1
|
Schreiber JM, Limpens E, de Keijzer J. Distributing Plant Developmental Regulatory Proteins via Plasmodesmata. PLANTS (BASEL, SWITZERLAND) 2024; 13:684. [PMID: 38475529 DOI: 10.3390/plants13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
During plant development, mobile proteins, including transcription factors, abundantly serve as messengers between cells to activate transcriptional signaling cascades in distal tissues. These proteins travel from cell to cell via nanoscopic tunnels in the cell wall known as plasmodesmata. Cellular control over this intercellular movement can occur at two likely interdependent levels. It involves regulation at the level of plasmodesmata density and structure as well as at the level of the cargo proteins that traverse these tunnels. In this review, we cover the dynamics of plasmodesmata formation and structure in a developmental context together with recent insights into the mechanisms that may control these aspects. Furthermore, we explore the processes involved in cargo-specific mechanisms that control the transport of proteins via plasmodesmata. Instead of a one-fits-all mechanism, a pluriform repertoire of mechanisms is encountered that controls the intercellular transport of proteins via plasmodesmata to control plant development.
Collapse
Affiliation(s)
- Joyce M Schreiber
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Słupianek A, Myśkow E, Kasprowicz-Maluśki A, Dolzblasz A, Żytkowiak R, Turzańska M, Sokołowska K. Seasonal dynamics of cell-to-cell transport in angiosperm wood. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1331-1346. [PMID: 37996075 PMCID: PMC10901208 DOI: 10.1093/jxb/erad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
This study describes the seasonal changes in cell-to-cell transport in three selected angiosperm tree species, Acer pseudoplatanus (maple), Fraxinus excelsior (ash), and Populus tremula × tremuloides (poplar), with an emphasis on the living wood component, xylem parenchyma cells (XPCs). We performed anatomical studies, dye loading through the vascular system, measurements of non-structural carbohydrate content, immunocytochemistry, inhibitory assays and quantitative real-time PCR to analyse the transport mechanisms and seasonal variations in wood. The abundance of membrane dye in wood varied seasonally along with seasonally changing tree phenology, cambial activity, and non-structural carbohydrate content. Moreover, dyes internalized in vessel-associated cells and 'trapped' in the endomembrane system are transported farther between other XPCs via plasmodesmata. Finally, various transport mechanisms based on clathrin-mediated and clathrin-independent endocytosis, and membrane transporters, operate in wood, and their involvement is species and/or season dependent. Our study highlights the importance of XPCs in seasonally changing cell-to-cell transport in both ring-porous (ash) and diffuse-porous (maple, poplar) tree species, and demonstrates the involvement of both endocytosis and plasmodesmata in intercellular communication in angiosperm wood.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Elżbieta Myśkow
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Magdalena Turzańska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
3
|
Kitagawa M, Tran TM, Jackson D. Traveling with purpose: cell-to-cell transport of plant mRNAs. Trends Cell Biol 2024; 34:48-57. [PMID: 37380581 DOI: 10.1016/j.tcb.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Messenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport. However, information on short-range mRNA cell-to-cell transport is still limited. This review discusses the regulatory mechanisms and physiological functions of mRNA transport at the cellular and whole plant levels.
Collapse
Affiliation(s)
- Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thu M Tran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
4
|
Yang L, Zhu M, Yang Y, Wang K, Che Y, Yang S, Wang J, Yu X, Li L, Wu S, Palme K, Li X. CDC48B facilitates the intercellular trafficking of SHORT-ROOT during radial patterning in roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:843-858. [PMID: 35088574 DOI: 10.1111/jipb.13231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
CELL DIVISION CONTROL PROTEIN48 (CDC48) is essential for membrane fusion, protein degradation, and other cellular processes. Here, we revealed the crucial role of CDC48B in regulating periclinal cell division in roots by analyzing the recessive gen1 mutant. We identified the GEN1 gene through map-based cloning and verified that GEN1 encodes CDC48B. gen1 showed severely inhibited root growth, increased periclinal cell division in the endodermis, defective middle cortex (MC) formation, and altered ground tissue patterning in roots. Consistent with these phenotypes, CYCLIND 6;1(CYCD6;1), a periclinal cell division marker, was upregulated in gen1 compared to Col-0. The ratio of SHRpro :SHR-GFP fluorescence in pre-dividing nuclei versus the adjacent stele decreased by 33% in gen1, indicating that the trafficking of SHORT-ROOT (SHR) decreased in gen1 when endodermal cells started to divide. These findings suggest that the loss of function of CDC48B inhibits the intercellular trafficking of SHR from the stele to the endodermis, thereby decreasing SHR accumulation in the endodermis. These findings shed light on the crucial role of CDC48B in regulating periclinal cell division in roots.
Collapse
Affiliation(s)
- Lihui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
- Department of Genetics, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Ke Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yulei Che
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Shurui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China
| | - Xin Yu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wu
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Klaus Palme
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| |
Collapse
|
5
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
6
|
Maintaining the structural and functional homeostasis of the plant endoplasmic reticulum. Dev Cell 2021; 56:919-932. [PMID: 33662257 DOI: 10.1016/j.devcel.2021.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) is a ubiquitous organelle that is vital to the life of eukaryotic cells. It synthesizes essential lipids and proteins and initiates the glycosylation of intracellular and surface proteins. As such, the ER is necessary for cell growth and communication with the external environment. The ER is also a highly dynamic organelle, whose structure is continuously remodeled through an interaction with the cytoskeleton and the action of specialized ER shapers. Recent and significant advances in ER studies have brought to light conserved and unique features underlying the structure and function of this organelle in plant cells. In this review, exciting developments in the understanding of the mechanisms for plant ER structural and functional homeostasis, particularly those that underpin ER network architecture and ER degradation, are presented and discussed.
Collapse
|
7
|
Peters WS, Jensen KH, Stone HA, Knoblauch M. Plasmodesmata and the problems with size: Interpreting the confusion. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153341. [PMID: 33388666 DOI: 10.1016/j.jplph.2020.153341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 05/14/2023]
Abstract
Plant tissues exhibit a symplasmic organization; the individual protoplasts are connected to their neighbors via cytoplasmic bridges that extend through pores in the cell walls. These bridges may have diameters of a micrometer or more, as in the sieve pores of the phloem, but in most cell types they are smaller. Historically, botanists referred to cytoplasmic bridges of all sizes as plasmodesmata. The meaning of the term began to shift when the transmission electron microscope (TEM) became the preferred tool for studying these structures. Today, a plasmodesma is widely understood to be a 'nano-scale' pore. Unfortunately, our understanding of these nanoscopic channels suffers from methodological limitations. This is exemplified by the fact that state-of-the-art EM techniques appear to reveal plasmodesmal pore structures that are much smaller than the tracer molecules known to diffuse through these pores. In general, transport processes in pores that have dimensions in the size range of the transported molecules are governed by different physical parameters than transport process in the macroscopic realm. This can lead to unexpected effects, as experience in nanofluidic technologies demonstrates. Our discussion of problems of size in plasmodesma research leads us to conclude that the field will benefit from technomimetic reasoning - the utilization of concepts developed in applied nanofluidics for the interpretation of biological systems.
Collapse
Affiliation(s)
- Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA; Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA.
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
8
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
9
|
Nick P. Move backward, forward signals. PROTOPLASMA 2019; 256:1171-1172. [PMID: 31401691 DOI: 10.1007/s00709-019-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Peter Nick
- Botanical Institute, Karlsruher Institut für Technologie, Karlsruhe, Germany.
| |
Collapse
|