1
|
Cheng L, Wang F, Guo Y, Du Q, Zeng X, Wu Z, Guo Y, Tu M, Pan D. Potential prebiotic properties and proliferation mechanism of fermented milk-derived polypeptides. Food Chem 2025; 463:141335. [PMID: 39316909 DOI: 10.1016/j.foodchem.2024.141335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The purpose of this paper is to investigate the potential prebiotic properties and proliferation mechanism of fermented milk-derived peptides. In this study, fermented milk-derived polypeptides were obtained by extraction, separation, and purification. The purified peptides were used to culture fecal flora in vitro, and the relative abundance and composition of the flora were analyzed by high-throughput 16S rRNA sequencing technology. The results showed that peptides can promote the proliferation of beneficial bacteria Lactococcus in the intestine and inhibit the proliferation of harmful bacteria Escherichia coli-Shigella. The amino acid sequence of polypeptide components was determined and synthesized in vitro to verify the proliferation of intestinal flora; the proliferation mechanism of peptides on Lactococcus lactis was studied using non-targeted LC-MS metabolomics technology. Five important peptides with molecular weights of 1000-2000 Da were identified by LC-MS: GRP1 (LTEEEK), GRP2 (ENDAPSPVM*K), GRP3 (ITVDDK), GRP4 (EAM*APK) and GRP5 (LPPPEK). The results showed that the peptides could affect the arginine biosynthesis pathway and the amino sugar and nucleotide sugar metabolism of Lactococcus lactis. In addition, the peptides increased the expression of organic acids and their derivatives in Lactococcus lactis. This study provides a research basis for expanding the potential sources of new prebiotics and also opens up a new idea for discovering new prebiotics in vitro.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuqiao Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| |
Collapse
|
2
|
Reslane I, Watson GF, Handke LD, Fey PD. Regulatory dynamics of arginine metabolism in Staphylococcus aureus. Biochem Soc Trans 2024; 52:2513-2523. [PMID: 39656074 DOI: 10.1042/bst20240710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Staphylococcus aureus is a highly significant pathogen with several well studied and defined virulence factors. However, the metabolic pathways that are required to facilitate infection are not well described. Previous data have documented that S. aureus requires glucose catabolism during initial stages of infection. Therefore, certain nutrients whose biosynthetic pathway is under carbon catabolite repression and CcpA, including arginine, must be acquired from the host. However, even though S. aureus encodes pathways to synthesize arginine, biosynthesis of arginine is repressed even in the absence of glucose. Why is S. aureus a functional arginine auxotroph? This review discusses recently described regulatory mechanisms that are linked to repression of arginine biosynthesis using either proline or glutamate as substrates. In addition, recent studies are discussed that shed insight into the ultimate mechanisms linking arginine auxotrophy and infection persistence.
Collapse
Affiliation(s)
- Itidal Reslane
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Gabrielle F Watson
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Luke D Handke
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Paul D Fey
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
3
|
Yang X, He M, Cao J, Tang Q, Yang B, Li T, Sun M. Acupuncture and Moxibustion for Inflammatory Bowel Disease: Regulatory Mechanisms Revealed by Microbiome and Metabolomic Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1891-1923. [PMID: 39581856 DOI: 10.1142/s0192415x24500745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Acupuncture and moxibustion are widely acknowledged as effective complementary therapies for managing inflammatory bowel disease (IBD) in traditional Chinese medicine. However, the regulatory mechanisms by which these two therapies exert their therapeutic effects in IBD are yet to be fully elucidated. The objective of this study was to investigate the mechanisms of action underlying acupuncture and moxibustion and the regulative differences between them as therapeutic interventions for IBD. Using a dextran sodium sulfate-induced IBD mice model, the effects of the two treatments were evaluated by examination of body weight, stool samples, colon morphology, inflammatory factors, gut microbiota, and metabolites. The results indicated that both acupuncture and moxibustion mitigated body weight reduction; improved the structural characteristics of intestinal tissues; increased levels of anti-inflammatory cytokines including interleukin (IL)-10; and decreased levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-[Formula: see text]), nuclear factor kappa B (NF-[Formula: see text]B), IL-6, IL-1[Formula: see text], and IL-17. Acupuncture and moxibustion had distinct effects on the regulation of the intestinal microbiota and metabolic pathways in IBD mice. Moxibustion regulated a greater number of metabolic pathways than acupuncture, the majority of which were associated with amino acid metabolism, brain signal transmission, energy metabolism, and anti-inflammatory pathways. These findings provide a scientific basis for the differential applications of acupuncture and moxibustion in clinical practice.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Medicine, Lishui University, Lishui 323000, Zhejiang Province, P. R. China
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Min He
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Jiazhen Cao
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Qingqing Tang
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Bo Yang
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Tie Li
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| |
Collapse
|
4
|
Ring BE, Shepard GE, Khadka S, Holmes CL, Bachman MA, Mike LA. Arginine Regulates the Mucoid Phenotype of Hypervirulent Klebsiella pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624485. [PMID: 39605402 PMCID: PMC11601523 DOI: 10.1101/2024.11.20.624485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hypervirulent Klebsiella pneumoniae is associated with severe community-acquired infections. Hypervirulent K. pneumoniae colonies typically exhibit a mucoid phenotype. K. pneumoniae mucoidy is influenced by a complex combination of environmental factors and genetic mechanisms. Mucoidy results from altered capsular polysaccharide chain length, yet the specific environmental cues regulating this phenotype and their impact on pathogenesis remain unclear. This study demonstrates that casamino acids enhance the mucoidy phenotype but do not affect total capsular polysaccharide levels. Through targeted screening of each amino acid present in casamino acids, we identified that arginine is necessary and sufficient to stimulate the mucoid phenotype without altering capsule abundance. Furthermore, arginine activates the rmpADC promoter, increasing rmpD transcript levels, which in turn modulates capsular polysaccharide chain length and diversity. The arginine regulator, ArgR, plays a pivotal role in this regulatory cascade since deleting argR decreases mucoidy and increases capsular polysaccharide chain length diversity. Additionally, the ∆argR mutant displays increased macrophage association and has a substantial competitive defect in the lungs of mice, suggesting a link between arginine-dependent gene regulation, immune evasion and in vivo fitness. We discovered that arginine-dependent regulation of mucoidy is conserved in four additional hypervirulent K. pneumoniae isolates likely via a conserved ARG binding box present in rmp promoters. Our findings support a model in which arginine activates ArgR and increases mucoidy in hypervirulent K. pneumoniae. As a result, it is possible that arginine-dependent regulation of mucoidy allows hypervirulent K. pneumoniae to adapt the cell surface across different niches. This study underscores the significance of arginine as a regulatory signal in bacterial virulence.
