1
|
Exercise alters the circadian rhythm of REV-ERB-α and downregulates autophagy-related genes in peripheral and central tissues. Sci Rep 2022; 12:20006. [PMID: 36411310 PMCID: PMC9678899 DOI: 10.1038/s41598-022-24277-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The transcriptional repressor REV-ERB-α, encoded by Nuclear Receptor Subfamily 1 Group D Member 1 (Nr1d1), has been considered to play an essential role in the skeletal muscle oxidative capacity adaptation and muscle mass control. Also, this molecule regulates autophagy via the repression of autophagy-related genes both in skeletal muscle and brain regions. Classically, training programs based on endurance or strength characteristics enhance skeletal muscle mass content and/or oxidative capacity, leading to autophagy activation in several tissues. Thus, it seems that REV-ERB-α regulates similar responses induced by exercise. However, how this molecule responds to different exercise models/intensities in different tissues is still unclear. Therefore, the main aim was to characterize the responses of REV-ERB-α and autophagy-related genes to different exercise protocols (endurance/interval run/strength) in distinct tissues (gastrocnemius, soleus and hippocampus). Since REV-ERB-α presents a circadian rhythm, the analyses were performed in a time-course manner. The endurance and strength groups attenuated REV-ERB-α transcriptional response during the time course in gastrocnemius and soleus. Conversely, the interval group enhanced the Nr1d1 expression in the hippocampus. All protocols downregulated the REV-ERB-α protein levels in gastrocnemius following the exercise session with concomitant nuclear exclusion. The major autophagy-related genes presented downregulation after the exercise session in all analyzed tissues. Altogether, these results highlight that REV-ERB-α is extremely sensitive to physical exercise stimuli, including different models and intensities in skeletal muscle and the hippocampus.
Collapse
|
2
|
Rovina RL, da Rocha AL, Marafon BB, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva ASR. One Bout of Aerobic Exercise Can Enhance the Expression of Nr1d1 in Oxidative Skeletal Muscle Samples. Front Physiol 2021; 12:626096. [PMID: 33597895 PMCID: PMC7882602 DOI: 10.3389/fphys.2021.626096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
The nuclear receptor subfamily 1, group D member 1 (Nr1d1), plays a role in the skeletal muscle's oxidative capacity, mitochondrial biogenesis, atrophy genes, and muscle fiber size. In light of the effects of physical exercise, the present study investigates the acute response of Nr1d1 and genes related to atrophy and mitochondrial biogenesis on endurance and resistance exercise protocols. In this investigation, we observed, after one bout of endurance exercise, an upregulation of Nr1d1 in soleus muscle, but not in the gastrocnemius, and some genes related to mitochondrial biogenesis and atrophy were enhanced as well. Also, analysis of muscle transcripts from diverse isogenic BXD mice families revealed that the strains with higher Nr1d1 gene expression displayed upregulation of AMPK signaling and mitochondrial-related genes. In summary, a single session of endurance exercise can enhance the Nr1d1 mRNA levels in an oxidative muscle.
Collapse
Affiliation(s)
- Rafael L. Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino S. R. da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Petry ÉR, Dresch DDF, Carvalho C, Medeiros PC, Rosa TG, de Oliveira CM, Martins LAM, Schemitt E, Bona S, Guma FCR, Marroni NP, Wannmacher CMD. Oral glutamine supplementation attenuates inflammation and oxidative stress-mediated skeletal muscle protein content degradation in immobilized rats: Role of 70 kDa heat shock protein. Free Radic Biol Med 2019; 145:87-102. [PMID: 31505269 DOI: 10.1016/j.freeradbiomed.2019.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
Abstract
Skeletal muscle disuse results in myofibrillar atrophy and protein degradation, via inflammatory and oxidative stress-mediated NF-kB signaling pathway activation. Nutritional interventions, such as l-glutamine (GLN) supplementation have shown antioxidant properties and cytoprotective effects through the modulation on the 70-kDa heat shock protein (HSP70) expression. However, these GLN-mediated effects on cell signaling pathways and biochemical mechanisms that control the myofibrillar protein content degradation in muscle disuse situations are poorly known yet. This study investigated the effects of oral GLN plus l-alanine (ALA; GLN + ALA-solution) supplementation, either in their free or dipeptide (L-alanyl-l-glutamine-DIP) form, on GLN-glutathione (GSH) axis and cytoprotection mediated by HSP70 protein expression in the slow-twitch soleus and fast-twitch gastrocnemius skeletal muscle of rats submitted to 14-days of hindlimb immobilization-induced disuse muscle atrophy. Forty-eight Wistar rats were distributed into 6 groups: hindlimb immobilized (IMOB group) and hindlimb immobilized orally supplemented with either GLN (1 g kg-1) plus ALA (0.61 g kg-1) (GLN + ALA-IMOB group) or 1.49 g kg-1 of DIP (DIP-IMOB group) and; no-immobilized (CTRL) and no-immobilized supplemented GLN + ALA and DIP baselines groups. All animals, including CTRL and IMOB rats (water), were supplemented via intragastric gavage for 14 days, concomitantly to immobilization period. Plasma and muscle GLN levels, lipid (thiobarbituric acid reactive substances-TBARS) and protein (carbonyl) peroxidation, erythrocyte concentration of reduced GSH and GSH disulfide (GSSG), plasma and muscle pro-inflammatory TNF-α levels, muscle IKKα/β-NF-kB signaling pathway and, the myofibrillar protein content (MPC) were measured. The MPC was significantly lower in IMOB rats, compared to CTRL, GLN + ALA, and DIP animals (p < 0.05). This finding was associated with reduced plasma and muscle GLN concentration, equally in IMOB animals. Conversely, both GLN + ALA and DIP supplementation restored plasma and muscle GLN levels, which equilibrated GSH and intracellular redox status (GSSG/GSH ratio) in erythrocytes and skeletal muscle even as, increased muscle HSP70 protein expression; attenuating oxidative stress and TNF-α-mediated NF-kB pathway activation, fact that reverberated on reduction of MPC degradation in GLN + ALA-IMOB and DIP-IMOB animals (p < 0.05). In conclusion, the findings shown herein support the oral GLN + ALA and DIP supplementations as a therapeutic and effective nutritional alternative to attenuate the deleterious effects of the skeletal muscle protein degradation induced by muscle disuse.
