1
|
Chen M, Wang L, Lou Y, Huang Z. Effects of chronic unpredictable mild stress on gut microbiota and fecal amino acid and short-chain fatty acid pathways in mice. Behav Brain Res 2024; 464:114930. [PMID: 38432300 DOI: 10.1016/j.bbr.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Depression is a serious disease that has a significant impact on social functioning. However, the exact causes of depression are still not fully understood. Therefore, it is necessary to explore new pathways leading to depression. In this study, we used 16 S rDNA to examine changes in gut microbiota and predict related pathways in depression-like mice. Additionally, we employed liquid chromatography-mass spectrometry (LC-MS) to identify changes in amino acids and gas chromatography-mass spectrometry (GC-MS) to identify changes in short-chain fatty acids (SCFAs) in fecal samples. We conducted Pearson/Spearman correlation analysis to investigate the associations between changes in amino acids/SCFAs and behavioral outcomes. The 16 S rDNA sequencing revealed significant alterations in gut microbiota at the phylum and genus levels in mice subjected to chronic unpredictable mild stress (CUMS). The relative abundances of Bacteroidetes, Proteobacteria, Bacteroides, and Alloprevotella were increased, while Firmicutes, Verrucomicrobia, Actinobacteria, Lactobacillus, Akkermansia, Lachnospirillum, and Enterobacter were decreased in the CUMS mice. We used PICRUSt software to annotate the kyoto encyclopedia of genes and genomes (KEGG) pathway function related to depression-like behavior in mice. Our analysis identified sixty functional pathways associated with the gut microbiota of mice exhibiting depression-like behavior. In the amino acid concentration analysis, we observed decreased levels of hydroxyproline and tryptophan, and increased levels of alanine in CUMS mice. In the SCFAs concentration assay, we found decreased levels of butyric acid and valeric acid, and increased levels of acetic acid in CUMS mice. Some of these changes were significantly correlated with depressive-like behaviors. Our study contributes to the understanding of the mechanism of the gut-brain axis in the occurrence and development of depression.
Collapse
Affiliation(s)
- Mengjing Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfeng Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Zhen Huang
- Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Vitor-de-Lima SM, Figueira de Oliveira ML, Tavares IDS, Leandro CVG, Guedes RCA. Maternal voluntary physical exercise in the adult rat: evidence of exercise-associated differences in maternal food intake, and in brain effects on the progeny. Nutr Neurosci 2024; 27:120-131. [PMID: 36633889 DOI: 10.1080/1028415x.2023.2166415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Maternal physical activity may impact behavioral and electrophysiological aspects of brain function, with short- and long-term effects on pre- and postnatal neurodevelopment of the offspring. This study evaluated in the rat the effects of maternal voluntary physical activity (MVPA) on food intake and weight gain in the dams, as well as anxiety-like behavior, short-term memory and the brain excitability-related phenomenon known as cortical spreading depression (CSD) on the mother-pup dyad.Methods: Female Wistar rats (n=33) were individually housed in cages containing a running wheel for a 30-days adaptation period before mating. Rats were classified as inactive (I); active (A) or very active (VA) according to the distance spontaneously travelled daily. During gestation, the dams continued to have access to the running wheel. Mothers and their respective pups (1 pup per mother) were evaluated in the open field test (OFT), object recognition test (ORT), elevated plus maze test (EPMT) and the CSD propagation features.Results: MVPA was directly associated with increased food intake and weight gain during gestation, and maternal anxiolytic-like behavioral responses in the OFT. Pups from VA mothers showed a high discrimination index for shape recognition memory (ORT) and decreased propagation velocities of CSD, when compared with the inactive group.Discussion: The data suggest that MVPA during the gestational period induces neuroplasticity and may modulate the brain functions in the mother-infant dyad in the rat.
