transporters), transcription factors, heat shock proteins, auxin response, and metal ion transport. Real-time PCR analysis validated the differential expression of selected miRNAs and their putative target genes. In conclusion, our study identifies and predicts miRNA-mediated regulation of signalling pathway in rice during Cr stress.
Collapse
Affiliation(s)
- Sonali Dubey
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, U.P, 201313, India.
| | - Sharad Saxena
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P, 201307, India
| | - Abhishek Singh Chauhan
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Priyanka Mathur
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P, 201307, India
| | - Vibha Rani
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P, 201307, India.
| | - Debasis Chakrabaroty
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| |
Collapse
|
6
|
Demecsová L, Tamás L. Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence. Biometals 2019; 32:717-744. [PMID: 31541378 DOI: 10.1007/s10534-019-00214-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 10/25/2022]
Abstract
The presented review is a summary on the current knowledge about metal induced stress response in plants, focusing on the roles of reactive oxygen species, auxin and nitric oxide in roots. The article focuses mainly on the difference between defence and toxicity symptoms of roots during metal-induced stress. Nowadays, pollution of soils by heavy metals is a rapidly growing issue, which affects agriculture and human health. In order to deal with these problems, we must first understand the basic mechanisms and responses to environmental conditions in plants growing under such conditions. Studies so far show somewhat conflicting data, interpreting the same stress responses as both symptoms of defence and toxicity. Therefore, the aim of this review is to give a report about current knowledge of heavy metal-induced stress research, and also to differentiate between toxicity and defence, and outline the challenges of research, focusing on reactive oxygen and nitrogen species, auxin, and the interplay among them. There are still remaining questions on how reactive oxygen and nitrogen species, as well as auxin, can activate either symptoms of toxicity or defence, and adaptation responses.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
7
|
Ecotoxicological and Interactive Effects of Copper and Chromium on Physiochemical, Ultrastructural, and Molecular Profiling in Brassica napus L. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9248123. [PMID: 29888285 PMCID: PMC5977033 DOI: 10.1155/2018/9248123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/22/2018] [Indexed: 01/30/2023]
Abstract
Heavy metal accumulation causes huge environmental problems, particularly in agricultural ecosystems which have deteriorative effects on the yield and quality of crops. Individual copper (Cu) and chromium (Cr) effects have been investigated extensively in plants; however, co-contamination of Cu and Cr induced stress on Brassica napus L. is still unclear. In the present experiment, the interactive effects of Cu and Cr were studied in two B. napus cultivars (Zheda 622 and ZS 758). Results showed that the application of Cr was more toxic than Cu, and their combined stress had shown a significant adverse effect on plant growth. Biomass and photosynthetic pigment were decreased remarkably under all metal treatments. Individual treatments of Cu and Cr and their combination cause the accumulation of ROS and lipid peroxidation. Moreover, the activities of antioxidant enzymes and their mRNA transcription levels, such as catalase (CAT), ascorbate peroxidase, glutathione reductase, superoxide dismutase, and peroxidase, were increased, especially when treated with Cr alone or under Cu+Cr combined treatment in both cultivars, except for the CAT activity which was decreased in both leaves and roots of sensitive cultivar Zheda 622 as compared with their respective controls. Additionally, nonenzymatic antioxidants like reduced and oxidized glutathione showed a differential activity pattern in roots and leaves of both cultivars. A more pronounced modification in chloroplast ultrastructure was observed in both cultivars under Cu+Cr treatment followed by Cr and Cu alone treatments. Furthermore, synergistic effects of Cu and Cr were prominent; this may be due to the enhanced metals uptake under combined treatment, which suggests that Cr and Cu interaction is not competitive but is rather additive and genotypic-dependent.
