1
|
Yap SH, Lee CS, Zulkifli ND, Suresh D, Hamase K, Das KT, Rajasuriar R, Leong KH. D-Amino acids differentially trigger an inflammatory environment in vitro. Amino Acids 2024; 56:6. [PMID: 38310167 PMCID: PMC10838247 DOI: 10.1007/s00726-023-03360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/20/2023] [Indexed: 02/05/2024]
Abstract
Studies in vivo have demonstrated that the accumulation of D-amino acids (D-AAs) is associated with age-related diseases and increased immune activation. However, the underlying mechanism(s) of these observations are not well defined. The metabolism of D-AAs by D-amino oxidase (DAO) produces hydrogen peroxide (H2O2), a reactive oxygen species involved in several physiological processes including immune response, cell differentiation, and proliferation. Excessive levels of H2O2 contribute to oxidative stress and eventual cell death, a characteristic of age-related pathology. Here, we explored the molecular mechanisms of D-serine (D-Ser) and D-alanine (D-Ala) in human liver cancer cells, HepG2, with a focus on the production of H2O2 the downstream secretion of pro-inflammatory cytokine and chemokine, and subsequent cell death. In HepG2 cells, we demonstrated that D-Ser decreased H2O2 production and induced concentration-dependent depolarization of mitochondrial membrane potential (MMP). This was associated with the upregulation of activated NF-кB, pro-inflammatory cytokine, TNF-α, and chemokine, IL-8 secretion, and subsequent apoptosis. Conversely, D-Ala-treated cells induced H2O2 production, and were also accompanied by the upregulation of activated NF-кB, TNF-α, and IL-8, but did not cause significant apoptosis. The present study confirms the role of both D-Ser and D-Ala in inducing inflammatory responses, but each via unique activation pathways. This response was associated with apoptotic cell death only with D-Ser. Further research is required to gain a better understanding of the mechanisms underlying D-AA-induced inflammation and its downstream consequences, especially in the context of aging given the wide detection of these entities in systemic circulation.
Collapse
Affiliation(s)
- Siew Hwei Yap
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Siang Lee
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur Diyana Zulkifli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Darshinie Suresh
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Melbourne, VIC, Australia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Griselda CM. d-Arginine action against neurotoxicity induced by glucocorticoids in the brain. Neurosci Biobehav Rev 2011; 35:1353-62. [DOI: 10.1016/j.neubiorev.2011.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/13/2011] [Accepted: 02/15/2011] [Indexed: 11/30/2022]
|
3
|
Manzo-Avalos S, Saavedra-Molina A. Cellular and mitochondrial effects of alcohol consumption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:4281-304. [PMID: 21318009 PMCID: PMC3037055 DOI: 10.3390/ijerph7124281] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 02/06/2023]
Abstract
Alcohol dependence is correlated with a wide spectrum of medical, psychological, behavioral, and social problems. Acute alcohol abuse causes damage to and functional impairment of several organs affecting protein, carbohydrate, and fat metabolism. Mitochondria participate with the conversion of acetaldehyde into acetate and the generation of increased amounts of NADH. Prenatal exposure to ethanol during fetal development induces a wide spectrum of adverse effects in offspring, such as neurologic abnormalities and pre- and post-natal growth retardation. Antioxidant effects have been described due to that alcoholic beverages contain different compounds, such as polyphenols as well as resveratrol. This review analyzes diverse topics on the alcohol consumption effects in several human organs and demonstrates the direct participation of mitochondria as potential target of compounds that can be used to prevent therapies for alcohol abusers.
Collapse
Affiliation(s)
- Salvador Manzo-Avalos
- Instituto de Investigaciones Quimico-Biologicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio B-3. C.U., 58030 Morelia, Michoacan, Mexico.
| | | |
Collapse
|
4
|
Study on the decrease of renal d-amino acid oxidase activity in the rat after renal ischemia by chiral ligand exchange capillary electrophoresis. Amino Acids 2010; 42:337-45. [DOI: 10.1007/s00726-010-0811-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/08/2010] [Indexed: 01/25/2023]
|
5
|
Chandrashekar KN. D-Aspartic acid induced oxidative stress and mitochondrial dysfunctions in testis of prepubertal rats. Amino Acids 2009; 38:817-27. [PMID: 19381779 DOI: 10.1007/s00726-009-0288-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 03/30/2009] [Indexed: 12/23/2022]
Abstract
Previously we demonstrated the potential of D-aspartic acid (D-Asp), an acidic amino acid to induce oxidative response in prepubertal rat testis in vitro. In the present study, we determined the extent of oxidative stress in the testis of prepubertal rats that were administered D-Asp (100 and 500 mg/kg bw/d, i.p. 7 days). D-Asp treatment significantly elevated the levels of reactive oxygen species, malondialdehyde and hydroperoxide in cytosol and mitochondria of testis, which were accompanied by enhanced glutathione levels, elevated activities of glutathione-dependent enzymes and catalase suggesting a state of oxidative stress. Further, the activities of D-aspartate oxidase and 3beta-hydroxy steroid dehydrogenase were elevated in the testis. The testis mitochondria of D-Asp-treated rats showed altered citric acid and complex enzyme activities, reduction in membrane potential, increased permeability and intracellular Ca(2+) levels. Collectively, these findings suggest the potential of D-Asp to induce oxidative perturbations in the testis of prepubertal rats and this mechanism may in part be responsible for the observed physiological effects.
Collapse
Affiliation(s)
- K N Chandrashekar
- Department of Biochemistry & Nutrition, Central Food Technological Research Institute (Council of Scientific and Industrial Research), Mysore 570020, India
| |
Collapse
|