Collapse
Affiliation(s)
| | | | | | - Carol Virgínia Góis Leandro
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Department of Nutrition, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | |
Collapse
|
3
|
Araújo ADO, Figueira-de-Oliveira ML, Noya AGAFDC, Oliveira E Silva VP, de Carvalho JM, Vieira Filho LD, Guedes RCA. Effect of neonatal melatonin administration on behavioral and brain electrophysiological and redox imbalance in rats. Front Neurosci 2023; 17:1269609. [PMID: 37901423 PMCID: PMC10603194 DOI: 10.3389/fnins.2023.1269609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Melatonin (MLT) reportedly has beneficial effects in neurological disorders involving brain excitability (e.g., Epilepsy and Migraine) and behavioral patterns (e.g., Anxiety and Depression). This study was performed to investigate, in the developing rat brain, the effect of early-in-life administration of two different doses of exogenous MLT on behavioral (anxiety and memory) and electrophysiological (CSD analysis) aspects of brain function. Additionally, brain levels of malondialdehyde (MDA) and superoxide dismutase (SOD), both cellular indicators of redox balance status, were evaluated. We hypothesize that MLT differentially affects the behavioral and CSD parameters as a function of the MLT dose. Materials and methods Male Wistar rats received, from the 7th to the 27th postnatal day (PND), on alternate days, vehicle solution, or 10 mg/kg/or 40 mg/kg MLT (MLT-10 and MLT-40 groups), or no treatment (intact group). To perform behavioral and cognition analysis, from PND30 to PND32, they were tested in the open field apparatus, first for anxiety (PND30) and then for object recognition memory tasks: spatial position recognition (PND31) and shape recognition (PND32). On PND34, they were tested in the elevated plus maze. From PND36 to 42, the excitability-related phenomenon known as cortical spreading depression (CSD) was recorded, and its features were analyzed. Results Treatment with MLT did not change the animals' body weight or blood glucose levels. The MLT-10 treatment, but not the MLT-40 treatment, was associated with behaviors that suggest less anxiety and improved memory. MLT-10 and MLT-40 treatments, respectively, decelerated and accelerated CSD propagation (speed of 2.86 ± 0.14 mm/min and 3.96 ± 0.16 mm/min), compared with the control groups (3.3 ± 0.10 mm/min and 3.25 ± 0.11 mm/min, for the intact and vehicle groups, respectively; p < 0.01). Cerebral cortex levels of malondialdehyde and superoxide dismutase were, respectively, lower and higher in the MLT-10 group but not in the MLT40 group. Conclusion Our findings suggest that MLT intraperitoneal administration during brain development may differentially act as an antioxidant agent when administered at a low dose but not at a high dose, according to behavioral, electrophysiological, and biochemical parameters.
Collapse
Affiliation(s)
- Amanda de Oliveira Araújo
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | | - Leucio Duarte Vieira Filho
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
4
|
Ben-Azu B, Adebayo OG, Jarikre TA, Oyovwi MO, Edje KE, Omogbiya IA, Eduviere AT, Moke EG, Chijioke BS, Odili OS, Omondiabge OP, Oyovbaire A, Esuku DT, Ozah EO, Japhet K. Taurine, an essential β-amino acid insulates against ketamine-induced experimental psychosis by enhancement of cholinergic neurotransmission, inhibition of oxidative/nitrergic imbalances, and suppression of COX-2/iNOS immunoreactions in mice. Metab Brain Dis 2022; 37:2807-2826. [PMID: 36057735 DOI: 10.1007/s11011-022-01075-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/23/2022] [Indexed: 12/22/2022]
Abstract
Cholinergic, oxidative, nitrergic alterations, and neuroinflammation are some key neuropathological features common in schizophrenia disease. They involve complex biological processes that alter normal behavior. The present treatments used in the management of the disorder remain ineffective together with some serious side effects as one of their setbacks. Taurine is a naturally occurring essential β-amino acid reported to elicit antipsychotic property in first episode psychosis in clinical setting, thus require preclinical investigation. Hence, we set out to investigate the effects of taurine in the prevention and reversal of ketamine-induced psychotic-like behaviors and the associated putative neurobiological mechanisms underlying its effects. Adult male Swiss mice were sheared into three separate cohorts of experiments (n = 7): drug alone, preventive and reversal studies. Treatments consisted of saline (10 mL/kg/p.o./day), taurine (50 and 100 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) with concomitant ketamine (20 mg/kg/i.p./day) injections between days 8-14, or 14 days entirely. Behavioral hyperactivity, despair, cognitive impairment, and catalepsy were measured. Brain oxidative/nitrergic imbalance, immunoreactivity (COX-2 and iNOS), and cholinergic markers were determined in the striatum, prefrontal-cortex, and hippocampus. Taurine abates ketamine-mediated psychotic-like episodes without cataleptogenic potential. Taurine attenuated ketamine-induced decrease in glutathione, superoxide-dismutase and catalase levels in the striatum, prefrontal-cortex and hippocampus. Also, taurine prevented and reversed ketamine-mediated elevation of malondialdehyde, nitrite contents, acetylcholinesterase activity, and suppressed COX-2 and iNOS expressions in a brain-region dependent manner. Conclusively, taurine insulates against ketamine-mediated psychotic phenotype by normalizing brain central cholinergic neurotransmissions, oxidative, nitrergic and suppression of immunoreactive proteins in mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mega O Oyovwi
- Department of Basic Medical Science, Achievers University, Owo, Ondo State, Nigeria
| | - Kesiena Emmanuel Edje