Collapse
Affiliation(s)
- Brooke E. Ring
- Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Grace E. Shepard
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Saroj Khadka
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlyn L. Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Laura A. Mike
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Żebracki K, Koper P, Wójcik M, Marczak M, Mazur A. Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool. Int J Mol Sci 2024; 25:11734. [PMID: 39519284 PMCID: PMC11547076 DOI: 10.3390/ijms252111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Multipartite genomes are thought to confer evolutionary advantages to bacteria by providing greater metabolic flexibility in fluctuating environments and enabling rapid adaptation to new ecological niches and stress conditions. This genome architecture is commonly found in plant symbionts, including nitrogen-fixing rhizobia, such as Rhizobium leguminosarum bv. trifolii TA1 (RtTA1), whose genome comprises a chromosome and four extrachromosomal replicons (ECRs). In this study, the transcriptomic responses of RtTA1 to partial nutrient limitation and low acidic pH were analyzed using high-throughput RNA sequencing. RtTA1 growth under these conditions resulted in the differential expression of 1035 to 1700 genes (DEGs), which were assigned to functional categories primarily related to amino acid and carbohydrate metabolism, ribosome and cell envelope biogenesis, signal transduction, and transcription. These results highlight the complexity of the bacterial response to stress. Notably, the distribution of DEGs among the replicons indicated that ECRs played a significant role in the stress response. The transcriptomic data align with the Rhizobium pangenome analysis, which revealed an over-representation of functional categories related to transport, metabolism, and regulatory functions on ECRs. These findings confirm that ECRs contribute substantially to the ability of rhizobia to adapt to challenging environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.Ż.); (P.K.); (M.W.); (M.M.)
| |
Collapse
|
6
|
Ni Y, Liao Q, Gou S, Shi T, Li W, Feng R, Zhao Z, Zhao X. Study on Enzyme Activity and Metabolomics during Culture of Liquid Spawn of Floccularia luteovirens. J Fungi (Basel) 2024; 10:618. [PMID: 39330377 PMCID: PMC11433261 DOI: 10.3390/jof10090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
To comprehensively investigate the physiological characteristics and metabolic processes of the mycelium of Floccularia luteovirens (F. luteovirens), a wild edible fungus unique to the plateau region, we conducted an in-depth analysis of the mycelium enzyme activity and metabolites during different culture periods. The activity of seven enzymes all followed a trend of initially increasing and then decreasing. The intra- and extracellular activity peaks of three hydrolases-amylase, protease, and cellulase-all occurred on the 20th day, except for the extracellular amylase, which peaked on the 15th day. In contrast, the peak activity of laccase occurred on the 10th day. Moreover, three types of oxidoreductases in the mycelium (catalase (CAT), superoxide dismutase (SOD), and 2,3,5-triphenyltetrazolium chloride (TTC)-dehydrogenase (TTC-DH)) also exhibited significant changes in activity. CAT and SOD activity reached their maximum on the 20th day, whereas TTC-DH showed high activity on both the 10th and 20th days. Through a comprehensive assessment of the evolving trends of these physiological parameters, we determined that the optimal cultivation cycle for F. luteovirens liquid spawn is 20 days. An untargeted metabolomic analysis revealed that 3569 metabolites were detected in the F. luteovirens mycelium, including a variety of secondary metabolites and functional components, with terpenoids being particularly abundant, accounting for 148 types. By comparing three different culture stages (10 days, 20 days, and 30 days), 299, 291, and 381 metabolites, respectively, showed different accumulation patterns in the comparison groups of 10d vs. 20d, 20d vs. 30d, and 10d vs. 30d. These differential metabolites were primarily concentrated in carboxylic acids and their derivatives, fatty acyl groups, organic oxygen compounds, and lipid compounds. In addition, there were several amino acids whose abundance continued to grow during culturing. The metabolism of amino acids greatly affects mycelium growth and development. This research delineates the interplay between mycelium growth and metabolism, offering empirical support for a cultivation strategy for liquid F. luteovirens, and an exploration of its metabolites for potential applications.
Collapse
Affiliation(s)
- Yanqing Ni
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Siyuan Gou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tongjia Shi
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Wensheng Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rencai Feng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Zhiqiang Zhao
- Zhuoni County Agricultural Technology Extension Station, Gannan 747600, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| |
Collapse
|
7
|
Han ML, Alsaadi Y, Zhao J, Zhu Y, Lu J, Jiang X, Ma W, Patil NA, Dunstan RA, Le Brun AP, Wickremasinghe H, Hu X, Wu Y, Yu HH, Wang J, Barlow CK, Bergen PJ, Shen HH, Lithgow T, Creek DJ, Velkov T, Li J. Arginine catabolism is essential to polymyxin dependence in Acinetobacter baumannii. Cell Rep 2024; 43:114410. [PMID: 38923457 PMCID: PMC11338987 DOI: 10.1016/j.celrep.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii.
