1
|
Kumrungsee T. Is hepatic GABA transaminase a promising target for obesity and epilepsy treatments? Biosci Biotechnol Biochem 2024; 88:839-849. [PMID: 38749549 DOI: 10.1093/bbb/zbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/05/2024] [Indexed: 07/23/2024]
Abstract
γ-Aminobutyric acid (GABA) transaminase (GABA-T) is a GABA-degrading enzyme that plays an essential role in regulating GABA levels and maintaining supplies of GABA. Although GABA in the mammalian brain was discovered 70 years ago, research on GABA and GABA-T has predominantly focused on the brain. Notwithstanding the high activity and expression of GABA-T in the liver, the exact functions of GABA-T in the liver remain unknown. This article reviews the up-to-date information on GABA-T in the liver. It presents recent findings on the role of liver GABA-T in food intake suppression and appetite regulation. Finally, the potential functions of liver GABA-T in other neurological diseases, natural GABA-T inhibitors, and future perspectives in this research area are discussed.
Collapse
Affiliation(s)
- Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Elhussiny MZ, Tran PV, Tsuru Y, Haraguchi S, Gilbert ER, Cline MA, Bungo T, Furuse M, Chowdhury VS. Central Taurine Attenuates Hyperthermia and Isolation Stress Behaviors Augmented by Corticotropin-Releasing Factor with Modifying Brain Amino Acid Metabolism in Neonatal Chicks. Metabolites 2022; 12:metabo12010083. [PMID: 35050205 PMCID: PMC8781603 DOI: 10.3390/metabo12010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to determine the effects of centrally administered taurine on rectal temperature, behavioral responses and brain amino acid metabolism under isolation stress and the presence of co-injected corticotropin-releasing factor (CRF). Neonatal chicks were centrally injected with saline, 2.1 pmol of CRF, 2.5 μmol of taurine or both taurine and CRF. The results showed that CRF-induced hyperthermia was attenuated by co-injection with taurine. Taurine, alone or with CRF, significantly decreased the number of distress vocalizations and the time spent in active wakefulness, as well as increased the time spent in the sleeping posture, compared with the saline- and CRF-injected chicks. An amino acid chromatographic analysis revealed that diencephalic leucine, isoleucine, tyrosine, glutamate, asparagine, alanine, β-alanine, cystathionine and 3-methylhistidine were decreased in response to taurine alone or in combination with CRF. Central taurine, alone and when co-administered with CRF, decreased isoleucine, phenylalanine, tyrosine and cysteine, but increased glycine concentrations in the brainstem, compared with saline and CRF groups. The results collectively indicate that central taurine attenuated CRF-induced hyperthermia and stress behaviors in neonatal chicks, and the mechanism likely involves the repartitioning of amino acids to different metabolic pathways. In particular, brain leucine, isoleucine, cysteine, glutamate and glycine may be mobilized to cope with acute stressors.
Collapse
Affiliation(s)
- Mohamed Z. Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
- Department of Animal & Poultry Behavior and Management, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Phuong V. Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Yuriko Tsuru
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan;
| | - Elizabeth R. Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, USA; (E.R.G.); (M.A.C.)
| | - Mark A. Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, USA; (E.R.G.); (M.A.C.)
| | - Takashi Bungo
- Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan;
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Vishwajit S. Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
- Division of Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| |
Collapse
|
3
|
Martínez-Vacas A, Di Pierdomenico J, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Glial Cell Activation and Oxidative Stress in Retinal Degeneration Induced by β-Alanine Caused Taurine Depletion and Light Exposure. Int J Mol Sci 2021; 23:346. [PMID: 35008772 PMCID: PMC8745531 DOI: 10.3390/ijms23010346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
We investigate glial cell activation and oxidative stress induced by taurine deficiency secondary to β-alanine administration and light exposure. Two months old Sprague-Dawley rats were divided into a control group and three experimental groups that were treated with 3% β-alanine in drinking water (taurine depleted) for two months, light exposed or both. Retinal and external thickness were measured in vivo at baseline and pre-processing with Spectral-Domain Optical Coherence Tomography (SD-OCT). Retinal cryostat cross sections were immunodetected with antibodies against various antigens to investigate microglial and macroglial cell reaction, photoreceptor outer segments, synaptic connections and oxidative stress. Taurine depletion caused a decrease in retinal thickness, shortening of photoreceptor outer segments, microglial cell activation, oxidative stress in the outer and inner nuclear layers and the ganglion cell layer and synaptic loss. These events were also observed in light exposed animals, which in addition showed photoreceptor death and macroglial cell reactivity. Light exposure under taurine depletion further increased glial cell reaction and oxidative stress. Finally, the retinal pigment epithelial cells were Fluorogold labeled and whole mounted, and we document that taurine depletion impairs their phagocytic capacity. We conclude that taurine depletion causes cell damage to various retinal layers including retinal pigment epithelial cells, photoreceptors and retinal ganglion cells, and increases the susceptibility of the photoreceptor outer segments to light damage. Thus, beta-alanine supplements should be used with caution.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012 Paris, France;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| |