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Itivere Adrian Omogbiya
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Anthony T Eduviere
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emuesiri Goodies Moke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Bienose S Chijioke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Onyebuchi S Odili
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Osemudiame P Omondiabge
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Aghogho Oyovbaire
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Daniel T Esuku
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Esther O Ozah
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Kelvin Japhet
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
5
|
Umeda K, Shindo D, Somekawa S, Nishitani S, Sato W, Toyoda S, Karakawa S, Kawasaki M, Mine T, Suzuki K. Effects of Five Amino Acids (Serine, Alanine, Glutamate, Aspartate, and Tyrosine) on Mental Health in Healthy Office Workers: A Randomized, Double-Blind, Placebo-Controlled Exploratory Trial. Nutrients 2022; 14:nu14112357. [PMID: 35684157 PMCID: PMC9183184 DOI: 10.3390/nu14112357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The importance of maintaining good mental health with overall well-being has recently drawn attention from various spheres of academics and the working population. Amino acid intake has been reported to reduce depression symptoms and other mental health problems. However, the effectiveness of amino acid intake (i.e., single or combined) remains unknown. In this study, we assessed a combination of five amino acids (serine, alanine, glutamate, aspartate, and tyrosine; SAGAT) reported to regulate mental health. Methods: A randomized, double-blind, placebo-controlled exploratory trial was conducted. Participants, aged between 20 and 65 years with fatigue sensation, were randomized to receive either SAGAT or the placebo and ingested them for four weeks. A transient mental work was loaded at day 0 and after four weeks of intervention. As the primary outcomes, the fatigue sensation was assessed. The mood status, cognitive function, work efficiency, and blood marker were also measured as secondary outcomes. Results: The number of participants analyzed for the efficacy evaluation were 20 in SAGAT and 22 in the placebo. There were no significant differences in the primary outcomes. However, as the secondary outcomes, the SAGAT group showed a significant improvement in motivation and cognitive function in the recovery period after mental work loaded in a four-week intervention compared to the placebo. Conclusion: The current findings suggest that SAGAT contributes to maintaining proper motivation and cognitive function. Clinical Trial Registration: University Hospital Medical Information Network Clinical Trial Registry (ID: UMIN 000041221).
Collapse
Affiliation(s)
- Kentaro Umeda
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
- Correspondence: (K.U.); (K.S.)
| | - Daichi Shindo
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
| | - Shinji Somekawa
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
| | - Shinobu Nishitani
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
| | - Wataru Sato
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (W.S.); (S.T.); (S.K.); (M.K.)
| | - Sakiko Toyoda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (W.S.); (S.T.); (S.K.); (M.K.)
| | - Sachise Karakawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (W.S.); (S.T.); (S.K.); (M.K.)
| | - Mika Kawasaki
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (W.S.); (S.T.); (S.K.); (M.K.)
| | - Tomoyuki Mine
- Research & Business Planning Department, Ajinomoto Co., Inc., Tokyo 104-8315, Japan;
| | - Katsuya Suzuki
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
- Correspondence: (K.U.); (K.S.)
| |
Collapse
|
6
|
Behavioral consequences of postnatal undernutrition and enriched environment during later life. Physiol Behav 2021; 241:113566. [PMID: 34474061 DOI: 10.1016/j.physbeh.2021.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
In rat models, large litter groups during suckling are used in the study of undernutrition. Large litter sizes are known to promote alterations in memory processes and anxiety-like behavior. Nevertheless, the effect of large litter size on sexual behavior and the reproductive system is still unknown. Environmental enrichment has been reported to (EE) enhance behavior and to correct some of the alterations produced by postnatal undernutrition. We used the Elevated Plus Maze (EPN), Morris Water Maze (MWM), Object Recognition test (OR) and several parameters of sexual behavior to determine the effect of large litter size on rats exposed to enriched and non-enriched environments. Newborn Wistar rats of both sexes were assigned to be suckled under lactation conditions, in litters of 8 pups or 16 pups. The large litter size (16 pups) caused a reduction in weight gain during the lactation period. On PND 45, four experimental groups were established for both sexes: Well-nourished Non-enriched (WN); Well-nourished Enriched (WE); undernourished Non-enriched (UN); Undernourished Enriched (UE). On PND 90, the UN males spent more time in the open arms on EPM. On PND 100, the UE females increased the latency to find the platform in training days (D1-4) in MWM. On probe day (D5) the UE males spent more time in the target quadrants in MWM. On PND 110, irrespective of EE the large litter size had increased the exploration time in both groups (UN) and (UE) in OR test. On PND 120, the performance of sexual behavior was more evident by effect of EE irrespective of the litter size. In conclusion, the large litter size showed no effects on sexual behavior, in contrast, EE has a sharp influence on sexual behavior. Conversely, memory processes and anxiety-like behavior are altered by large litter size.