Collapse
Affiliation(s)
- Mei-Ling Han
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| | - Yasser Alsaadi
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jinxin Zhao
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jing Lu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xukai Jiang
- National Glycoengineering Research Centre, Shandong University, Qingdao 266237, China
| | - Wendong Ma
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Nitin A Patil
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Rhys A Dunstan
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hasini Wickremasinghe
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xiaohan Hu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yimin Wu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Heidi H Yu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jiping Wang
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Phillip J Bergen
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Trevor Lithgow
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Darren J Creek
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Tony Velkov
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
8
|
Kelley EH, Osipiuk J, Korbas M, Endres M, Bland A, Ehrman V, Joachimiak A, Olsen KW, Becker DP. N α -acetyl-L-ornithine deacetylase from Escherichia coli and a ninhydrin-based assay to enable inhibitor identification. Front Chem 2024; 12:1415644. [PMID: 39055043 PMCID: PMC11270798 DOI: 10.3389/fchem.2024.1415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024] Open
Abstract
Bacteria are becoming increasingly resistant to antibiotics, therefore there is an urgent need for new classes of antibiotics to fight antibiotic resistance. Mammals do not express N ɑ -acetyl-L-ornithine deacetylase (ArgE), an enzyme that is critical for bacterial survival and growth, thus ArgE represents a promising new antibiotic drug target, as inhibitors would not suffer from mechanism-based toxicity. A new ninhydrin-based assay was designed and validated that included the synthesis of the substrate analog N 5, N 5-di-methyl N α-acetyl-L-ornithine (kcat/Km = 7.32 ± 0.94 × 104 M-1s-1). This new assay enabled the screening of potential inhibitors that absorb in the UV region, and thus is superior to the established 214 nm assay. Using this new ninhydrin-based assay, captopril was confirmed as an ArgE inhibitor (IC50 = 58.7 μM; Ki = 37.1 ± 0.85 μM), and a number of phenylboronic acid derivatives were identified as inhibitors, including 4-(diethylamino)phenylboronic acid (IC50 = 50.1 μM). Selected inhibitors were also tested in a thermal shift assay with ArgE using SYPRO Orange dye against Escherichia coli ArgE to observe the stability of the enzyme in the presence of inhibitors (captopril Ki = 35.9 ± 5.1 μM). The active site structure of di-Zn EcArgE was confirmed using X-ray absorption spectroscopy, and we reported two X-ray crystal structures of E. coli ArgE. In summary, we describe the development of a new ninhydrin-based assay for ArgE, the identification of captopril and phenylboronic acids as ArgE inhibitors, thermal shift studies with ArgE + captopril, and the first two published crystal structures of ArgE (mono-Zn and di-Zn).
Collapse
Affiliation(s)
- Emma H. Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Jerzy Osipiuk
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- eBERlight, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | | | - Michael Endres
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | - Alayna Bland
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Victoria Ehrman
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Andrzej Joachimiak
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Meza-Perez S, Liu M, Silva-Sanchez A, Morrow CD, Eipers PG, Lefkowitz EJ, Ptacek T, Scharer CD, Rosenberg AF, Hill DD, Arend RC, Gray MJ, Randall TD. Proteobacteria impair anti-tumor immunity in the omentum by consuming arginine. Cell Host Microbe 2024; 32:1177-1191.e7. [PMID: 38942027 PMCID: PMC11245731 DOI: 10.1016/j.chom.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter G Eipers
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Travis Ptacek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander F Rosenberg
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dave D Hill
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Hu Z, Qian C, Wang H, Sun L, Wu C, Zhang G, Han X, Wang C, Ma T, Yang D. Comprehensive toxicological, metabolomic, and transcriptomic analysis of the biodegradation and adaptation mechanism by Achromobacter xylosoxidans SL-6 to diuron. Front Microbiol 2024; 15:1403279. [PMID: 38912345 PMCID: PMC11192067 DOI: 10.3389/fmicb.2024.1403279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Biodegradation was considered a promising and environmentally friendly method for treating environmental pollution caused by diuron. However, the mechanisms of biodegradation of diuron required further research. In this study, the degradation process of diuron by Achromobacter xylosoxidans SL-6 was systematically investigated. The results suggested that the antioxidant system of strain SL-6 was activated by adding diuron, thereby alleviating their oxidative stress response. In addition, degradation product analysis showed that diuron in strain SL-6 was mainly degraded by urea bridge cleavage, dehalogenation, deamination, and ring opening, and finally cis, cis-muconic acid was generated. The combined analysis of metabolomics and transcriptomics revealed the biodegradation and adaptation mechanism of strain SL-6 to diuron. Metabolomics analysis showed that after the strain SL-6 was exposed to diuron, metabolic pathways such as tricarboxylic acid cycle (cis, cis-muconic acid), glutathione metabolism (oxidized glutathione), and urea cycle (arginine) were reprogrammed in the cells. Furthermore, diuron could induce the production of membrane transport proteins in strain SL-6 cells and overexpress antioxidant enzyme genes, finally ultimately promoting the up-regulation of genes encoding amide hydrolases and dioxygenases, which was revealed by transcriptomics studies. This work enriched the biodegradation mechanism of phenylurea herbicides and provided guidance for the removal of diuron residues in the environment and promoting agriculture sustainable development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, China
| |
Collapse
|
11
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
12
|
Tian J, Li Y, Zhang C, Su J, Lu W. Characterization of a pleiotropic regulator MtrA in Streptomyces avermitilis controlling avermectin production and morphological differentiation. Microb Cell Fact 2024; 23:103. [PMID: 38584273 PMCID: PMC11000389 DOI: 10.1186/s12934-024-02331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/11/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The macrolide antibiotic avermectin, a natural product derived from Streptomyces avermitilis, finds extensive applications in agriculture, animal husbandry and medicine. The mtrA (sav_5063) gene functions as a transcriptional regulator belonging to the OmpR family. As a pleiotropic regulator, mtrA not only influences the growth, development, and morphological differentiation of strains but also modulates genes associated with primary metabolism. However, the regulatory role of MtrA in avermectin biosynthesis remains to be elucidated. RESULTS In this study, we demonstrated that MtrA, a novel OmpR-family transcriptional regulator in S. avermitilis, exerts global regulator effects by negatively regulating avermectin biosynthesis and cell growth while positively controlling morphological differentiation. The deletion of the mtrA gene resulted in an increase in avermectin production, accompanied by a reduction in biomass and a delay in the formation of aerial hyphae and spores. The Electrophoretic Mobility Shift Assay (EMSA) revealed that MtrA exhibited binding affinity towards the upstream region of aveR, the intergenic region between aveA1 and aveA2 genes, as well as the upstream region of aveBVIII in vitro. These findings suggest that MtrA exerts a negative regulatory effect on avermectin biosynthesis by modulating the expression of avermectin biosynthesis cluster genes. Transcriptome sequencing and fluorescence quantitative PCR analysis showed that mtrA deletion increased the transcript levels of the cluster genes aveR, aveA1, aveA2, aveC, aveE, aveA4 and orf-1, which explains the observed increase in avermectin production in the knockout strain. Furthermore, our findings demonstrate that MtrA positively regulates the cell division and differentiation genes bldM and ssgC, while exerting a negative regulatory effect on bldD, thereby modulating the primary metabolic processes associated with cell division, differentiation and growth in S. avermitilis, consequently impacting avermectin biosynthesis. CONCLUSIONS In this study, we investigated the negative regulatory effect of the global regulator MtrA on avermectin biosynthesis and its effects on morphological differentiation and cell growth, and elucidated its transcriptional regulatory mechanism. Our findings indicate that MtrA plays crucial roles not only in the biosynthesis of avermectin but also in coordinating intricate physiological processes in S. avermitilis. These findings provide insights into the synthesis of avermectin and shed light on the primary and secondary metabolism of S. avermitilis mediated by OmpR-family regulators.