Collapse
|
8
|
Gill RA, Ali B, Islam F, Farooq MA, Gill MB, Mwamba TM, Zhou W. Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:130-43. [PMID: 26079286 DOI: 10.1016/j.plaphy.2015.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 05/20/2023]
Abstract
Brassica napus L. is a promising oilseed crop among the oil producing species. So, it is prime concern to screen the metal tolerant genotypes in order to increase the oilseed rape production through the utilization of pollutant soil regimes. Nowadays, use of plant growth regulators against abiotic stress is one of the major objectives of researchers. In this study, an attempt was carried out to analyze the pivotal role of exogenously applied 5-amenolevulinic acid (ALA) on alleviating chromium (Cr)-toxicity in black and yellow seeded B. napus. Plants of two cultivars (ZS 758 - a black seed type, and Zheda 622 - a yellow seed type) were treated with 400 μM Cr with or without 15 and 30 mg/L ALA. Results showed that exogenously applied ALA improved the plant growth and increased ALA contents; however, it decreased the Cr concentration in B. napus leaves under Cr-toxicity. Moreover, exogenous ALA reduced oxidative stress by up-regulating antioxidant enzyme activities and their related gene expression. Further, results suggested that stress responsive protein's transcript level such as HSP90-1 and MT-1 were increased under Cr stress alone in both cultivars. Exogenously applied ALA further enhanced the expression rate in both genotypes and obviously results were found in favor of cultivar ZS 758. The ultrastructural changes were observed more obvious in yellow seeded than black seeded cultivar; however, exogenously applied ALA helped the plants to recover their cell turgidity under Cr stress. The present study describes a detailed molecular mechanism how ALA regulates the plant growth by improving antioxidant machinery and related transcript levels, cellular modification as well as stress related genes expression under Cr-toxicity.
Collapse
Affiliation(s)
- Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad B Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Theodore M Mwamba
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Chigbo C, Batty L. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3051-3059. [PMID: 24185906 DOI: 10.1007/s11356-013-2254-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
A greenhouse experiment was carried out to investigate the single effect of benzo[a]pyrene (B[a]P) or chromium (Cr) and the joint effect of Cr-B[a]P on the growth of Zea mays, its uptake and accumulation of Cr, and the dissipation of B[a]P over 60 days. Results showed that single or joint contamination of Cr and B[a]P did not affect the plant growth relative to control treatments. However, the occurrence of B[a]P had an enhancing effect on the accumulation and translocation of Cr. The accumulation of Cr in shoot of plant significantly increased by ≥ 79 % in 50 mg kg(-1) Cr-B[a]P (1, 5, and 10 mg kg(-1)) treatments and by ≥ 86 % in 100 mg kg(-1) Cr-B[a]P (1, 5, and 10 mg kg(-1)) treatments relative to control treatments. The presence of plants did not enhance the dissipation of B[a]P in lower (1and 5 mg kg(-1)) B[a]P contaminated soils; however, over 60 days of planting Z. mays seemed to enhance the dissipation of B[a]P by over 60 % in 10 mg kg(-1) single contaminated soil and by 28 to 41 % in 10 mg kg(-1)B[a]P co-contaminated soil. This suggests that Z. mays might be a useful plant for the remediation of Cr-B[a]P co-contaminated soil.
Collapse
Affiliation(s)
- Chibuike Chigbo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK,
| | | |
Collapse
|
10
|
Wang D, Zhang X, Liu J, Zhu Y, Zhang H, Zhang A, Jin X. Oxalic acid enhances Cr tolerance in the accumulating plant Leersia hexandra Swartz. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:966-977. [PMID: 22908658 DOI: 10.1080/15226514.2011.636406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study examined the relationship between oxalic acid and Cr tolerance in an accumulating plant Leersia hexandra Swartz. The plants grown in hydroponics were exposed to Cr at 0, 5, 30, and 60 mg/L (without oxalate), and 0, 40, and 80 mg/L concentrations of Cr (with 70 mg/L oxalate or without oxalate). The results showed that more than 50% of Cr in shoots was found in HCl-extracted fraction (chromium oxalate) when the plants were exposed to Cr. Cr supply significantly increased oxalate concentration in shoots of L. hexandra (p < 0.05), but did not increase oxalate concentration in roots. Under 80 mg/L Cr stress, electrolyte leakages from roots and shoots with oxalate treatment were both significantly lower than those without oxalate treatment (p < 0.05), indicating exogenous oxalate supply alleviated Cr-induced membrane damage. Oxalate added to growth solution ameliorated reduction of biomass and inhibition of root growth induced by Cr, which demonstrated that application of oxalate helped L. hexandra tolerate Cr stress. However, oxalate supply did not affect the Cr concentrations both in roots and shoots of L. hexandra. These results suggest that oxalic acid may act as an important chelator and takes part in detoxifying chromium in internal process of L. hexandra.