Collapse
|
4
|
García-Ayuso D, Di Pierdomenico J, Valiente-Soriano FJ, Martínez-Vacas A, Agudo-Barriuso M, Vidal-Sanz M, Picaud S, Villegas-Pérez MP. β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Exp Eye Res 2019; 188:107781. [PMID: 31473259 DOI: 10.1016/j.exer.2019.107781] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Abstract
To study the effect of taurine depletion induced by β-alanine supplementation in the retinal nerve fiber layer (RNFL), and retinal ganglion cell (RGC) survival and axonal transport. Albino Sprague-Dawley rats were divided into two groups: one group received β-alanine supplementation (3%) in the drinking water during 2 months to induce taurine depletion, and the other group received regular water. After one month, half of the rats from each group were exposed to light. Retinas were analyzed in-vivo using Spectral-Domain Optical Coherence Tomography (SD-OCT). Prior to processing, RGCs were retrogradely traced with fluorogold (FG) applied to both superior colliculi, to assess the state of their retrograde axonal transport. Retinas were dissected as wholemounts, surviving RGCs were immunoidentified with Brn3a, and the RNFL with phosphorylated high-molecular-weight subunit of the neurofilament triplet (pNFH) antibodies. β-alanine supplementation decreases significantly taurine plasma levels and causes a significant reduction of the RNFL thickness that is increased after light exposure. An abnormal pNFH immunoreactivity in some RGC bodies, their proximal dendrites and axons, and a further diminution of the mean number of FG-traced RGCs compared with Brn3a+RGCs, indicate that their retrograde axonal transport is affected. In conclusion, taurine depletion causes RGC loss and axonal transport impairment. Finally, our results suggest that care should be taken when ingesting β-alanine supplements due to the limited understanding of their potential adverse effects.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Serge Picaud
- INSERM U968, Institut de la Vision, Paris, France; Sorbonnes Universités, INSERM U968, CNRS UMR 7210, Institut de la Vision, 75012, Paris, France
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
5
|
Dolan E, Swinton PA, Painelli VDS, Stephens Hemingway B, Mazzolani B, Infante Smaira F, Saunders B, Artioli GG, Gualano B. A Systematic Risk Assessment and Meta-Analysis on the Use of Oral β-Alanine Supplementation. Adv Nutr 2019; 10:452-463. [PMID: 30980076 PMCID: PMC6520041 DOI: 10.1093/advances/nmy115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
β-Alanine supplementation is one of the world's most commonly used sports supplements, and its use as a nutritional strategy in other populations is ever-increasing, due to evidence of pleiotropic ergogenic and therapeutic benefits. Despite its widespread use, there is only limited understanding of potential adverse effects. To address this, a systematic risk assessment and meta-analysis was undertaken. Four databases were searched using keywords and Medical Subject Headings. All human and animal studies that investigated an isolated, oral, β-alanine supplementation strategy were included. Data were extracted according to 5 main outcomes, including 1) side effects reported during longitudinal trials, 2) side effects reported during acute trials, 3) effect of supplementation on circulating health-related biomarkers, 4) effect of supplementation on skeletal muscle taurine and histidine concentration, and 5) outcomes from animal trials. Quality of evidence for outcomes was ascertained using the Grading of Recommendations Assessment Development and Evaluation (GRADE) framework, and all quantitative data were meta-analyzed using multilevel models grounded in Bayesian principles. In total, 101 human and 50 animal studies were included. Paraesthesia was the only reported side effect and had an estimated OR of 8.9 [95% credible interval (CrI): 2.2, 32.6] with supplementation relative to placebo. Participants in active treatment groups experienced similar dropout rates to those receiving the placebo treatment. β-Alanine supplementation caused a small increase in circulating alanine aminotransferase concentration (effect size, ES: 0.274, CrI: 0.04, 0.527), although mean data remained well within clinical reference ranges. Meta-analysis of human data showed no main effect of β-alanine supplementation on skeletal muscle taurine (ES: 0.156; 95% CrI: -0.38, 0.72) or histidine (ES: -0.15; 95% CrI: -0.64, 0.33) concentration. A main effect of β-alanine supplementation on taurine concentration was reported for murine models, but only when the daily dose was ≥3% β-alanine in drinking water. The results of this review indicate that β-alanine supplementation within the doses used in the available research designs, does not adversely affect those consuming it.