Collapse
Affiliation(s)
- Jinpin Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Yue Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, People's Republic of China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China
| | - Jianyu Su
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, 750021, China.
- College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, People's Republic of China.
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China.
| |
Collapse
|
13
|
Lillie IM, Booth CE, Horvath AE, Mondragon M, Engevik MA, Horvath TD. Characterizing arginine, ornithine, and putrescine pathways in enteric pathobionts. Microbiologyopen 2024; 13:e1408. [PMID: 38560776 PMCID: PMC10982811 DOI: 10.1002/mbo3.1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.
Collapse
Affiliation(s)
- Ian M. Lillie
- Department of Materials Science & EngineeringCornell UniversityIthacaNew YorkUSA
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of PathologyTexas Children's HospitalHoustonTexasUSA
| | - Charles E. Booth
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Adelaide E. Horvath
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Department of Biology & BiochemistryUniversity of HoustonHoustonTexasUSA
- Department of MathematicsUniversity of HoustonHoustonTexasUSA
| | - Matthew Mondragon
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Melinda A. Engevik
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Thomas D. Horvath
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of PathologyTexas Children's HospitalHoustonTexasUSA
| |
Collapse
|
14
|
Scribani-Rossi C, Molina-Henares MA, Espinosa-Urgel M, Rinaldo S. Exploring the Metabolic Response of Pseudomonas putida to L-arginine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38429473 DOI: 10.1007/5584_2024_797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Beyond their role as protein-building units, amino acids are modulators of multiple behaviours in different microorganisms. In the root-colonizing beneficial bacterium Pseudomonas putida (recently proposed to be reclassified as alloputida) KT2440, current evidence suggests that arginine functions both as a metabolic indicator and as an environmental signal molecule, modulating processes such as chemotactic responses, siderophore-mediated iron uptake or the levels of the intracellular second messenger cyclic diguanylate (c-di-GMP). Using microcalorimetry and extracellular flux analysis, in this work we have studied the metabolic adaptation of P. putida KT2440 to the presence of L-arginine in the growth medium, and the influence of mutations related to arginine metabolism. Arginine causes rapid changes in the respiratory activity of P. putida, particularly magnified in a mutant lacking the transcriptional regulator ArgR. The metabolic activity of mutants affected in arginine transport and metabolism is also altered during biofilm formation in the presence of the amino acid. The results obtained here further support the role of arginine as a metabolic signal in P. putida and the relevance of ArgR in the adaptation to the amino acid. They also serve as proof of concept on the use of calorimetric and extracellular flux techniques to analyse metabolic responses in bacteria and the impact of different mutant backgrounds on such responses.
Collapse
Affiliation(s)
- Chiara Scribani-Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain.
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Chen Y, Lin Y, Zhu J, Zhou J, Lin H, Fu Y, Zhou Y. Transcriptomic analysis of nitrogen metabolism pathways in Klebsiella aerogenes under nitrogen-rich conditions. Front Microbiol 2024; 15:1323160. [PMID: 38500581 PMCID: PMC10945327 DOI: 10.3389/fmicb.2024.1323160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
The acceleration of the nitrogen cycle and the nitrogen excess observed in some coastal waters has increased interest into understanding the biochemical and molecular basis of nitrogen metabolism in various microorganisms. To investigate nitrogen metabolism of a novel heterotrophic nitrification and aerobic denitrification bacterium Klebsiella aerogenes strain (B23) under nitrogen-rich conditions, we conducted physiological and transcriptomic high-throughput sequencing analyses on strain B23 cultured on potassium nitrate-free or potassium nitrate-rich media. Overall, K. aerogenes B23 assimilated 82.47% of the nitrate present into cellular nitrogen. Further, 1,195 differentially expressed genes were observed between K. aerogenes B23 cultured on potassium nitrate-free media and those cultured on potassium nitrate-rich media. Gene annotation and metabolic pathway analysis of the transcriptome were performed using a series of bioinformatics tools, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Non-Redundant Protein Database annotation. Accordingly, the nitrogen metabolism pathway of K. aerogenes B23 was analyzed; overall, 39 genes were determined to be involved in this pathway. Differential expression analysis of the genes involved in the nitrogen metabolism pathway demonstrated that, compared to the control, FNR, NarK/14945, fdx, gshA, proB, proA, gapA, argH, artQ, artJ, artM, ArgR, GAT1, prmB, pyrG, glnS, and Ca1 were significantly upregulated in the nitrogen-treated K. aerogenes B23; these genes have been established to be involved in the regulation of nitrate, arginine, glutamate, and ammonia assimilation. Further, norV, norR, and narI were also upregulated in nitrogen-treated K. aerogenes B23; these genes are involved in the regulation of NO metabolism. These differential expression results are important for understanding the regulation process of key nitrogen metabolism enzyme genes in K. aerogenes B23. Therefore, this study establishes a solid foundation for further research into the expression regulation patterns of nitrogen metabolism-associated genes in K. aerogenes B23 under nitrogen-rich conditions; moreover, this research provides essential insight into how K. aerogenes B23 utilizes nutritional elements.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
16
|
Reslane I, Handke LD, Watson GF, Shinde D, Ahn JS, Endres JL, Razvi F, Gilbert EA, Bayles KW, Thomas VC, Lehman MK, Fey PD. Glutamate -dependent arginine biosynthesis requires the inactivation of spoVG, sarA, and ahrC in Staphylococcus aureus. J Bacteriol 2024; 206:e0033723. [PMID: 38299858 PMCID: PMC10883023 DOI: 10.1128/jb.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.
