1
|
Kozieradzka-Kiszkurno M, Majcher D, Brzezicka E, Rojek J, Wróbel-Marek J, Kurczyńska E. Development of Embryo Suspensors for Five Genera of Crassulaceae with Special Emphasis on Plasmodesmata Distribution and Ultrastructure. PLANTS 2020; 9:plants9030320. [PMID: 32138356 PMCID: PMC7154837 DOI: 10.3390/plants9030320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 01/22/2023]
Abstract
The suspensor in the majority of angiosperms is an evolutionally conserved embryonic structure functioning as a conduit that connects ovule tissues with the embryo proper for nutrients and growth factors flux. This is the first study serving the purpose of investigating the correlation between suspensor types and plasmodesmata (PD), by the ultrastructure of this organ in respect of its full development. The special attention is paid to PD in representatives of Crassulaceae genera: Sedum, Aeonium, Monanthes, Aichryson and Echeveria. The contribution of the suspensor in transporting nutrients to the embryo was confirmed by the basal cell structure of the suspensor which produced, on the micropylar side of all genera investigated, a branched haustorium protruding into the surrounding ovular tissue and with wall ingrowths typically associated with cell transfer. The cytoplasm of the basal cell was rich in endoplasmic reticulum, mitochondria, dictyosomes, specialized plastids, microtubules, microbodies and lipid droplets. The basal cell sustained a symplasmic connection with endosperm and neighboring suspensor cells. Our results indicated the dependence of PD ultrastructure on the type of suspensor development: (i) simple PD are assigned to an uniseriate filamentous suspensor and (ii) PD with an electron-dense material are formed in a multiseriate suspensor. The occurrence of only one or both types of PD seems to be specific for the species but not for the genus. Indeed, in the two tested species of Sedum (with the distinct uniseriate/multiseriate suspensors), a diversity in the structure of PD depends on the developmental pattern of the suspensor. In all other genera (with the multiseriate type of development of the suspensor), the one type of electron-dense PD was observed.
Collapse
Affiliation(s)
- Małgorzata Kozieradzka-Kiszkurno
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (D.M.); (E.B.); (J.R.)
- Correspondence: ; Tel.: +48-58-5236078
| | - Daria Majcher
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (D.M.); (E.B.); (J.R.)
| | - Emilia Brzezicka
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (D.M.); (E.B.); (J.R.)
| | - Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (D.M.); (E.B.); (J.R.)
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland; (J.W.-M.); (E.K.)
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland; (J.W.-M.); (E.K.)
| |
Collapse
|
2
|
Chmielnicka A, Żabka A, Winnicki K, Maszewski J, Polit JT. Endoreplication and its consequences in the suspensor of Pisum sativum. PLANT CELL REPORTS 2018; 37:1639-1651. [PMID: 30132058 PMCID: PMC6244982 DOI: 10.1007/s00299-018-2335-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE DNA replication and continuous process of transcription during ongoing amitotic division accelerate the development of four-celled pea suspensor containing nuclei which create transient gradient of polyploidy necessary for correct embryo development. A suspensor, the link between embryo proper and surrounding tissues, differs significantly in size, morphology, and degree of polyploidy among the species. The suspensor of Pisum sativum consists of four polynuclear cells (two hemispherical and two elongated) formed in two layers. Their nuclei undergo endoreplication reaching, respectively, up to 256C and 128-256C DNA levels in its hemispherical and elongated parts. Our study shows that endoreplication first appears in the spherical part of the suspensor, and, subsequently, in the elongated one. At the next stages of suspensor development, the increase in DNA content takes place also in a similar order. Thus, despite simple construction of the suspensor, its development, supported by endoreplication, creates a certain gradient of polyploidy, which occurs in more extensive suspensors. Moreover, the rapid development of suspensor is supported both by the initiation of DNA replication prior to the completion of amitotic division of its polyploidal nuclei and by a continuous process of transcription, which is silenced by chromatin condensation throughout mitosis. Furthermore, the increase in DNA content correlates with the greater amount of transcripts; however, the multiplication of DNA copies does not entail an increase (but fluctuation) in the mean transcriptional activity of a particular nucleus during the next stages of suspensor development.
Collapse
Affiliation(s)
- Agnieszka Chmielnicka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
3
|
Milewska-Hendel A, Zubko M, Karcz J, Stróż D, Kurczyńska E. Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Sci Rep 2017; 7:3014. [PMID: 28592798 PMCID: PMC5462829 DOI: 10.1038/s41598-017-02965-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles (NPs) have a significant impact on the environment and living organisms. The influence of NPs on plants is intensively studied and most of the data indicate that NPs can penetrate into plants. The studies presented here were performed on the roots of Hordeum vulgare L. seedlings using neutral-charge gold nanoparticles (AuNPs) of different sizes. In contrast to the majority of the published data, the results presented here showed that during the culture period, AuNPs: 1/did not enter the root regardless of their size and concentration, 2/that are applied directly into the cells of a root do not move into neighbouring cells. The results that were obtained indicate that in order to extend our knowledge about the mechanisms of the interactions between NPs and plants, further studies including, among others, on different species and a variety of growth conditions are needed.