Collapse
Affiliation(s)
- Éder Ricardo Petry
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Clarice Carvalho
- Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Tatiana Gomes Rosa
- Famaqui - Mario Quintana Faculty, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cleverson Morais de Oliveira
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leo Anderson Meira Martins
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Elizangêla Schemitt
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia Bona
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fátima Costa Rodrigues Guma
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Norma Possas Marroni
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clóvis Milton Duval Wannmacher
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Wang W, Ding Z, Solares GJ, Choi SM, Wang B, Yoon A, Farrar RP, Ivy JL. Co-ingestion of carbohydrate and whey protein increases fasted rates of muscle protein synthesis immediately after resistance exercise in rats. PLoS One 2017; 12:e0173809. [PMID: 28296942 PMCID: PMC5351968 DOI: 10.1371/journal.pone.0173809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/27/2017] [Indexed: 11/18/2022] Open
Abstract
The objective of the study was to investigate whether co-ingestion of carbohydrate and protein as compared with protein alone augments muscle protein synthesis (MPS) during early exercise recovery. Two months old rats performed 10 repetitions of ladder climbing with 75% of body weight attached to their tails. Placebo (PLA), whey protein (WP), or whey protein plus carbohydrate (CP) was then given to rats by gavage. An additional group of sedentary rats (SED) was used as controls. Blood samples were collected immediately and at either 1 or 2 h after exercise. The flexor hallucis longus muscle was excised at 1 or 2 h post exercise for analysis of MPS and related signaling proteins. MPS was significantly increased by CP compared with PLA (p<0.05), and approached significance compared with WP at 1 h post exercise (p = 0.08). CP yielded a greater phosphorylation of mTOR compared with SED and PLA at 1 h post exercise and SED and WP at 2 h post exercise. CP also increased phosphorylation of p70S6K compared with SED at 1 and 2 h post exercise. 4E-BP1 phosphorylation was inhibited by PLA at 1 h but elevated by WP and CP at 2 h post exercise relative to SED. The phosphorylation of AMPK was elevated by exercise at 1 h post exercise, and this elevated level was sustained only in the WP group at 2 h. The phosphorylation of Akt, GSK3, and eIF2Bε were unchanged by treatments. Plasma insulin was transiently increased by CP at 1 h post exercise. In conclusion, post-exercise CP supplementation increases MPS post exercise relative to PLA and possibly WP, which may have been mediated by greater activation of the mTOR signaling pathway.
Collapse
Affiliation(s)
- Wanyi Wang
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - Zhenping Ding
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - Geoffrey J. Solares
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - Soon-Mi Choi
- Department of Athletic Training and Exercise Physiology, Midwestern State University, Wichita Falls, Texas, United States of America
| | - Bo Wang
- Sports Science College, Beijing Sports University, Beijing, China
| | - Aram Yoon
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - Roger P. Farrar
- Muscle Physiology Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - John L. Ivy
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Wang S, Wang G, Zhang M, Zhuang L, Wan X, Xu J, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Shu G, Jiang Q. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway. Mol Cell Endocrinol 2016; 436:204-10. [PMID: 27473671 DOI: 10.1016/j.mce.2016.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 12/27/2022]
Abstract
It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway.
Collapse
Affiliation(s)
- Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Guoqing Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Mengyuan Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Lu Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaojuan Wan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Jingren Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China.
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China; ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
6
|
Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br J Nutr 2016; 116:470-9. [PMID: 27215379 DOI: 10.1017/s0007114516001999] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.
Collapse
|