Collapse
Affiliation(s)
- Itidal Reslane
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luke D. Handke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gabrielle F. Watson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dhananjay Shinde
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jong-Sam Ahn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jennifer L. Endres
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emily A. Gilbert
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - McKenzie K. Lehman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
17
|
Malas J, Russo DC, Bollengier O, Malaska MJ, Lopes RMC, Kenig F, Meyer-Dombard DR. Biological functions at high pressure: transcriptome response of Shewanella oneidensis MR-1 to hydrostatic pressure relevant to Titan and other icy ocean worlds. Front Microbiol 2024; 15:1293928. [PMID: 38414766 PMCID: PMC10896736 DOI: 10.3389/fmicb.2024.1293928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
High hydrostatic pressure (HHP) is a key driver of life's evolution and diversification on Earth. Icy moons such as Titan, Europa, and Enceladus harbor potentially habitable high-pressure environments within their subsurface oceans. Titan, in particular, is modeled to have subsurface ocean pressures ≥ 150 MPa, which are above the highest pressures known to support life on Earth in natural ecosystems. Piezophiles are organisms that grow optimally at pressures higher than atmospheric (0.1 MPa) pressure and have specialized adaptations to the physical constraints of high-pressure environments - up to ~110 MPa at Challenger Deep, the highest pressure deep-sea habitat explored. While non-piezophilic microorganisms have been shown to survive short exposures at Titan relevant pressures, the mechanisms of their survival under such conditions remain largely unelucidated. To better understand these mechanisms, we have conducted a study of gene expression for Shewanella oneidensis MR-1 using a high-pressure experimental culturing system. MR-1 was subjected to short-term (15 min) and long-term (2 h) HHP of 158 MPa, a value consistent with pressures expected near the top of Titan's subsurface ocean. We show that MR-1 is metabolically active in situ at HHP and is capable of viable growth following 2 h exposure to 158 MPa, with minimal pressure training beforehand. We further find that MR-1 regulates 264 genes in response to short-term HHP, the majority of which are upregulated. Adaptations include upregulation of the genes argA, argB, argC, and argF involved in arginine biosynthesis and regulation of genes involved in membrane reconfiguration. MR-1 also utilizes stress response adaptations common to other environmental extremes such as genes encoding for the cold-shock protein CspG and antioxidant defense related genes. This study suggests Titan's ocean pressures may not limit life, as microorganisms could employ adaptations akin to those demonstrated by terrestrial organisms.
Collapse
Affiliation(s)
- Judy Malas
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Daniel C. Russo
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Olivier Bollengier
- Nantes Université, Univ Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences, LPG UMR 6112, Nantes, France
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rosaly M. C. Lopes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Fabien Kenig
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - D'Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Lages MA, do Vale A, Lemos ML, Balado M. Remodulation of bacterial transcriptome after acquisition of foreign DNA: the case of irp-HPI high-pathogenicity island in Vibrio anguillarum. mSphere 2024; 9:e0059623. [PMID: 38078732 PMCID: PMC10826351 DOI: 10.1128/msphere.00596-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024] Open
Abstract
The high-pathogenicity island irp-HPI is widespread in Vibrionaceae and encodes the siderophore piscibactin, as well as the regulator PbtA that is essential for its expression. In this work, we aim to study whether PbtA directly interacts with irp-HPI promoters. Furthermore, we hypothesize that PbtA, and thereby the acquisition of irp-HPI island, may also influence the expression of other genes elsewhere in the bacterial genome. To address this question, an RNAseq analysis was conducted to identify differentially expressed genes after pbtA deletion in Vibrio anguillarum RV22 genetic background. The results showed that PbtA not only modulates the irp-HPI genes but also modulates the expression of a plethora of V. anguillarum core genome genes, inducing nitrate, arginine, and sulfate metabolism, T6SS1, and quorum sensing, while repressing lipopolysaccharide (LPS) production, MARTX toxin, and major porins such as OmpV and ChiP. The direct binding of the C-terminal domain of PbtA to piscibactin promoters (PfrpA and PfrpC), quorum sensing (vanT), LPS transporter wza, and T6SS structure- and effector-encoding genes was demonstrated by electrophoretic mobility shift assay (EMSA). The results provide valuable insights into the regulatory mechanisms underlying the expression of irp-HPI island and its impact on Vibrios transcriptome, with implications in pathogenesis.IMPORTANCEHorizontal gene transfer enables bacteria to acquire traits, such as virulence factors, thereby increasing the risk of the emergence of new pathogens. irp-HPI genomic island has a broad dissemination in Vibrionaceae and is present in numerous potentially pathogenic marine bacteria, some of which can infect humans. Previous works showed that certain V. anguillarum strains exhibit an expanded host range plasticity and heightened virulence, a phenomenon linked to the acquisition of the irp-HPI genomic island. The present work shows that this adaptive capability is likely achieved through comprehensive changes in the transcriptome of the bacteria and that these changes are mediated by the master regulator PbtA encoded within the irp-HPI element. Our results shed light on the broad implications of horizontal gene transfer in bacterial evolution, showing that the acquired DNA can directly mediate changes in the expression of the core genome, with profounds implications in pathogenesis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Zhao H, Xu Y, Yang L, Wang Y, Li M, Chen L. Biological Function of Prophage-Related Gene Cluster Δ VpaChn25_RS25055~Δ VpaChn25_0714 of Vibrio parahaemolyticus CHN25. Int J Mol Sci 2024; 25:1393. [PMID: 38338671 PMCID: PMC10855970 DOI: 10.3390/ijms25031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23284, USA;
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| |
Collapse
|
20
|
Yi J, Liu C, Yang P, Wu ZC, Du CJ, Shen N. Exogenous glutathione reverses meropenem resistance in carbapenem-resistant Klebsiella pneumoniae. Front Pharmacol 2023; 14:1327230. [PMID: 38174220 PMCID: PMC10762803 DOI: 10.3389/fphar.2023.1327230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background: The rate of carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has been increasing rapidly worldwide and, poses a significant risk to human health. Effective methods are urgently needed to address treatment failures related to antibiotic resistance. Recent research has reported that some drugs in combination with antibiotics have displayed synergistic killing of resistant bacteria. Here, we investigated whether glutathione (GSH) can synergize with meropenem, and enhance its effectiveness against CRKP. Methods: Synergistic activity was assessed by checkerboard and time-killing assays. The mechanism of these combinations was assessed by total ROS and membrane permeability assays. The bacterial metabolites were assessed by LC‒MS/MS. Results: The FICIs of GSH and meropenem were approximately 0.5 and the combined treatment with GSH and meropenem resulted in a more than 2log10 CFU/mL reduction in bacteria compared to the individual treatments. These findings indicated the synergistic effect of the two drugs. Moreover, the meropenem MIC of CRKP was reduced to less than 4 mg/L when combined with 6 mg/mL GSH, indicating that GSH could significantly reverse resistance to meropenem in bacteria. The production of ROS in bacteria was determined by flow cytometry. After adding GSH, the ROS in the GSH group and the combined group was significantly higher than that in the control and meropenem groups, but there was no significant difference between the combined and GSH groups. The metabolic disturbance caused by GSH alone and in combination with meropenem was significant intracellularly and extracellularly, especially in terms of glycerophospholipid metabolism, indicating that the synergistic effect of the combined use of GSH and meropenem was relevant to glycerophospholipid metabolism. In addition, we measured the cell membrane permeability. The cell membrane permeability of the combination group was significantly higher than that of the blank control or monotreatment groups. This confirmed that the GSH can serve as a meropenem enhancers by disturbing glycerophospholipid metabolism and increasing cell membrane permeability. Conclusion: GSH and meropenem display a synergistic effect, wherein GSH increases the sensitivity of CRKP to meropenem. The synergy and susceptibility effects are thought to related to the increased membrane permeability resulting from the perturbations in glycerophospholipid metabolism, presenting a novel avenue for CRKP treatment.