Collapse
Affiliation(s)
- Eimear Dolan
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Vitor de Salles Painelli
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Bruna Mazzolani
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiana Infante Smaira
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Guilherme G Artioli
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Wen C, Li F, Zhang L, Duan Y, Guo Q, Wang W, He S, Li J, Yin Y. Taurine is Involved in Energy Metabolism in Muscles, Adipose Tissue, and the Liver. Mol Nutr Food Res 2018; 63:e1800536. [DOI: 10.1002/mnfr.201800536] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/13/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Chaoyue Wen
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- Hunan Co‐Innovation Center of Animal Production SafetyCICAPSHunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients Changsha 410128 China
| | - Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Shanping He
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- Hunan Co‐Innovation Center of Animal Production SafetyCICAPSHunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients Changsha 410128 China
| |
Collapse
|
7
|
EVERAERT INGE, STEGEN SANNE, VANHEEL BERT, TAES YOURI, DERAVE WIM. Effect of Beta-Alanine and Carnosine Supplementation on Muscle Contractility in Mice. Med Sci Sports Exerc 2013; 45:43-51. [DOI: 10.1249/mss.0b013e31826cdb68] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Miyazaki T, Matsuzaki Y. Taurine and liver diseases: a focus on the heterogeneous protective properties of taurine. Amino Acids 2012; 46:101-10. [PMID: 22918604 DOI: 10.1007/s00726-012-1381-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/27/2012] [Indexed: 12/30/2022]
Abstract
Taurine (2-aminoethylsulfonic acid) has many physiological and pharmacological functions in most tissues. It is abundantly maintained in the liver by both endogenous biosynthesis and exogenous transport, but is decreased in liver diseases. In the hepatic lobule, there are heterogeneous differences in metabolism between the pericentral (PC) and periportal regions, and the distributions of the biosynthesis capacity and specific taurine transporter expression are predominantly in the PC region. In cases of depletion of hepatic taurine level, serious liver damages were observed in the PC region. Taurine has protective effects against xenobiotics-induced liver damages in the PC region, but not xenobiotics-induced PP region damages. The xenobiotics that injure the PC region are mainly catabolized by NADPH-dependent cytochrome P450 2E1 that is also predominantly expressed in the PC region. Taurine treatment seems to be a useful agent for CYP2E1-related liver diseases with predominant damages in the PC region.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Japan,
| | | |
Collapse
|
9
|
Artioli GG, Gualano B, Smith A, Stout J, Lancha AH. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc 2010; 42:1162-73. [PMID: 20479615 DOI: 10.1249/mss.0b013e3181c74e38] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids l-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or VO2max, some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.
Collapse
Affiliation(s)
- Guilherme Giannini Artioli
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
10
|
Murakami T, Furuse M. The impact of taurine- and beta-alanine-supplemented diets on behavioral and neurochemical parameters in mice: antidepressant versus anxiolytic-like effects. Amino Acids 2010; 39:427-34. [DOI: 10.1007/s00726-009-0458-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/19/2009] [Indexed: 11/30/2022]
|
11
|
Parildar H, Dogru-Abbasoglu S, Mehmetçik G, Ozdemirler G, Koçak-Toker N, Uysal M. Lipid peroxidation potential and antioxidants in the heart tissue of beta-alanine- or taurine-treated old rats. J Nutr Sci Vitaminol (Tokyo) 2008; 54:61-5. [PMID: 18388409 DOI: 10.3177/jnsv.54.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the effect of the changes of taurine levels in the hearts of old rats on endogenous malondialdehyde (MDA) and diene conjugate (DC) levels and ascorbic acid (AA)- and NADPH-induced lipid peroxidation as well as non-enzymatic (glutathione, vitamin E and vitamin C) and enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and glutathione transferase). Two groups of old (22 mo) rats were treated with beta-alanine (3%, w/v; in drinking water), a taurine depleting agent, or taurine (2% w/v; in drinking water) for 6 wk. Significant decreases were observed in taurine contents of hearts in old rats as compared to young (5 mo) rats. We found that MDA and DC levels and AA- and NADPH-induced lipid peroxidation increased, but non-enzymatic and enzymatic antioxidants did not alter in heart homogenates of aged rats. beta-Alanine administration resulted in significant decreases in heart taurine levels of old rats. This treatment did not cause further increases in MDA or DC levels or changes in antioxidants. However, AA- and NADPH-induced lipid peroxidation was higher than that of old rats. Taurine treatment caused significant increases in heart taurine levels of old rats. This treatment was found to decrease endogenous MDA and DC levels without affecting the antioxidant system in the heart homogenates of aged rats. AA- and NADPH-induced lipid peroxidation was also reduced in old rats when given taurine, although not statistically significantly. Our results indicate that the changes in heart taurine levels may influence the susceptibility of heart tissue to lipid peroxidation in aged rats and that taurine supplementation has protective effects on age-dependent oxidative stress in heart tissue.
Collapse
Affiliation(s)
- Hande Parildar
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|