Collapse
|
7
|
Hyperhomocysteinemia increases susceptibility to cortical spreading depression associated with photophobia, mechanical allodynia, and anxiety in rats. Behav Brain Res 2021; 409:113324. [PMID: 33915239 DOI: 10.1016/j.bbr.2021.113324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022]
Abstract
Epidemiological data suggest that elevated homocysteine is associated with migraine with aura. However, how homocysteine contributes to migraine is still unclear. Here, we tested whether hyperhomocysteinemia (hHCY) promotes cortical spreading depression (CSD), a phenomenon underlying migraine with aura, and whether hHCY contributes to pain behavior. hHCY was induced by dietary methionine in female rats while the testing was performed on their 6-8week-old offspring. CSD and multiple unit activity (MUA) induced by KCl were recorded from the primary somatosensory cortex, S1, using multichannel electrodes. In hHCY rats, compared to control, we found: i) higher probability of CSD occurrence; ii) induction of CSD by lower concentrations of KCl; iii) faster horizontal propagation of CSD; iv) smaller CSD with longer duration; v) higher frequency of MUA at CSD onset along with slower reappearance. Rats with hHCY demonstrated high level of locomotor activity and grooming while spent less time in the central area of the open field, indicating anxiety. These animals showed light sensitivity and facial mechanical allodinia. Thus, hHCY acquired at birth promotes multiple features of migraine such as higher cortical excitability, mechanical allodynia, photophobia, and anxiety. Our results provide the first experimental explanation for the higher occurrence of migraine with aura in patients with hHCY.
Collapse
|
8
|
Accioly NE, Guedes RCA. Topical cortical application of ovarian hormones and modulation of brain electrical activity: analysis of spreading depression in well-nourished and malnourished female rats. Nutr Neurosci 2020; 23:887-895. [DOI: 10.1080/1028415x.2019.1575574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Francisco EDS, Mendes-da-Silva RF, de Castro CBL, Soares GDSF, Guedes RCA. Taurine/Pilocarpine Interaction in the Malnourished Rat Brain: A Behavioral, Electrophysiological, and Immunohistochemical Analysis. Front Neurosci 2019; 13:981. [PMID: 31619952 PMCID: PMC6759493 DOI: 10.3389/fnins.2019.00981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/30/2019] [Indexed: 12/05/2022] Open
Abstract
This study aimed to evaluate the possible protective role of taurine on anxiety-like behavior, brain electrical activity and glial cell immunoreactivity in well-nourished and malnourished rats that were treated with a subconvulsing dose of pilocarpine. Newborn Wistar rats were subjected to normal or unfavorable lactation conditions, represented by the suckling of litters with 9 or 15 pups, resulting in well-nourished and malnourished animals, respectively. Each nutritional group was split into five subgroups that were treated from postnatal day (PND) 35 to 55 with 300 mg/kg/day of taurine + 45 mg/kg/day of pilocarpine (group T + P), taurine only (group T), pilocarpine only (group P), vehicle control (group V), or not treated control (group naïve; Nv). At PND56-58, the groups were subjected to the elevated plus-maze behavioral tests. Glycemia was measured on PND59. Between PND60 and PND65, the cortical spreading depression (CSD) was recorded in the cerebral cortex, and the levels of malondialdehyde and microglial and astrocyte immunoreactivity were evaluated in the cortex and hippocampus. Our data indicate that treatment with taurine and pilocarpine resulted in anxiolytic-like and anxiogenic behavior, respectively, and that nutritional deficiency modulated these effects. Both treatments decelerated CSD propagation and modulated GFAP- and Iba1-containing glial cells. Pilocarpine reduced body weight and glycemia, and administration of taurine was not able to attenuate the effects of pilocarpine. The molecular mechanisms underlying taurine action on behavioral and electrophysiological parameters in the normal and altered brain remain to be further explored.
Collapse
|
10
|
Alia AO, Petrunich-Rutherford ML. Anxiety-like behavior and whole-body cortisol responses to components of energy drinks in zebrafish ( Danio rerio). PeerJ 2019; 7:e7546. [PMID: 31497403 PMCID: PMC6707341 DOI: 10.7717/peerj.7546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 12/02/2022] Open
Abstract
The current study investigated the independent and combined effects of caffeine and taurine on anxiety-like behavior and neuroendocrine responses in adult zebrafish (Danio rerio). Caffeine (1,3,7-trimethylpurine-2,6-dione), the world’s most commonly used psychoactive drug, acts as an adenosine receptor blocker and a mild central nervous system stimulant. However, excessive use of caffeine is associated with heightened anxiety levels. Taurine (2-aminoethanesulfonic acid), a semi-essential amino acid synthesized within the human brain, has been hypothesized to play a role in regulating anxiolytic behavior. Caffeine and taurine are two common additives in energy drinks and are often found in high concentrations in these beverages. However, few studies have investigated the interaction of these two chemicals with regards to anxiety measures. A suitable vertebrate to examine anxiety-like behavior and physiological stress responses is the zebrafish, which has shown promise due to substantial physiological and genetic homology with humans. Anxiety-like behavior in zebrafish can be determined by analyzing habituation to novelty when fish are placed into a novel tank and scototaxis (light avoidance) behavior in the light-dark test. Stress-related neuroendocrine responses can be measured in zebrafish by analyzing whole-body cortisol levels. The goal of this study was to determine if exposure to caffeine, taurine, or a combination of the two compounds altered anxiety-like behavior and whole-body cortisol levels in zebrafish relative to control. Zebrafish were individually exposed to either caffeine (100 mg/L), taurine (400 mg/L), or both for 15 min. Zebrafish in the control group were handled in the same manner but were only exposed to system tank water. After treatment, fish were transferred to the novel tank test or the light-dark test. Behavior was tracked for the first 6 min in the novel tank and 15 min in the light-tark test. Fifteen min after introduction to the behavioral task, fish were euthanized for the analysis of whole-body cortisol levels. The results demonstrate that caffeine treatment decreased the amount of exploration in the top of the novel tank and increased scototaxis behavior in the light-dark test, which supports the established anxiogenic effect of acute exposure to caffeine. Taurine alone did not alter basal levels of anxiety-like behavioral responses nor ameliorated the anxiogenic effects of caffeine on behavior when the two compounds were administered concurrently. None of the drug treatments altered basal levels of whole-body cortisol. The current results of this study suggest that, at least at this dose and time of exposure, taurine does not mitigate the anxiety-producing effects of caffeine when administered in combination, such as with energy drink consumption.
