1
|
Gomes FS, da Silva PN, Dos Reis CHG, de Anchieta MR, Santolino AC, Nakamura KSD, Pereira FJ. Iron mining tailing toxicity is increased by lower pH affecting lettuce seed germination, seedling early growth, and leaf anatomy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36077-0. [PMID: 39954020 DOI: 10.1007/s11356-025-36077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Solid iron mining tailings are some of the most relevant pollutants because dam failures release huge amounts of such materials into the environment. These pollutants contain several potentially toxic elements, which may cause high toxicity to plants depending on factors such as their availability, preventing restoration programs. This work aimed to investigate the effect of the modification in the pH from iron mining tailings to Fe and Al toxicity accessed by lettuce biotests, a known sensitive species. We conducted two experiments: 1) comparing the intrinsic toxicity from iron mining tailings against sand and 2) investigating the effects of pH values: 4, 5, 6, and 7 on tailing's toxicity. These materials were placed in gerbox pots and lettuce seeds were sown and kept in a growth chamber. The composition of the iron mining tailings was evaluated. Seed germination and seedling early growth as well as their cotyledon anatomy were accessed. The iron mining tailing pH was 6 and comprises P, Mg, K, Ca, Fe, Mn, Zn, Cu, Na, Al, Cr, Cd, and P; about 97.5% are Ca, Fe, and Al. Iron mining tailings at pH 6 did not significantly change seed germination and shoot growth but promoted positive anatomical changes compared with sand. Iron mining tailings at pH 6 reduced root growth compared with sand. The reduction of the pH to 4 and 5 strongly increased the toxicity of the tailing, preventing lettuce germination; however, seeds germinated equally in pH 6 and 7. The pH 7 promoted the reduction of biometric parameters such as the seedling shoot length and diameter and the number and root length. No significant modifications were caused by the pH 7 to the seedling's fresh and dry masses. The pH 7 promoted no noteworthy changes in the anatomy of the photosynthetic cotyledons. Thus, the lower pH values of 4 and 5 increase the toxicity of the iron mining waste but its elevation to 7 promoted no evident damage to lettuce plants.
Collapse
Affiliation(s)
- Fellipe Silva Gomes
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva 700, Zip Code, Alfenas-MG, 37130-001, Brazil
| | - Poliana Noemia da Silva
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva 700, Zip Code, Alfenas-MG, 37130-001, Brazil
| | - Carlos Henrique Goulart Dos Reis
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva 700, Zip Code, Alfenas-MG, 37130-001, Brazil
| | - Marcelo Ramos de Anchieta
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva 700, Zip Code, Alfenas-MG, 37130-001, Brazil
| | - Amanda Coletti Santolino
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva 700, Zip Code, Alfenas-MG, 37130-001, Brazil
| | - Kauê Shindi Dias Nakamura
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva 700, Zip Code, Alfenas-MG, 37130-001, Brazil
| | - Fabricio José Pereira
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva 700, Zip Code, Alfenas-MG, 37130-001, Brazil.
| |
Collapse
|
2
|
Díaz AS, da Cunha Cruz Y, Duarte VP, de Castro EM, Magalhães PC, Pereira FJ. The role of sodium nitroprusside (SNP) in alleviating cadmium stress in maize plants. PROTOPLASMA 2025; 262:133-148. [PMID: 39251440 DOI: 10.1007/s00709-024-01987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to plants and animals and can accumulate in the environment as a result of industrial activities and agricultural application of some types of phosphate fertilizer. This study aimed to assess the role of sodium nitroprusside (SNP), as a source of nitric oxide (NO) in alleviating Cd stress in maize plants. Maize plants were kept in soil saturated with 40%-strength nutrient solution in a greenhouse, and cadmium nitrate, Cd(NO3)2, was applied at different concentrations, (0, 10, and 50 µM). Sodium nitroprusside, [Fe(CN)5NO]·2H2O, at concentrations of 0.05, 0.1, and 0.2 µM. Growth, leaf gas exchange, and leaf anatomy analyses were performed. The experimental design was completely randomized in a 3 × 3 factorial arrangement with five replicates. The highest concentrations of Cd and SNP reduced the total dry mass and leaf and stem dry mass but increased the allocation of biomass to the roots and stem, but the leaf allocation did not change. The application of Cd and SNP promoted an increase in gas exchange and leaf area, in addition to an increase in leaf tissue thickness and stomatal density. The presence of SNP at low concentrations reduces the toxicity of Cd, but at high concentrations, this compound can generate negative effects and even toxicity in maize plants.