Collapse
Affiliation(s)
- Dunqiu Wang
- The Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guilin University of Technology, Guilin, Guangxi, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Achary VMM, Parinandi NL, Panda BB. Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:550-60. [PMID: 22865669 DOI: 10.1002/em.21719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 05/11/2023]
Abstract
Plants under stress incur an oxidative burst that involves a rapid and transient overproduction of reactive oxygen species (ROS: O(2) (•-) , H(2) O(2) , (•) OH). We hypothesized that aluminum (Al), an established soil pollutant that causes plant stress, would induce an oxidative burst through the activation of cell wall-NADH peroxidase (NADH-PX) and/or plasma membrane-associated NADPH oxidase (NADPH-OX), leading to DNA damage in the root cells of Allium cepa L. Growing roots of A. cepa were treated with Al(3+) (800 μM of AlCl(3) ) for 3 or 6 hr without or with the pretreatment of inhibitors specific to NADH-PX and NADPH-OX for 2 hr. At the end of the treatment, the extent of ROS generation, cell death, and DNA damage were determined. The cell wall-bound protein (CWP) fractions extracted from the untreated control and the Al-treated roots under the aforementioned experimental conditions were also subjected to in vitro studies, which measured the extent of activation of peroxidase/oxidase, generation of (•) OH, and DNA damage. Overall, the present study demonstrates that the cell wall-bound NADH-PX contributes to the Al-induced oxidative burst through the generation of ROS that lead to cell death and DNA damage in the root cells of A. cepa. Furthermore, the in vitro studies revealed that the CWP fraction by itself caused DNA damage in the presence of NADH, supporting a role for NADH-PX in the stress response. Altogether, this study underscores the crucial function of the cell wall-bound NADH-PX in the oxidative burst-mediated cell death and DNA damage in plants under Al stress.
Collapse
Affiliation(s)
- V Mohan M Achary
- Department of Botany, Molecular Biology and Genomics Laboratory, Berhampur University, Berhampur, India
| | | | | |
Collapse
|
12
|
Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A. Physiological changes induced by chromium stress in plants: an overview. PROTOPLASMA 2012; 249:599-611. [PMID: 22002742 DOI: 10.1007/s00709-011-0331-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/29/2011] [Indexed: 05/03/2023]
Abstract
This article presents an overview of the mechanism of chromium (Cr) stress in plants. Toxic effects of Cr on plant growth and development depend primarily on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr-induced oxidative stress involves induction of lipid peroxidation in plants that cause severe damage to cell membranes which includes degradation of photosynthetic pigments causing deterioration in growth. The potential of plants with the adequacy to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained engrossment in recent years.
Collapse
Affiliation(s)
- Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | | | | | | | | | | |
Collapse
|
13
|
Gangwar S, Singh VP, Garg SK, Prasad SM, Maurya JN. Kinetin supplementation modifies chromium (VI) induced alterations in growth and ammonium assimilation in pea seedlings. Biol Trace Elem Res 2011; 144:1327-43. [PMID: 21796388 DOI: 10.1007/s12011-011-9157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/15/2011] [Indexed: 01/08/2023]
Abstract
In the present study, impact of kinetin (KN; 10 and 100 μM) supplementation on growth, ammonium (NH(4)(+)) assimilation and antioxidant system in pea under hexavalent chromium toxicity (Cr VI; 50, 100 and 250 μM) was investigated. Chromium decreased growth, protein, and nitrogen, and activity of glutamine synthetase (GS) and glutamate synthase (GOGAT) while it increased NH(4)(+) content and activity of glutamate dehydrogenase (GDH). Kinetin at 100 μM decreased growth and NH(4)(+) assimilation, and together with Cr, it increased Cr toxicity. Chromium and 100 μM KN increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities while decreasing activities of catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR). Ascorbate and glutathione levels were decreased by Cr and 100 μM KN. In contrast, supplementation of 10 μM KN under Cr (VI) toxicity, protected NH(4)(+) assimilation and promoted growth of pea by increasing levels of some of the antioxidants i.e., CAT, GR, DHAR, ascorbate and glutathione. Results showed that 10 μM KN increases Cr tolerance while 100 μM KN exhibited opposite responses. These results could contribute to an understanding of the mechanisms of KN-mediated dual influence on metal tolerance in crop plants.