Collapse
Affiliation(s)
- Alia O Alia
- Department of Psychology, Indiana University Northwest, Gary, IN, USA
| | | |
Collapse
|
11
|
Long lasting behavioral and electrophysiological action of early administration of guanosine: Analysis in the adult rat brain. Brain Res Bull 2019; 150:266-271. [PMID: 31181322 DOI: 10.1016/j.brainresbull.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Guanosine (GUO) is a guanine-based purine that has been extensively described in the literature as an endogenous nucleoside with participation in brain cell signalling pathways. Here, we evaluated whether chronic treatment with exogenous guanosine during brain development altered behavioral and electrophysiological parameters in adulthood. Rat pups received a daily intraperitoneal injection of 10, 50 or 100 mg/ kg/day GUO, or saline solution or no treatment (naive group) from postnatal (P) day 7 to P27. At P 60-65 the animals were behaviorally tested in the Elevated Plus-Maze (EPM). On P90-100, the electrophysiological phenomenon known as cortical spreading depression (CSD) was recorded on the right cortical surface for 4 h. With the EPM task, GUO treatment was associated with a significant increase in rearing behavior and a non-significant trend towards anxiogenic behavior. In a dose-dependent manner, GUO significantly (p < 0.01) increased weight gain on P90, and reduced the CSD propagation velocity from 3.42 ± 0.10 and 3.43 ± 0.10 mm/min in the Naive and Vehicle controls, respectively, to 3.05 ± 0.12 mm/min, 2.87 ± 0.07 mm/min and 2.25 ± 0.25 mm/min in the groups treated with 10, 50 and 100 mg/kg/d GUO, respectively. The results confirmed the hypothesis that the chronic treatment with GUO early in life modulates CSD and body weight. Data on CSD propagation suggest that, besides its suppressing action on glutamatergic transmission (via enhancement of astrocytic glutamate uptake), GUO might act as an antioxidant in the brain, a hypothesis that deserves further exploration.
Collapse
|
12
|
Magalhães PCG, Abadie-Guedes R, da Costa Mendonça MAB, de Souza AD, Guedes RCA. Behavioral and electrophysiological brain effects of aspartame on well-nourished and malnourished rats. Metab Brain Dis 2019; 34:651-658. [PMID: 30547285 DOI: 10.1007/s11011-018-0361-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
The non-caloric sweetener aspartame can be potentially harmful to the developing brain, as some studies suggest an association between aspartame intake and adverse neural effects. This study aimed to evaluate the possible effects of aspartame, with or without associated early nutritional deficiency, on behavioral parameters suggestive of anxiety and electrophysiological features of the excitability-related phenomenon known as cortical spreading depression (CSD). Newborn Wistar rats (n = 80) were suckled under favorable (L9; n = 40) or unfavorable lactation conditions (L15; n = 40), consisting of litters with 9 or 15 pups, respectively. In each lactation condition, animals were divided into 4 groups that received per gavage, from postnatal day 8 to 28, 75 mg/kg/d or 125 mg/kg/d aspartame (groups ASP75 and ASP125), or water (vehicle group), or no treatment (naive group). Behavioral tests (elevated plus-maze [EPM]) were performed at postnatal days 86-95 and CSD was recorded between postnatal days 96-115. Compared to the control groups, aspartame dose-dependently reduced body weight, suggesting a negative impact on animal development; aspartame also caused behavioral changes suggestive of anxiety (shorter stay in the open arms in the EPM) and decelerated CSD (lower propagation speed). Some of these parameters were more affected in L15 animals, suggesting an interaction among aspartame and lactation condition. We concluded that early consumption of aspartame adversely affects development of the organism (weight loss), with actions on behavioral (anxiety-like) and cerebral electrophysiological (CSD) parameters. The data suggest caution in aspartame consumption by lactating mothers and their infants.