Collapse
Affiliation(s)
- Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chao Liu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Ping Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhen-chao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Chun-jing Du
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| |
Collapse
|
21
|
Bhagat NR, Chauhan P, Verma P, Mishra A, Bharti VK. High-altitude and low-altitude adapted chicken gut-microbes have different functional diversity. Sci Rep 2023; 13:20856. [PMID: 38012260 PMCID: PMC10682461 DOI: 10.1038/s41598-023-48147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Recently, there has been considerable interest in the functions of gut microbiota in broiler chickens in relation to their use as feed additives. However, the gut-microbiota of chickens reared at different altitudes are not well documented for their potential role in adapting to prevailing conditions and functional changes. In this context, the present study investigates the functional diversity of gut-microbes in high-altitude (HACh) and low-altitude adapted chickens (LACh), assessing their substrate utilization profile through Biolog Ecoplates technology. This will help in the identification of potential microbes or their synthesized metabolites, which could be beneficial for the host or industrial applications. Results revealed that among the 31 different types of studied substrates, only polymers, carbohydrates, carboxylic acids, and amine-based substrates utilization varied significantly (p < 0.05) among the chickens reared at two different altitudes where gut-microbes of LACh utilized a broad range of substrates than the HACh. Further, diversity indices (Shannon and MacIntosh) analysis in LACh samples showed significant (p < 0.05) higher richness and evenness of microbes as compared to the HACh samples. However, no significant difference was observed in the Simpson diversity index in gut microbes of lowversus high-altitude chickens. In addition, the Principal Component Analysis elucidated variation in substrate preferences of gut-microbes, where 13 and 8 carbon substrates were found to constitute PC1 and PC2, respectively, where γ-aminobutyric acid, D-glucosaminic acid, i-erythritol and tween 40 were the most relevant substrates that had a major effect on PC1, however, alpha-ketobutyric acid and glycyl-L-glutamic acid affected PC2. Hence, this study concludes that the gut-microbes of high and low-altitudes adapted chickens use different carbon substrates so that they could play a vital role in the health and immunity of an animal host based on their geographical location. Consequently, this study substantiates the difference in the substrate utilization and functional diversity of the microbial flora in chickens reared at high and low altitudes due to altitudinal changes.
Collapse
Affiliation(s)
- Neha Rani Bhagat
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- School of Sciences, P. P. Savani University, NH-8, GETCO, Near Biltech, Kosamba, Surat, 394125, India
| | - Pratibha Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India.
| |
Collapse
|
22
|
Bonet-Rossinyol Q, Camprubí-Font C, López-Siles M, Martinez-Medina M. Identification of differences in gene expression implicated in the Adherent-Invasive Escherichia coli phenotype during in vitro infection of intestinal epithelial cells. Front Cell Infect Microbiol 2023; 13:1228159. [PMID: 37767199 PMCID: PMC10519790 DOI: 10.3389/fcimb.2023.1228159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Adherent-invasive Escherichia coli (AIEC) is strongly associated with the pathogenesis of Crohn's disease (CD). However, no molecular markers currently exist for AIEC identification. This study aimed to identify differentially expressed genes (DEGs) between AIEC and non-AIEC strains that may contribute to AIEC pathogenicity and to evaluate their utility as molecular markers. Methods Comparative transcriptomics was performed on two closely related AIEC/non-AIEC strain pairs during Intestine-407 cell infection. DEGs were quantified by RT-qPCR in the same RNA extracts, as well as in 14 AIEC and 23 non-AIEC strains to validate the results across a diverse strain collection. Binary logistical regression was performed to identify DEGs whose quantification could be used as AIEC biomarkers. Results Comparative transcriptomics revealed 67 differences in expression between the two phenotypes in the strain pairs, 50 of which (81.97%) were corroborated by RT-qPCR. When explored in the whole strain collection, 29 DEGs were differentially expressed between AIEC and non-AIEC phenotypes (p-value < 0.042), and 42 genes between the supernatant fraction of infected cell cultures and the cellular fraction containing adhered and intracellular bacteria (p-value < 0.049). Notably, six DEGs detected in the strain collection were implicated in arginine biosynthesis and five in colanic acid synthesis. Furthermore, two biomarkers based on wzb and cueR gene expression were proposed with an accuracy of ≥ 85% in our strain collection. Discussion This is the first transcriptomic study conducted using AIEC-infected cell cultures. We have identified several genes that may be involved in AIEC pathogenicity, two of which are putative biomarkers for identification.
