1
|
Li F, Song B, Zhou WF, Chu LJ. Toll-Like Receptors 7/8: A Paradigm for the Manipulation of Immunologic Reactions for Immunotherapy. Viral Immunol 2023; 36:564-578. [PMID: 37751284 DOI: 10.1089/vim.2023.0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The innate immune system recognizes conserved features of viral and microbial pathogens through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one type of PRR used by the innate immune system to mediate the secretion of proinflammatory cytokines and promote innate and adaptive immune responses. TLR family members TLR7 and TLR8 (referred to as TLR7/8 from herein) are endosomal transmembrane receptors that recognize purine-rich single-stranded RNA (ssRNA) and bacterial DNA, eliciting an immunologic reaction to pathogens. TLR7/8 were discovered to mediate the secretion of proinflammatory cytokines by activating immune cells. In addition, accumulating evidence has indicated that TLR7/8 may be closely related to numerous immune-mediated disorders, specifically several types of cancer, autoimmune disease, and viral disease. TLR7/8 agonists and antagonists, which are used as drugs or adjuvants, have been identified in preclinical studies and clinical trials as promising immune stimulators for the immunotherapy of these immune-mediated disorders. These results provided reasoning to further explore immunotherapy for the treatment of immune-mediated disorders. Nevertheless, numerous needs remain unmet, and the therapeutic effects of TLR7/8 agonists and antagonists are poor and exert strong immune-related toxicities. The present review aimed to provide an overview of the TLR family members, particularly TLR7/8, and address the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders. The aim of the work is to discuss the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders.
Collapse
Affiliation(s)
- Fang Li
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Biao Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Feng Zhou
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Li-Jin Chu
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| |
Collapse
|
2
|
Built-in adjuvants for use in vaccines. Eur J Med Chem 2022; 227:113917. [PMID: 34688011 DOI: 10.1016/j.ejmech.2021.113917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023]
Abstract
Vaccine refers to biological products that are produced using various pathogenic microorganisms for inoculation. The goal of vaccination is to induce a robust immune response against a specific antigen, thus preventing the organism from getting infected. In vaccines, adjuvants have been widely employed to enhance immunity against specific antigens. An ideal adjuvant should be stable, biodegradable, and low cost, not induce system rejection and promote an immune response. Various adjuvant components have been investigated across diverse applications. Typically, adjuvants are employed to meet the following objectives: (1) to improve the effectiveness of immunization with vaccines for specific populations, such as newborns and the elderly; (2) enhance the immunogenicity of highly purified or recombinant antigens; (3) allow immunization with a smaller dose of the vaccine, reducing drug dosage. In the present review, we primarily focus on chemically synthesized compounds that can be used as built-in adjuvants. We elaborate the classification of these compounds based on the induced immune activation mechanism and summarize their application in various vaccine types.
Collapse
|
3
|
Pulukuri AJ, Burt AJ, Opp LK, McDowell CM, Davaritouchaee M, Nielsen AE, Mancini RJ. Acquired Drug Resistance Enhances Imidazoquinoline Efflux by P-Glycoprotein. Pharmaceuticals (Basel) 2021; 14:ph14121292. [PMID: 34959691 PMCID: PMC8705394 DOI: 10.3390/ph14121292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Multidrug-Resistant (MDR) cancers attenuate chemotherapeutic efficacy through drug efflux, a process that transports drugs from within a cell to the extracellular space via ABC (ATP-Binding Cassette) transporters, including P-glycoprotein 1 (P-gp or ABCB1/MDR1). Conversely, Toll-Like Receptor (TLR) agonist immunotherapies modulate activity of tumor-infiltrating immune cells in local proximity to cancer cells and could, therefore, benefit from the enhanced drug efflux in MDR cancers. However, the effect of acquired drug resistance on TLR agonist efflux is largely unknown. We begin to address this by investigating P-gp mediated efflux of TLR 7/8 agonists. First, we used functionalized liposomes to determine that imidazoquinoline TLR agonists Imiquimod, Resiquimod, and Gardiquimod are substrates for P-gp. Interestingly, the least potent imidazoquinoline (Imiquimod) was the best P-gp substrate. Next, we compared imidazoquinoline efflux in MDR cancer cell lines with enhanced P-gp expression relative to parent cancer cell lines. Using P-gp competitive substrates and inhibitors, we observed that imidazoquinoline efflux occurs through P-gp and, for Imiquimod, is enhanced as a consequence of acquired drug resistance. This suggests that enhancing efflux susceptibility could be an important consideration in the rational design of next generation immunotherapies that modulate activity of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Anunay J. Pulukuri
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Anthony J. Burt
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- Department of Chemistry & Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Larissa K. Opp
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Colin M. McDowell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
| | - Maryam Davaritouchaee
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Amy E. Nielsen
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Rock J. Mancini
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- Correspondence:
| |
Collapse
|
4
|
The Alphaviral Capsid Protein Inhibits IRAK1-Dependent TLR Signaling. Viruses 2021; 13:v13030377. [PMID: 33673546 PMCID: PMC7997285 DOI: 10.3390/v13030377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Alphaviruses are arthropod-borne RNA viruses which can cause either mild to severe febrile arthritis which may persist for months, or encephalitis which can lead to death or lifelong cognitive impairments. The non-assembly molecular role(s), functions, and protein–protein interactions of the alphavirus capsid proteins have been largely overlooked. Here we detail the use of a BioID2 biotin ligase system to identify the protein–protein interactions of the Sindbis virus capsid protein. These efforts led to the discovery of a series of novel host–pathogen interactions, including the identification of an interaction between the alphaviral capsid protein and the host IRAK1 protein. Importantly, this capsid–IRAK1 interaction is conserved across multiple alphavirus species, including arthritogenic alphaviruses SINV, Ross River virus, and Chikungunya virus; and encephalitic alphaviruses Eastern Equine Encephalitis virus, and Venezuelan Equine Encephalitis virus. The impact of the capsid–IRAK1 interaction was evaluated using a robust set of cellular model systems, leading to the realization that the alphaviral capsid protein specifically inhibits IRAK1-dependent signaling. This inhibition represents a means by which alphaviruses may evade innate immune detection and activation prior to viral gene expression. Altogether, these data identify novel capsid protein–protein interactions, establish the capsid–IRAK1 interaction as a common alphavirus host–pathogen interface, and delineate the molecular consequences of the capsid–IRAK1 interaction on IRAK1-dependent signaling.