Collapse
Affiliation(s)
| | - Ricardo Abadie-Guedes
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | | | - Aline Duarte de Souza
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | | |
Collapse
|
13
|
Accioly NE, Guedes RCA. Neonatal treatment with ovarian hormones and suckling among distinct litter sizes: Differential effects on recognition memory and spreading depression at adulthood. Nutr Neurosci 2019; 22:174-184. [PMID: 28891432 DOI: 10.1080/1028415x.2017.1358472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Ovarian hormones (OH) and early malnutrition may affect the developing brain, with repercussions on behavioral and excitability-dependent processes. However, the possible synergistic effects of both factors have not been analyzed. In this study, we investigated the effect of treatment in early life with OH and suckling among distinct litter sizes on recognition memory, anxiety behavior, and the excitability-dependent phenomenon known as cortical spreading depression (CSD). METHODS Female Wistar rats were suckled under favorable and unfavorable lactation, corresponding to litters with 9 and 15 pups (L9 and L15 groups, respectively). From postnatal days (P) 7 to 21, the animals received 50 µg/kg of β-estradiol or progesterone. From P80 to P84, we tested behavioral reactions. From P90 to P120, we analyzed CSD parameters. RESULTS Compared with the corresponding L9 groups, the OH-treated L15 groups performed worse in recognition memory tasks. No intergroup difference in the anxiety parameters was observed. Compared with naive and vehicle-treated controls, OH-treated groups displayed higher CSD velocities and amplitudes and shorter CSD durations. DISCUSSION Early treatment with OH facilitates recognition memory and CSD, and in association with unfavorable lactation (L15) impaired recognition memory, but not anxiety behavior, in the adult brain. OH treatment and L15 lactation condition seem to interact regarding OH action on memory, but not on CSD. Data suggest a long-lasting differential effect that might be related to the lasting hormonal action on brain excitability. We postulate and discuss the possibility that these findings may be implicated in human neurological diseases.
Collapse
|
14
|
Francisco EDS, Guedes RCA. Sub-Convulsing Dose Administration of Pilocarpine Reduces Glycemia, Increases Anxiety-Like Behavior and Decelerates Cortical Spreading Depression in Rats Suckled on Various Litter Sizes. Front Neurosci 2018; 12:897. [PMID: 30559645 PMCID: PMC6287009 DOI: 10.3389/fnins.2018.00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and malnutrition constitute two worldwide health problems affecting behavior and brain function. The cholinergic agonist pilocarpine (300-380 mg/kg; single administration) reproduces the human type of temporal lobe epilepsy in rats. Pilocarpine-induced epilepsy in rodents has been associated with glycemia, learning and memory and anxiety disturbances. Cortical spreading depression (CSD) is a neural response that has been linked to brain excitability disorders and its diseases, and has been shown to be antagonized by acute pilocarpine. This study aimed to further investigate the effect of chronic pilocarpine at a sub-convulsing dose on weight gain, blood glucose levels, anxiety-like behavior and CSD. In addition, we tested whether unfavorable lactation-induced malnutrition could modulate the pilocarpine effects. Wistar rats were suckled under normal size and large size litters (litters with 9 and 15 pups; groups L9 and L15, respectively). From postnatal days (PND) 35-55, these young animals received a daily intraperitoneal injection of pilocarpine (45 mg/kg/day), or vehicle (saline), or no treatment (naïve). On PND58, the animals were behaviorally tested in an open field apparatus. This was immediately followed by 6 h fasting and blood glucose measurement. At PND60-65, CSD was recorded, and its parameters (velocity of propagation, amplitude, and duration) were calculated. Compared to the control groups, pilocarpine-treated animals presented with reduced weight gain and lower glycemia, increased anxiety-like behavior and decelerated CSD propagation. CSD velocity was higher (p < 0.001) in the L15 groups in comparison to the corresponding groups in the L9 condition. The results demonstrate an influence of chronic (21-day) administration of a sub-convulsing, very low dose (45 mg/kg) of pilocarpine on CSD propagation, anxiety-like behavior, glycemia and body weight. Furthermore, data reinforce the hypothesis of a relationship between CSD and brain excitability. The lactation condition seems to differentially modulate these effects.
Collapse
|
15
|
Mendes-da-Silva RF, Francisco EDS, Araújo Guedes RC. Pilocarpine/ascorbic acid interaction in the immature brain: Electrophysiological and oxidative effects in well-nourished and malnourished rats. Brain Res Bull 2018; 142:414-421. [PMID: 30232044 DOI: 10.1016/j.brainresbull.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/24/2018] [Accepted: 09/11/2018] [Indexed: 01/29/2023]
Abstract
Ascorbic acid (AA) administration has been associated with neuroprotection against oxidative stress, although at high doses it can facilitate oxidation and acts like a proconvulsing drug. The pilocarpine-induced epilepsy model has been widely studied. However, less is known about the effects of sub-convulsive doses of pilocarpine on brain activity in immature animals under normal or deficient nutritional conditions. Herein, we investigated the effects of chronic pilocarpine administration in a sub-convulsive dose, with or without AA, on the excitability-related phenomenon denominated as cortical spreading depression (CSD) and levels of lipid peroxidation-induced malondialdehyde in well-nourished and malnourished rats. At postnatal days 7-28, rats received no gavage treatment (naïve group), saline (vehicle group), 45 mg/kg/d of pilocarpine and/or 120 mg/kg/d of AA. CSD propagation and malondialdehyde levels were analyzed at 34-40 days. The pilocarpine group presented with lower CSD velocities, while AA groups exhibited higher CSD velocities and augmented malondialdehyde levels compared with controls. The co-administration of AA partially antagonized the pilocarpine CSD effects, but did not revert it to control levels. Malnutrition increased CSD amplitude and velocity in comparison to the well-nourished condition. The electrocorticogram (ECoG) amplitude increased after CSD (ECoG potentiation) when compared with the baseline amplitude before CSD. However, no intergroup difference was observed in this CSD-related ECoG potentiation. The results support the hypothesis of a pilocarpine/ascorbic acid interaction in the immature rat brain and might help further the understanding of this interaction on neuronal electrical activity and oxidative stress.