Collapse
Affiliation(s)
- Savita Gangwar
- Department of Plant Science, M.J.P. Rohilkhand University, Bareilly, 243006, India.
| | | | | | | | | |
Collapse
|
14
|
Tamás L, Valentovicová K, Halusková L, Huttová J, Mistrík I. Effect of cadmium on the distribution of hydroxyl radical, superoxide and hydrogen peroxide in barley root tip. PROTOPLASMA 2009; 236:67-72. [PMID: 19543794 DOI: 10.1007/s00709-009-0057-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/03/2009] [Indexed: 05/27/2023]
Abstract
In the present study, we investigated the alteration of reactive oxygen species production along the longitudinal axis of barley root tips during Cd treatment. In unstressed barley root tips, H(2)O(2) production decreased from the root apex towards the differentiation zone where again, a slight increase was observed towards the more mature region of root. An opposite pattern was observed for O(2)(*-) and OH(*) generation. The amount of both O(2)(*-) and OH(*) was highest in the elongation zone, decreased in the root apex and at the differentiation zone of root, then increased again towards the more mature region of root. An elevated Cd-induced O(2)(*-) production started in the elongation zone and increased further along the differentiation zone of barley root tip. In contrast, Cd-induced H(2)O(2) production was localised to the root elongation zone and to the beginning of the differentiation zone. In contrast to Cd-induced H(2)O(2) and O(2)(*-) production, Cd reduced OH(*) production along the whole barley root tip. Our results suggest that not only an increase but also the spatial distribution of reactive oxygen species production is involved in the Cd-induced stress response of barley root tip.
Collapse
Affiliation(s)
- Ladislav Tamás
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-84523, Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
15
|
Pandey V, Dixit V, Shyam R. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. PROTOPLASMA 2009; 236:85-95. [PMID: 19582547 DOI: 10.1007/s00709-009-0061-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 06/19/2009] [Indexed: 05/26/2023]
Abstract
Pea plants were exposed to 0, 20, 50, and 100 microM chromium [Cr(VI)] to investigate oxidative stress in isolated chloroplasts. Leaf area and biomass accumulation were significantly reduced at higher Cr supply. Generation of superoxide, hydrogen peroxide, and *OH radical generation was enhanced in the chloroplasts isolated from Cr-exposed pea plants. Cr(VI) significantly reduced F(v)/F(m) ratio of chlorophyll (Chl) fluorescence, Chl content, and whole chain electron transport rate. Superoxide dismutase (SOD) activity increased at lower Cr supply while it decreased at higher Cr supply. Ascorbate peroxidase (APX) was found to be most sensitive to Cr stress. Monodehydroascorbate reductase activity remained higher at 20 and 50 microM Cr but decreased at 100 microM Cr. Increased activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in the isolated chloroplasts were observed during the initial 3 days of Cr exposure of pea plants. Activities of DHAR and GR were increased up to day 3 only. Ascorbate and glutathione (GSH) pools showed similar decrease that was more evident in the GSH pool as the duration of Cr treatment increased. Observed changes in reactive oxygen species concentration, photosynthetic characteristics, and antioxidant system indicate that chloroplasts in Cr-exposed pea plants are an important target of oxidative stress.
Collapse
Affiliation(s)
- Vivek Pandey
- Plant Physiology Lab, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India.
| | | | | |
Collapse
|
16
|
Shanker AK, Djanaguiraman M, Venkateswarlu B. Chromium interactions in plants: current status and future strategies. Metallomics 2009; 1:375-83. [DOI: 10.1039/b904571f] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|