Collapse
|
5
|
Reintjens NRM, Tondini E, de Jong AR, Meeuwenoord NJ, Chiodo F, Peterse E, Overkleeft HS, Filippov DV, van der Marel GA, Ossendorp F, Codée JDC. Self-Adjuvanting Cancer Vaccines from Conjugation-Ready Lipid A Analogues and Synthetic Long Peptides. J Med Chem 2020; 63:11691-11706. [PMID: 32960056 PMCID: PMC7586330 DOI: 10.1021/acs.jmedchem.0c00851] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Self-adjuvanting
vaccines, wherein an antigenic
peptide is covalently bound to an immunostimulating agent, have been
shown to be promising tools for immunotherapy. Synthetic Toll-like
receptor (TLR) ligands are ideal adjuvants for covalent linking to
peptides or proteins. We here introduce a conjugation-ready TLR4 ligand,
CRX-527, a potent powerful lipid A analogue, in the generation of
novel conjugate-vaccine modalities. Effective chemistry has been developed
for the synthesis of the conjugation-ready ligand as well as the connection
of it to the peptide antigen. Different linker systems and connection
modes to a model peptide were explored, and in vitro evaluation of the conjugates showed them to be powerful immune-activating
agents, significantly more effective than the separate components.
Mounting the CRX-527 ligand at the N-terminus of the model peptide
antigen delivered a vaccine modality that proved to be potent in activation
of dendritic cells, in facilitating antigen presentation, and in initiating
specific CD8+ T-cell-mediated killing of antigen-loaded
target cells in vivo. Synthetic TLR4 ligands thus
show great promise in potentiating the conjugate vaccine platform
for application in cancer vaccination.
Collapse
Affiliation(s)
- Niels R M Reintjens
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Elena Tondini
- Department of Immunology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ana R de Jong
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Nico J Meeuwenoord
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Fabrizio Chiodo
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Evert Peterse
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dmitri V Filippov
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jeroen D C Codée
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
6
|
Xu Z, Rivera-Hernandez T, Moyle PM. Development of an Enzyme-Mediated, Site-Specific Method to Conjugate Toll-Like Receptor 2 Agonists onto Protein Antigens: Toward a Broadly Protective, Four Component, Group A Streptococcal Self-Adjuvanting Lipoprotein-Fusion Combination Vaccine. ACS Infect Dis 2020; 6:1770-1782. [PMID: 32407620 DOI: 10.1021/acsinfecdis.0c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subunit vaccines composed of protein antigens covalently attached to Toll-like receptor (TLR) agonists elicit superior immune responses compared to mixtures of antigens and TLR agonists. Among different conjugation approaches, enzyme-mediated ligation is one of the few that provides an opportunity for the generation of homogeneous, molecularly defined products in which protein antigens are maintained with native structures, which is most critical to elicit protective immune responses upon vaccination. Four highly conserved protein antigens from Group A Streptococcus (GAS) have the potential to be safe and efficacious vaccine candidates. After a TLR2 agonist fibroblast-stimulating lipopeptide-1 (FSL-1) was successfully attached onto each antigen using sortase A and techniques for their purification were developed, a combination vaccine containing interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), Group A Streptococcal C5a peptidase (SCPA), anchorless virulence factor arginine deiminase (ADI), and trigger factor (TF)-TLR2 conjugates was produced. This combination was assessed for immunity in mice and compared with mixtures of the four antigens with FSL-1 or alum. High titer antigen-specific IgG antibodies were detected from all vaccine groups, with antibodies elicited from FSL-1 conjugates around 10-fold higher compared to the FSL-1 mixture group. Furthermore, the FSL-1 conjugates afforded a more balanced TH1/TH2 immune response than the alum-adjuvanted group, suggesting that this combination vaccine represents a promising candidate for the prevention of GAS diseases. Thus, we established a conjugation platform that allows for the production of defined, site-specific antigen-adjuvant conjugates, which maintain the native three-dimensional structure of antigens and can be potentially applied to a variety of protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Cátedras CONACYT - Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, México
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
7
|
Selective Toll-like receptor 7 agonists with novel chromeno[3,4-d]imidazol-4(1H)-one and 2-(trifluoromethyl)quinoline/ quinazoline-4-amine scaffolds. Eur J Med Chem 2019; 179:109-122. [DOI: 10.1016/j.ejmech.2019.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
|
8
|
Bazin HG, Bess LS, Livesay MT. Synthesis and Applications of Imidazoquinolines: A Review. ORG PREP PROCED INT 2018. [DOI: 10.1080/00304948.2018.1433427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hélène G. Bazin
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| | - Laura S. Bess