Collapse
Affiliation(s)
| | - Yasmini da Cunha Cruz
- Universidade Federal de Lavras, Lavras, Minas Gerais State, Zip Code 37200-000, Brazil
| | | | | | | | - Fabricio José Pereira
- Universidade Federal de Alfenas, Instituto de Ciências da Natureza, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, Zip Code: 37130-001, Brazil.
| |
Collapse
|
3
|
Fei L, Zuo S, Zhang J, Wang Z. Phytoextraction by harvesting dead leaves: cadmium accumulation associated with the leaf senescence in Festuca arundinacea Schreb. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79214-79223. [PMID: 35710964 DOI: 10.1007/s11356-022-21104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Phytoextraction strategy by harvesting dead leaves provides continuous phytoremediation and a great saving in disposal cost of hazardous plant residues. This strategy is entirely dependent upon the amount of cadmium (Cd) accumulated in dead leaves. However, it is unknown that whether the leaf Cd accumulation is associated with its senescence and how to regulate its Cd accumulation. This study showed that Cd was preferentially and consistently distributed to and accumulated in the senescent leaves with the new leaf emergence and the old leaf dieback under 75 μM of Cd stress in tall fescue (Festuca arundinacea Schreb.). Individual leaf monitoring from its emergence to senescence showed that Cd concentration increased exponentially with the leaf life cycle, while leaf biomass decreased gradually after 14 days of leaf emergence. The total amount of Cd accumulated in the leaf showed an exponential increase during leaf senescence, regardless of the leaf biomass loss. Our results demonstrated that leaf Cd accumulation was significantly associated with its senescence and the highest Cd accumulated in dead leaves could be contributed from the continuous Cd input during the leaf senescent process, indicating that further regulatory studies should be focused on the leaf senescence process to achieve higher Cd accumulation and phytoextraction efficiency by harvesting dead leaves.
Collapse
Affiliation(s)
- Ling Fei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
- Zhuhai College of Jilin University, Zhuhai, Guangdong, 519041, People's Republic of China
| | - ShaoFan Zuo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - JiaXin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - ZhaoLong Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
4
|
Gu X, Zhang Q, Jia Y, Cao M, Zhang W, Luo J. Enhancement of the Cd phytoremediation efficiency of Festuca arundinacea by sonic seed treatment. CHEMOSPHERE 2022; 287:132158. [PMID: 34492420 DOI: 10.1016/j.chemosphere.2021.132158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
It has been reported that both naturally occurring and artificially created sounds can alter the physiological parameters of various plants. A series of experiments were designed in the present study to estimate the physiological responses and the variation in the Cd decontamination capacity of Festuca arundinacea under sonic wave treatments. Plant seeds were treated by sound waves of frequency 200, 300, 400, 500, and 1000 Hz, and the germinated seedlings were transplanted to Cd-polluted soil. The results showed that all the sonic treatments increased the whole plant dry weight of F. arundinacea compared with that of the control, and the highest value was observed in the 200 Hz treatment. The Cd content in below-ground and aerial tissues of the species increased with increasing frequency till 400 Hz, after which they became constant. A higher proportion of senescent and dead leaf tissues was observed in the high-frequency treatment (1000 Hz), and more Cd was transferred to these failing tissues. Therefore, in the 1000 Hz treatment, a significantly greater amount of Cd could be eliminated by harvesting the senescent and dead leaf tissues of the species compared with that of the other treatments. The concentrations of dissolved organic matter (DOM) and the proportions of hydrophilic fractions which have a strong Cd affinity, in the rhizosphere soil of F. arundinacea increased with the increase in sound frequency. Cd extraction ability of DOM also increased with increasing frequency. This study indicated that a suitable sonic treatment can improve the phytoextraction efficiency of F. arundinacea, and also explained the mechanism from the perspective of the variations in soil DOM.