Collapse
|
23
|
Liu X, Zhao Z, Zhao D, Zhao S, Qin X. Comprehensive microbiomes and fecal metabolomics combined with network pharmacology reveal the effects of Jichuanjian on aged functional constipation. Exp Gerontol 2023; 178:112216. [PMID: 37211069 DOI: 10.1016/j.exger.2023.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Functional constipation is a common gastrointestinal disorder especially severely affecting the life quality of the aged. Jichuanjian (JCJ) has been widely used for aged functional constipation (AFC) in clinic. Yet, the mechanisms of JCJ merely scratch the surface with being studied at a single level, rather than from a systematic perspective of the whole. AIM The purpose of this study was to explore the underlying mechanisms of JCJ in treating AFC from the perspectives of fecal metabolites and related pathways, gut microbiota, key gene targets and functional pathways, as well as "behaviors-microbiota-metabolites" relationships. METHODS 16S rRNA analysis and fecal metabolomics combined with network pharmacology were applied to investigate the abnormal performances of AFC rats, as well as the regulatory effects of JCJ. RESULTS JCJ significantly regulated the abnormalities of rats' behaviors, the microbial richness, and the metabolite profiles that were interrupted by AFC. 19 metabolites were found to be significantly associated with AFC involving in 15 metabolic pathways. Delightfully, JCJ significantly regulated 9 metabolites and 6 metabolic pathways. AFC significantly interrupted the levels of 4 differential bacteria while JCJ significantly regulated the level of SMB53. HSP90AA1 and TP53 were the key genes, and pathways in cancer was the most relevant signaling pathways involving in the mechanisms of JCJ. CONCLUSION The current findings not only reveal that the occurrence of AFC is closely related to gut microbiota mediating amino acid and energy metabolism, but also demonstrate the effects and the underlying mechanisms of JCJ on AFC.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Di Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Sijun Zhao
- Department of Pharmacology, Shanxi Institute for Food and Drug Control, Taiyuan 030001, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| |
Collapse
|
24
|
Margolis A, Liu L, Porwollik S, Till JKA, Chu W, McClelland M, Vázquez-Torres A. Arginine Metabolism Powers Salmonella Resistance to Oxidative Stress. Infect Immun 2023; 91:e0012023. [PMID: 37191509 PMCID: PMC10269097 DOI: 10.1128/iai.00120-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Salmonella invades host cells and replicates inside acidified, remodeled vacuoles that are exposed to reactive oxygen species (ROS) generated by the innate immune response. Oxidative products of the phagocyte NADPH oxidase mediate antimicrobial activity, in part, by collapsing the ΔpH of intracellular Salmonella. Given the role of arginine in bacterial resistance to acidic pH, we screened a library of 54 single-gene mutants in Salmonella that are each involved in, but do not entirely block, arginine metabolism. We identified several mutants that affected Salmonella virulence in mice. The triple mutant ΔargCBH, which is deficient in arginine biosynthesis, was attenuated in immunocompetent mice, but recovered virulence in phagocyte NADPH oxidase deficient Cybb-/- mice. Furthermore, ΔargCBH Salmonella was profoundly susceptible to the bacteriostatic and bactericidal effects of hydrogen peroxide. Peroxide stress led to a larger collapse of the ΔpH in ΔargCBH mutants than occurred in wild-type Salmonella. The addition of exogenous arginine rescued ΔargCBH Salmonella from peroxide-induced ΔpH collapse and killing. Combined, these observations suggest that arginine metabolism is a hitherto unknown determinant of virulence that contributes to the antioxidant defenses of Salmonella by preserving pH homeostasis. In the absence of phagocyte NADPH oxidase-produced ROS, host cell-derived l-arginine appears to satisfy the needs of intracellular Salmonella. However, under oxidative stress, Salmonella must additionally rely on de novo biosynthesis to maintain full virulence.
Collapse
Affiliation(s)
- Alyssa Margolis
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - James Karl A. Till
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
25
|
Tawk C, Lim B, Bencivenga-Barry NA, Lees HJ, Ramos RJF, Cross J, Goodman AL. Infection leaves a genetic and functional mark on the gut population of a commensal bacterium. Cell Host Microbe 2023; 31:811-826.e6. [PMID: 37119822 PMCID: PMC10197903 DOI: 10.1016/j.chom.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/04/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Gastrointestinal infection changes microbiome composition and gene expression. In this study, we demonstrate that enteric infection also promotes rapid genetic adaptation in a gut commensal. Measurements of Bacteroides thetaiotaomicron population dynamics within gnotobiotic mice reveal that these populations are relatively stable in the absence of infection, and the introduction of the enteropathogen Citrobacter rodentium reproducibly promotes rapid selection for a single-nucleotide variant with increased fitness. This mutation promotes resistance to oxidative stress by altering the sequence of a protein, IctA, that is essential for fitness during infection. We identified commensals from multiple phyla that attenuate the selection of this variant during infection. These species increase the levels of vitamin B6 in the gut lumen. Direct administration of this vitamin is sufficient to significantly reduce variant expansion in infected mice. Our work demonstrates that a self-limited enteric infection can leave a stable mark on resident commensal populations that increase fitness during infection.
Collapse
Affiliation(s)
- Caroline Tawk
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Natasha A Bencivenga-Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hannah J Lees
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruben J F Ramos
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
26
|
Gorgoglione R, Seccia R, Ahmed A, Vozza A, Capobianco L, Lodi A, Marra F, Paradies E, Palmieri L, Coppola V, Dolce V, Fiermonte G. Generation of a Yeast Cell Model Potentially Useful to Identify the Mammalian Mitochondrial N-Acetylglutamate Transporter. Biomolecules 2023; 13:biom13050808. [PMID: 37238678 DOI: 10.3390/biom13050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The human mitochondrial carrier family (MCF) consists of 53 members. Approximately one-fifth of them are still orphans of a function. Most mitochondrial transporters have been functionally characterized by reconstituting the bacterially expressed protein into liposomes and transport assays with radiolabeled compounds. The efficacy of this experimental approach is constrained to the commercial availability of the radiolabeled substrate to be used in the transport assays. A striking example is that of N-acetylglutamate (NAG), an essential regulator of the carbamoyl synthetase I activity and the entire urea cycle. Mammals cannot modulate mitochondrial NAG synthesis but can regulate the levels of NAG in the matrix by exporting it to the cytosol, where it is degraded. The mitochondrial NAG transporter is still unknown. Here, we report the generation of a yeast cell model suitable for identifying the putative mammalian mitochondrial NAG transporter. In yeast, the arginine biosynthesis starts in the mitochondria from NAG which is converted to ornithine that, once transported into cytosol, is metabolized to arginine. The deletion of ARG8 makes yeast cells unable to grow in the absence of arginine since they cannot synthetize ornithine but can still produce NAG. To make yeast cells dependent on a mitochondrial NAG exporter, we moved most of the yeast mitochondrial biosynthetic pathway to the cytosol by expressing four E. coli enzymes, argB-E, able to convert cytosolic NAG to ornithine. Although argB-E rescued the arginine auxotrophy of arg8∆ strain very poorly, the expression of the bacterial NAG synthase (argA), which would mimic the function of a putative NAG transporter increasing the cytosolic levels of NAG, fully rescued the growth defect of arg8∆ strain in the absence of arginine, demonstrating the potential suitability of the model generated.