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| | - Mark T. Livesay
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M. Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjug Chem 2018; 29:587-603. [PMID: 29378134 PMCID: PMC10642707 DOI: 10.1021/acs.bioconjchem.7b00808] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are vital elements of the mammalian immune system that function by recognizing pathogen-associated molecular patterns (PAMPs), bridging innate and adaptive immunity. They have become a prominent therapeutic target for the treatment of infectious diseases, cancer, and allergies, with many TLR agonists currently in clinical trials or approved as immunostimulants. Numerous studies have shown that conjugation of TLR agonists to other molecules can beneficially influence their potency, toxicity, pharmacokinetics, or function. The functional properties of TLR agonist conjugates, however, are highly dependent on the ligation strategy employed. Here, we review the chemical structural requirements for effective functional TLR agonist conjugation. In addition, we provide similar analysis for those that have yet to be conjugated. Moreover, we discuss applications of covalent TLR agonist conjugation and their implications for clinical use.
Collapse
Affiliation(s)
- Bob J. Ignacio
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tyler J. Albin
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
10
|
Xu Z, Moyle PM. Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands. Bioconjug Chem 2017; 29:572-586. [PMID: 28891637 DOI: 10.1021/acs.bioconjchem.7b00478] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional vaccines derived from attenuated or inactivated pathogens are effective at inducing antibody-based protective immune responses but tend to be highly reactogenic, causing notable adverse effects. Vaccines with superior safety profiles can be produced by subunit approaches, utilizing molecularly defined antigens (e.g., proteins and polysaccharides). These antigens, however, often elicit poor immunological responses, necessitating the use of adjuvants. Immunostimulatory adjuvants have the capacity to activate antigen presenting cells directly through specific receptors (e.g., Toll-like receptors (TLRs)), resulting in enhanced presentation of antigens as well as the secretion of proinflammatory chemokines and cytokines. Consequently, innate immune responses are amplified and adaptive immunity is generated. Recently, site-specific conjugation of such immunostimulatory adjuvants (e.g., TLR ligands) onto defined antigens has shown superior efficacy over unconjugated mixtures, suggesting that the development of chemically characterized immunostimulatory adjuvants and optimized approaches for their conjugation with antigens may provide a better opportunity for the development of potent, novel vaccines. This review briefly summarizes various TLR agonists utilized as immunostimulatory adjuvants and focuses on the development of techniques (e.g., recombinant, synthetic, and semisynthetic) for generating adjuvant-antigen fusion vaccines incorporating peptide or protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| | - Peter Michael Moyle
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| |
Collapse
|
11
|
Akinbobuyi B, Wang L, Upchurch KC, Byrd MR, Chang CA, Quintana JM, Petersen RE, Seifert ZJ, Boquin JR, Oh S, Kane RR. Synthesis and immunostimulatory activity of substituted TLR7 agonists. Bioorg Med Chem Lett 2016; 26:4246-9. [PMID: 27476423 DOI: 10.1016/j.bmcl.2016.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/18/2022]
Abstract
Fifteen new substituted adenines were synthesized as potential TLR7 agonists. These compounds, along with 9 previously reported compounds, were analyzed for TLR7 activity and for the selective stimulation of B cell proliferation. Several functionalized derivatives exhibit significant activity, suggesting their potential for use as vaccine adjuvants.
Collapse
Affiliation(s)
- Babatope Akinbobuyi
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Lei Wang
- Baylor Institute for Immunology Research, Baylor Research Institute, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Katherine C Upchurch
- Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798, USA; Baylor Institute for Immunology Research, Baylor Research Institute, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Matthew R Byrd
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Charles A Chang
- Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798, USA
| | - Jeremy M Quintana
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Rachel E Petersen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Zacharie J Seifert
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - José R Boquin
- Department of Chemistry, Augustana College, 639 38th Street, Rock Island, IL 61201, USA
| | - SangKon Oh
- Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798, USA; Baylor Institute for Immunology Research, Baylor Research Institute, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Robert R Kane
- Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798, USA; Baylor Institute for Immunology Research, Baylor Research Institute, 3434 Live Oak Street, Dallas, TX 75204, USA; Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA.
| |
Collapse
|