Collapse
|
16
|
Chaves EMC, Honório-Júnior JER, Sousa CNS, Monteiro VS, Nonato DTT, Dantas LP, Lúcio ASSC, Barbosa-Filho JM, Patrocínio MCA, Viana GSB, Vasconcelos SMM. The anxiolytic-like effect of 6-styryl-2-pyrone in mice involves GABAergic mechanism of action. Metab Brain Dis 2018; 33:139-149. [PMID: 29086102 DOI: 10.1007/s11011-017-0139-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
Abstract
The present work aims to investigate the anxiolytic activity of 6-styryl-2-pyrone (STY), obtained from Aniba panurensis, in behavioral tests and amino acids dosage on male Swiss mice. The animals were treated with STY (1, 10 or 20 mg), diazepam (DZP 1 or 2 mg/kg) or imipramine (IMI 30 mg/kg). Some groups were administered with flumazenil, 30 min before administration of the STYor DZP. The behavioral tests performed were open field, rota rod, elevated plus maze (EPM), hole-board (HB) and tail suspension test (TST). After behavioral tests, these animals were sacrificed and had their prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) dissected for assaying amino acids (aspartate- ASP, glutamate- GLU, glycine- GLY, taurine- TAU and Gamma-aminobutyric acid- GABA). In EPM test, STY or DZP increased the number of entries and the time of permanence in the open arms, but these effects were reverted by flumazenil. In the HB test, STY increased the number of head dips however this effect was blocked by flumazenil. The effects of the STY on amino acid concentration in PFC showed increased GLU, GABA and TAU concentrations. In hippocampus, STY increased the concentrations of all amino acids studied. In striatum, STY administration at lowest dose reduced GLU concentrations, while the highest dosage caused the opposite effect. GLI, TAU and GABA concentrations increased with STY administration at highest doses. In conclusion, this study showed that STY presents an anxiolytic-like effect in behavioral tests that probably is related to GABAergic mechanism of action.
Collapse
Affiliation(s)
- Edna Maria Camelo Chaves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Street Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
- Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Jose Eduardo Ribeiro Honório-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Street Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
- Health Science Center, School of Medicine, University Centre Christus, Fortaleza, CE, Brazil
| | - Caren Nádia Soares Sousa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Street Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
| | | | | | - Leonardo Pimentel Dantas
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Street Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
| | | | | | | | - Glauce Socorro Barros Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Street Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Street Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil.
| |
Collapse
|
17
|
Wang J, Hou Y, Jia Z, Xie X, Liu J, Kang Y, Wang X, Wang X, Jia W. Metabonomics Approach To Comparing the Antistress Effects of Four Panax ginseng Components in Rats. J Proteome Res 2018; 17:813-821. [PMID: 29302971 DOI: 10.1021/acs.jproteome.7b00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Different components of Panax ginseng have different properties and medicinal effects. Metabonomics was a prospective approach to analyze the global response of endogenous metabolites to physiological and pathological processes. In this study, an untargeted metabonomics method using GC/TOFMS combined with multivariate statistical techniques was applied to compare entire metabolite differences and the antistress variations among four components of P. ginseng, namely, total ginsenosides (TG), panaxadiol (PD), panaxatriol (PT), and ginseng polysaccharide (PS), in Wistar rats. The results of metabolite analysis showed that numerous urine metabolites involving neurotransmitters, amino acids, organic acids, and gut microbiota metabolites were changed after administration of the four components of P. ginseng, with TG having the least impact on urinary metabolites. The urinary metabolite profiling of these rats exposed to acute combined stress (forced swimming and behavior restriction) demonstrated that the four ginseng components attenuated urine metabolite changes involving gut microbiota metabolites, tricarboxylic acid (TCA) cycle and energy metabolites, and organic acids to different degrees, with TG improving most of the metabolites altered by stress.