Collapse
Affiliation(s)
- Xiaowen Gu
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Qinghua Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Yifan Jia
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Wei Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
5
|
Xue C, Gao Y, Qu B, Tai P, Guo C, Chang W, Zhao G. Hybridization With an Invasive Plant of Xanthium strumarium Improves the Tolerance of Its Native Congener X. sibiricum to Cadmium. FRONTIERS IN PLANT SCIENCE 2021; 12:696687. [PMID: 34394149 PMCID: PMC8358311 DOI: 10.3389/fpls.2021.696687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Hybridization is one of the important factors influencing the adaptive evolution of invasive plants. According to previous studies, hybridization with an invasive plant reduces the adaptability of its native congener to environment. However, in this study, the hybridization with an invasive plant of Xanthium strumarium (LT) improves the tolerance and accumulation of its native congener Xanthium sibiricum (CR) to cadmium (Cd). Under Cd stress, X. sibiricum♀ × X. strumarium♂ (ZCR) showed higher biomass and Cd accumulation. Compared with CR, ZCR has longer vegetative and reproductive growth time. Moreover, ZCR adopted more reasonable biomass allocation strategy. ZCR increased the proportion of reproductive allocation and ensured its own survival with the increase of Cd stress. Furthermore, ZCR increased the translocation of Cd to aboveground parts and changed the distribution of Cd. A large amount of Cd is stored in senescent leaves and eliminated from the plant when the leaves fall off, which not only reduces the Cd content in the plant, but also reduces the toxicity of Cd in the normal leaves. Transcriptome analysis shows a total of 2055 (1060 up and 995 down) differentially expressed genes (DEGs) were detected in the leaves of Cd-stressed ZCR compared with CR, while only 792 (521 up and 271 down) were detected in X. strumarium♀ × X. sibiricum♂ (ZLT) compared with LT. A large number of DGEs in ZCR and ZLT are involved in abscisic acid (ABA) synthesis and signal transduction. The genes induced by ABA in ZCR, including CNGC5/20, CPK1/28, CML, PTI1-like tyrosine-protein kinase 3, respiratory burst oxidase homolog protein C, and WRKY transcription factor 33 were found differentially expressed compared CR. carotenoid cleavage dioxygenase 4, NCED1/2, phytoene synthase 2, and CYP707A involved in ABA synthesis and decomposition in ZLT were found differentially expressed compared LT. We speculated that ABA played an important role in Cd transportation of hybrids and Cd distribution in senescent and normal leaves. The results demonstrate that hybridization with an invasive plant improves the adaptability of the hybrid to Cd stress and may enhance the extinction risk of native congener in pollution environment.
Collapse
Affiliation(s)
- Chenyang Xue
- College of Biological Technology, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yingmei Gao
- College of Biological Technology, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Bo Qu
- College of Biological Technology, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Cheng Guo
- Liaoning Shihua University, Fushun, China
| | - Wenyue Chang
- Shenyang Academy of Environmental Sciences, Shenyang, China
| | - Guanghui Zhao
- Shenyang Academy of Environmental Sciences, Shenyang, China
| |
Collapse
|
6
|
Zhu H, Chen L, Xing W, Ran S, Wei Z, Amee M, Wassie M, Niu H, Tang D, Sun J, Du D, Yao J, Hou H, Chen K, Sun J. Phytohormones-induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants: A novel strategy for strengthening of phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122080. [PMID: 31954299 DOI: 10.1016/j.jhazmat.2020.122080] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 05/24/2023]
Abstract
Due to the long growth period of plants, phytoremediation is time costly. Improving the accumulation of cadmium (Cd) in shoots of plants will promote the efficiency of phytoremediation. In this study, two senescence-relative phytohormones, abscisic acid (ABA) and salicylic acid (SA), were applied to strengthening phytoremediation of Cd by tall fescue (Festuca arundinacea S.). Under hydroponic culture, phytohormones treatment increased the Cd content of shoots 11.4-fold over the control, reaching 316.3 mg/kg (dry weight). Phytohormones-induced senescence contributes to the transport of heavy metals, and HMA3 was found to play a key role in this process. Additionally, this strategy could strengthen the accumulation of Cu and Zn in tall fescue shoots. Moreover, in soil pot culture, the strategy increased shoot Cd contents 2.56-fold over the control in tall fescue, and 2.55-fold over the control in Indian mustard (Brassica juncea L.), indicating its comprehensive adaptability and potential use in the field. In summary, senescence-induced heavy metal transport is developed as a novel strategy to strengthen phytoremediation. The strategy could be applied at the end of phytoremediation with an additional short duration (7 days) with comprehensive adaptability, and markedly strengthen the phytoremediation in the field.