Collapse
Affiliation(s)
- Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, Katowice, 40-032, Poland.
| | - Maciej Zubko
- Institute of Materials Science, Faculty of Computer Science and Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty Street 1a, Chorzów, 41-500, Poland
| | - Jagna Karcz
- Laboratory of Scanning Electron Microscopy, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, Katowice, 40-032, Poland
| | - Danuta Stróż
- Institute of Materials Science, Faculty of Computer Science and Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty Street 1a, Chorzów, 41-500, Poland
| | - Ewa Kurczyńska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, Katowice, 40-032, Poland
| |
Collapse
|
4
|
Wróbel-Marek J, Kurczyńska E, Płachno BJ, Kozieradzka-Kiszkurno M. Identification of symplasmic domains in the embryo and seed of Sedum acre L. (Crassulaceae). PLANTA 2017; 245:491-505. [PMID: 27888360 PMCID: PMC5310571 DOI: 10.1007/s00425-016-2619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/16/2016] [Indexed: 05/10/2023]
Abstract
MAIN CONCLUSION Our study demonstrated that symplasmic communication between Sedum acre seed compartments and the embryo proper is not uniform. The presence of plasmodesmata (PD) constitutes the structural basis for information exchange between cells, and symplasmic communication is involved in the regulation of cell differentiation and plant development. Most recent studies concerning an analysis of symplasmic communication between seed compartments and the embryo have been predominantly performed on Arabidopsis thaliana. The results presented in this paper describe the analysis of symplasmic communication on the example of Sedum acre seeds, because the ultrastructure of the seed compartments and the embryo proper, including the PD, have already been described, and this species represents an embryonic type of development different to Arabidopsis. Moreover, in this species, an unusual electron-dense dome associated with plasmodesmata on the border between the basal cell/chalazal suspensor cells and the basal cell/the endosperm has been described. This prompted the question as to whether these plasmodesmata are functional. Thus, the aim of this study was to describe the movement of symplasmic transport fluorochromes between different Sedum seed compartments, with particular emphasis on the movement between the basal cell and the embryo proper and endosperm, to answer the following questions: (1) are seeds divided into symplasmic domains; (2) if so, are they stable or do they change with the development? The results have shown that symplasmic tracers movement: (a) from the external integument to internal integument is restricted; (b) from the basal cell to the other part of the embryo proper and from the basal cell to the endosperm is also restricted;
Collapse
Affiliation(s)
- Justyna Wróbel-Marek
- Department of Cell Biology, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ewa Kurczyńska
- Department of Cell Biology, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Kraków, Poland
| | | |
Collapse
|
5
|
Świerczyńska J, Kozieradzka-Kiszkurno M, Bohdanowicz J. Rhinanthus serotinus (Schönheit) Oborny (Scrophulariaceae): immunohistochemical and ultrastructural studies of endosperm chalazal haustorium development. PROTOPLASMA 2013; 250:1369-80. [PMID: 23779214 DOI: 10.1007/s00709-013-0520-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/03/2013] [Indexed: 05/07/2023]
Abstract
Chalazal endosperm haustorium in Rhinanthus serotinus consists of a single large binucleate cell. It originates from the primary endosperm cell dividing transversely into two unequal cells: a smaller micropylar cell and a larger chalazal cell. The chalazal cell undergoes a single mitotic division, then lengthens significantly during development and functions as a chalazal endosperm haustorium. In this paper, immunofluorescent techniques, rhodamine phalloidin assay, and electron microscopy were used to examine the actin and tubulin cytoskeleton during the development of the chalazal haustorium. During the differentiation stage, numerous longitudinally oriented bundles of microfilaments ran along the axis of transvacuolar strands in haustorium. Microtubules formed intensely fluorescent areas near the nuclear envelope and also formed radial perinuclear microtubule arrays. In the fully differentiated haustorium cell, the actin cytoskeleton formed dense clusters of microfilaments on the chalazal and micropylar poles of the haustorium. Numerous microfilament bundles occurred near wall ingrowths on the chalazal wall. There were numerous clusters of microfilaments and microtubules around the huge lobed polytenic haustorial nuclei. The microfilaments were oriented longitudinally to the long axis of the haustorium cell and surrounded both nuclei. The microtubules formed radial perinuclear systems which were appeared to radiate from the surface of the nuclear envelope. The early stage of degeneration of the chalazal haustorium was accompanied by the degradation of microtubules and disruption of the parallel orientation of microtubules in the chalazal area of the cell. The degree of vacuolization increased, autophagous vacuoles appeared and the number of vesicles decreased.