Collapse
Affiliation(s)
- Jingcheng Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Yuanlong Hou
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Zhiying Jia
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Xie Xie
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Jiajian Liu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Xin Wang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Wei Jia
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China.,Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| |
Collapse
|
18
|
Hu Q, Shen P, Bai S, Dong M, Liang Z, Chen Z, Wang W, Wang H, Gui S, Li P, Xie P. Metabolite-related antidepressant action of diterpene ginkgolides in the prefrontal cortex. Neuropsychiatr Dis Treat 2018; 14:999-1011. [PMID: 29713170 PMCID: PMC5907891 DOI: 10.2147/ndt.s161351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Ginkgo biloba extract (GBE) contains diterpene ginkgolides (DGs), which have been shown to have neuroprotective effects by a number of previous studies. We previously demonstrated part of the action of DG. However, the impact of DG on the prefrontal cortex (PFC) remains unclear. Here, we evaluated the effects of DG and venlafaxine (for comparison) on behavioral and metabolite changes in the PFC using mice models and gas chromatography-mass spectrometry-based metabolomics. MATERIALS AND METHODS Mice were randomly divided into control (saline), DG (12.18 mg/kg) and venlafaxine (16 mg/kg) groups. After 2 weeks of treatment, depression and anxiety-related behavioral tests were performed. Metabolic profiles of the PFC were detected by gas chromatography-mass spectrometry. RESULTS The DG group exhibited positive effects in the sucrose preference test. The differential metabolites were mainly related to amino acid metabolism, energy metabolism and lipid metabolism. The results indicated that the DG group exhibited perturbed lipid metabolism, molecular transport and small-molecule biochemistry in the PFC. Compared with the control group, pathway analysis indicated that venlafaxine and DG had similar effects on alanine, aspartate and glutamate metabolism. CONCLUSION These findings demonstrate that DG has antidepressant-like, but not anxiolytic-like, effects in mice, suggesting that it might have therapeutic potential for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Qingchuan Hu
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University
| | - Peng Shen
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Shunjie Bai
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University
| | - Meixue Dong
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Zihong Liang
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing.,Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia
| | - Zhi Chen
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Siwen Gui
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Pengfei Li
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Wu GF, Ren S, Tang RY, Xu C, Zhou JQ, Lin SM, Feng Y, Yang QH, Hu JM, Yang JC. Antidepressant effect of taurine in chronic unpredictable mild stress-induced depressive rats. Sci Rep 2017; 7:4989. [PMID: 28694433 PMCID: PMC5504064 DOI: 10.1038/s41598-017-05051-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Depression, a psychiatric and dysthymic disorder, severely affects the learning, work and life quality. The main pathogenesis of depression is associated with central nervous system (CNS) dysfunction. Taurine has been demonstrated to exert protective effects on the brain development and can improve learning ability and memory. Our study investigated the antidepressant-like effects of taurine pre-treatment by examining the changes in depression-like behavior, hormones, neurotransmitters, inflammatory factors and neurotrophic factors in the hippocampus of a chronic unpredictable mild stress (CUMS)-induced depressive rat model. Taurine was found to inhibit the decrease of sucrose consumption and prevent the deficiency of spatial memory and anxiety in rats exposed to CUMS, suggesting a preventive effect of taurine on depression-like behavior. Furthermore, the decreased levels of 5-hydroxytryptamine, dopamine, noradrenaline; the increased levels of glutamate, corticosterone; and the decreased expressions of fibroblast growth factor-2, vascular endothelial growth factor and brain derived neurotrophic factor in depressive rats were hindered by taurine pre-administration. However, tumor necrosis factor-α and interleukin-1β levels were not significantly changed by taurine. The results demonstrated that the anti-depressive effect of taurine may be involved in the regulation of hypothalamic-pituitary-adrenal (HPA) axis and the promotion of neurogenesis, neuronal survival and growth in the hippocampus.
Collapse
Affiliation(s)
- Gao-Feng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Shuang Ren
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Ri-Yi Tang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Chang Xu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Jia-Qi Zhou
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Shu-Mei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Ying Feng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Qun-Hui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Jian-Min Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China.
| | - Jian-Cheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China.
| |
Collapse
|
20
|
Neonatal l-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters. Amino Acids 2016; 49:337-346. [DOI: 10.1007/s00726-016-2365-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
|
21
|
Medeiros LDB, Vitor-de-Lima SM, Lira Benevides RDD, do Egypto Queiroga RDCR, Araújo Guedes RC. Neonatal administration of goat whey modulates memory and cortical spreading depression in rats previously suckled under different litter sizes: Possible role of sialic acid. Nutr Neurosci 2016; 21:108-115. [DOI: 10.1080/1028415x.2016.1227762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Abadie-Guedes R, Bezerra RDS, Guedes RCA. Alpha-Tocopherol Counteracts the Effect of Ethanol on Cortical Spreading Depression in Rats of Various Ages, With and Without Ethanol Abstinence. Alcohol Clin Exp Res 2016; 40:728-33. [DOI: 10.1111/acer.12998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/30/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Ricardo Abadie-Guedes
- Departamento de Fisiologia e Farmacologia; CCB; Universidade Federal de Pernambuco; Recife Pernambuco Brazil
| | | | | |
Collapse
|