Collapse
Affiliation(s)
- Huihui Zhu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology & CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
| | - Liang Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology & CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology & CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
| | - Shangmin Ran
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Zhihui Wei
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Maurice Amee
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology & CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
| | - Misganaw Wassie
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology & CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
| | - Hong Niu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Diyong Tang
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Jie Sun
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Dongyun Du
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Jun Yao
- School of Water Resources & Environment, China University of Geosciences Beijing, Beijing, PR China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| | - Ke Chen
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China.
| | - Jie Sun
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China.
| |
Collapse
|
7
|
Wang Y, Meng D, Fei L, Dong Q, Wang Z. A novel phytoextraction strategy based on harvesting the dead leaves: Cadmium distribution and chelator regulations among leaves of tall fescue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:3041-3047. [PMID: 30373080 DOI: 10.1016/j.scitotenv.2018.10.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
The treatment of large amount of hazardous plant residues from phytoextraction is costly and has been a burden for the society. This experiment was designed to evaluate the possibility of cadmium (Cd) phytoextraction by harvesting the dead leaves instead of the whole plant in tall fescue (Festuca arundinacea). Results showed that Cd was preferentially distributed in the senescent and dead leaves. EDTA, DTPA and EGTA enhanced Cd accumulations in the dead leaves which could be associated to the increase of the water-soluble inorganic Cd and Cd-organic acid complexes in shoots. The dead leaves were only 12.6-16.3% of the total shoot biomass but accumulated 73.4-87.2% of the total shoot Cd. The results indicate that a novel strategy of Cd phytoextraction based on harvesting the dead leaves is feasible to save the high treatment cost of hazardous plant residues while maintaining the acceptable phytoextraction efficiency.
Collapse
Affiliation(s)
- Yun Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China; Department of Landscape Architecture, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Depeng Meng
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Ling Fei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Qin Dong
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Zhaolong Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China.
| |
Collapse
|
8
|
Fei L, Xu P, Dong Q, Mo Q, Wang Z. Young leaf protection from cadmium accumulation and regulation of nitrilotriacetic acid in tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis). CHEMOSPHERE 2018; 212:124-132. [PMID: 30144673 DOI: 10.1016/j.chemosphere.2018.08.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 05/09/2023]
Abstract
Phytoextraction efficiency of cadmium (Cd) contaminated soil mainly depended upon the mechanism of plants in absorption, translocation, distribution, and detoxification of Cd. A pot experiment was designed to investigate Cd distribution and accumulation among the different leaves of tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis) and its regulation by Nitrilotriacetic acid (NTA), a biodegradable chelating agent. The results showed that Cd concentrations in the senescent and dead leaves were 3.2 and 5.3 fold of that in the emerging leaves of tall fescue, and 19.3 and 25.1 fold of that in the emerging leaves of Kentucky bluegrass, respectively. The lower Cd concentrations were maintained in the emerging and mature leaves to avoid Cd toxicity. In the emerging and mature leaves, Cd was mainly accumulated in the vascular bundles and epidermis. No Cd dithizonate color was observed in the mesophyll tissues of Kentucky bluegrass and only minor Cd was observed in the mesophyll tissues of tall fescue. In the senescent leaves, Cd dithizonate complexes were located in the protoplasts and cell walls of all leaf tissues. NTA greatly promoted Cd translocation and distribution to the senescent and dead leaves of tall fescue, but no significant effect was observed in Kentucky bluegrass. Our results indicate that a young leaf protection mechanism might be involved in their Cd hypertolerance. The Cd preferential accumulation could lead a novel phytoextraction strategy by the continuously harvesting the senescent and dead leaves of tall fescue and Kentucky bluegrass.
Collapse
Affiliation(s)
- Ling Fei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China; Zhuhai College of Jilin University, Zhuhai, Guangdong, 519041, PR China
| | - PeiXian Xu
- Shanghai Administrative & Directive Station for Afforestation, Shanghai, 200020, PR China
| | - Qin Dong
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - Qi Mo
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - ZhaoLong Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China.
| |
Collapse
|