Collapse
Affiliation(s)
- Joanna Świerczyńska
- Department of Plant Cytology and Embryology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland,
| | | | | |
Collapse
|
6
|
Płachno BJ, Swiątek P, Sas-Nowosielska H, Kozieradzka-Kiszkurno M. Organisation of the endosperm and endosperm-placenta syncytia in bladderworts (Utricularia, Lentibulariaceae) with emphasis on the microtubule arrangement. PROTOPLASMA 2013; 250:863-73. [PMID: 23178998 PMCID: PMC3728435 DOI: 10.1007/s00709-012-0468-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/02/2012] [Indexed: 05/10/2023]
Abstract
Multinucleate cells play an important role in higher plants, especially during reproduction; however, the configurations of their cytoskeletons, which are formed as a result of mitosis without cytokinesis, have mainly been studied in coenocytes. Previous authors have proposed that in spite of their developmental origin (cell fusion or mitosis without cytokinesis), in multinucleate plant cells, radiating microtubules determine the regular spacing of individual nuclei. However, with the exception of specific syncytia induced by parasitic nematodes, there is no information about the microtubular cytoskeleton in plant heterokaryotic syncytia, i.e. when the nuclei of fused cells come from different cell pools. In this paper, we describe the arrangement of microtubules in the endosperm and special endosperm-placenta syncytia in two Utricularia species. These syncytia arise from different progenitor cells, i.e. cells of the maternal sporophytic nutritive tissue and the micropylar endosperm haustorium (both maternal and paternal genetic material). The development of the endosperm in the two species studied was very similar. We describe microtubule configurations in the three functional endosperm domains: the micropylar syncytium, the endosperm proper and the chalazal haustorium. In contrast to plant syncytia that are induced by parasitic nematodes, the syncytia of Utricularia had an extensive microtubular network. Within each syncytium, two giant nuclei, coming from endosperm cells, were surrounded by a three-dimensional cage of microtubules, which formed a huge cytoplasmic domain. At the periphery of the syncytium, where new protoplasts of the nutritive cells join the syncytium, the microtubules formed a network which surrounded small nuclei from nutritive tissue cells and were also distributed through the cytoplasm. Thus, in the Utricularia syncytium, there were different sized cytoplasmic domains, whose architecture depended on the source and size of the nuclei. The endosperm proper was isolated from maternal (ovule) tissues by a cuticle layer, so the syncytium and chalazal haustorium were the only way for nutrients to be transported from the maternal tissue towards the developing embryo.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University, 52 Grodzka St., 31-044 Cracow, Poland.
| | | | | | | |
Collapse
|
7
|
Kozieradzka-Kiszkurno M, Płachno BJ. Are there symplastic connections between the endosperm and embryo in some angiosperms?--a lesson from the Crassulaceae family. PROTOPLASMA 2012; 249:1081-9. [PMID: 22120586 PMCID: PMC3459079 DOI: 10.1007/s00709-011-0352-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/09/2011] [Indexed: 05/19/2023]
Abstract
It is believed that there is symplastic isolation between the embryo (new sporophyte) and the endosperm (maternal-parental origin tissue, which nourishes the embryo) in angiosperms. However, in embryological literature there are rare examples in which plasmodesmata between the embryo suspensor and endosperm cells have been recorded (three species from Fabaceae). This study was undertaken in order to test the hypothesis that plasmodesmata between the embryo suspensor and the endosperm are not so rare but also occur in other angiosperm families; in order to check this, we used the Crassulaceae family because embryogenesis in Crassulaceae has been studied extensively at an ultrastructure level recently and also we tread members of this family as model for suspensor physiology and function studies. These plasmodesmata even occurred between the basal cell of the two-celled proembryo and endosperm cells. The plasmodesmata were simple at this stage of development. During the development of the embryo proper and the suspensor, the structure of plasmodesmata changes. They were branched and connected with electron-dense material. Our results suggest that in Crassulaceae with plasmodesmata between the endosperm and suspensor, symplastic connectivity at this cell-cell boundary is still reduced or blocked at a very early stage of embryo development (before the globular stage). The occurrence of plasmodesmata between the embryo suspensor and endosperm cells suggests possible symplastic transport between these different organs, at least at a very early stage of embryo development. However, whether this transport actually occurs needs to be proven experimentally. A broader analysis of plants from various families would show whether the occurrence of plasmodesmata between the embryo suspensor and the endosperm are typical embryological characteristics and if this is useful in discussions about angiosperm systematic and evolution.
Collapse
|
8
|
Kozieradzka-Kiszkurno M, Płachno BJ, Bohdanowicz J. New data about the suspensor of succulent angiosperms: Ultrastructure and cytochemical study of the embryo-suspensor of Sempervivum arachnoideum L. and Jovibarba sobolifera (Sims) Opiz. PROTOPLASMA 2012; 249:613-24. [PMID: 21644003 PMCID: PMC3382269 DOI: 10.1007/s00709-011-0297-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/30/2011] [Indexed: 05/10/2023]
Abstract
The development of the suspensor in two species - Sempervivum arachnoideum and Jovibarba sobolifera - was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species - S. arachnoideum and J. sobolifera - the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper.
Collapse
|