Collapse
Affiliation(s)
- Ruggiero Gorgoglione
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Roberta Seccia
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Angelo Vozza
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Federica Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Eleonora Paradies
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70125 Bari, Italy
| | - Luigi Palmieri
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
27
|
Wang HD, Xu JZ, Zhang WG. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli. Appl Microbiol Biotechnol 2023; 107:3593-3603. [PMID: 37097502 DOI: 10.1007/s00253-023-12532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
L-arginine (L-Arg) is a semi-essential amino acid with many important physiological functions. However, achieving efficient manufacture of L-Arg on an industrial scale using Escherichia coli (E. coli) remains a major challenge. In previous studies, we constructed a strain of E. coli A7, which had good L-Arg production capacity. In this study, E. coli A7 was further modified, and E. coli A21 with more efficient L-Arg production capacity was obtained. Firstly, we reduced the acetate accumulation of strain A7 by weakening the poxB gene and overexpressing acs gene. Secondly, we improved the L-Arg transport efficiency of strains by overexpressing the lysE gene from Corynebacterium glutamicum (C. glutamicum). Finally, we enhanced the supplies of precursors for the synthesis of L-Arg and optimized the supplies of cofactor NADPH and energy ATP in strain. After fermentation in a 5-L bioreactor, the L-Arg titer of strain A21 was found to be 89.7 g/L. The productivity was 1.495 g/(L·h) and the glucose yield was 0.377 g/g. Our study further narrowed the titer gap between E. coli and C. glutamicum in the synthesis of L-Arg. In all recent studies on the L-Arg production by E. coli, this was the highest titer recorded. In conclusion, our study further promotes the efficient mass synthesis of L-Arg by E. coli. KEY POINTS: • The acetate accumulation of starting strain A7 was decreased. • Overexpression of gene lysE of C. glutamicum enhanced L-Arg transport in strain A10. • Enhance the supplies of precursors for the synthesis of L-Arg and optimize the supplies of cofactor NADPH and energy ATP. Finally, Strain A21 was detected to have an L-Arg titer of 89.7 g/L in a 5-L bioreactor.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
28
|
Dahiya M, Jovel J, Monaghan T, Wong K, Elhenawy W, Chui L, McAlister F, Kao D. In Silico Analysis of Changes in Predicted Metabolic Capabilities of Intestinal Microbiota after Fecal Microbial Transplantation for Treatment of Recurrent Clostridioides difficile Infection. Microorganisms 2023; 11:microorganisms11041078. [PMID: 37110500 PMCID: PMC10143790 DOI: 10.3390/microorganisms11041078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
IMPORTANCE Although highly effective in treating recurrent Clostridioides difficile infection (RCDI), the mechanisms of action of fecal microbial transplantation (FMT) are not fully understood. AIM The aim of this study was to explore microbially derived products or pathways that could contribute to the therapeutic efficacy of FMT. METHODS Stool shotgun metagenomic sequencing data from 18 FMT-treated RCDI patients at 4 points in time were used for the taxonomic and functional profiling of their gut microbiome. The abundance of the KEGG orthology (KO) groups was subjected to univariate linear mixed models to assess the significance of the observed differences between 0 (pre-FMT), 1, 4, and 12 weeks after FMT. RESULTS Of the 59,987 KO groups identified by shotgun metagenomic sequencing, 27 demonstrated a statistically significant change after FMT. These KO groups are involved in many cellular processes, including iron homeostasis, glycerol metabolism, and arginine regulation, all of which have been implicated to play important roles in bacterial growth and virulence in addition to modulating the intestinal microbial composition. CONCLUSION Our findings suggest potential changes in key KO groups post-FMT, which may contribute to FMT efficacy beyond the restored microbial composition/diversity and metabolism of bile acids and short-chain fatty acids. Future larger studies that include a fecal metabolomics analysis combined with animal model validation work are required to further elucidate the molecular mechanisms.
Collapse
Affiliation(s)
- Monica Dahiya
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Juan Jovel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Tanya Monaghan
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Karen Wong
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Wael Elhenawy
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Linda Chui
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2R3, Canada
| | - Finlay McAlister
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Dina Kao
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
29
|
Hu J, Wu Y, Zhou X, Kang L, Zhang S, Liu Y, Pi Y, Li X, Wang J, Han D. L-Arabinose inhibits Shiga toxin type 2-converting bacteriophage induction in Escherichia coli O157:H7. Gut Microbes 2023; 15:2221778. [PMID: 37332116 PMCID: PMC10281465 DOI: 10.1080/19490976.2023.2221778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The pathogenicity of Escherichia coli (E. coli) O157:H7 is predominantly associated with Shiga toxin 2 (Stx2) that poses a huge threat to human and animal intestinal health. Production of Stx2 requires expression of stx2 gene, which is located in the genome of lambdoid Stx2 prophage. Growing evidence has implicated that many commonly consumed foods participate in the regulation of prophage induction. In this study, we aimed to explore whether specific dietary functional sugars could inhibit Stx2 prophage induction in E. coli O157:H7, thereby preventing Stx2 production and promoting intestinal health. We demonstrated that Stx2 prophage induction in E. coli O157:H7 was strongly inhibited by L-arabinose both in vitro and in a mouse model. Mechanistically, L-arabinose at doses of 9, 12, or 15 mM diminished RecA protein levels, a master mediator of the SOS response, contributing to reduced Stx2-converting phage induction. L-Arabinose inhibited quorum sensing and oxidative stress response, which are known as positive regulators of the SOS response and subsequent Stx2 phage production. Furthermore, L-arabinose impaired E. coli O157:H7 arginine transport and metabolism that were involved in producing Stx2 phage. Collectively, our results suggest that L-arabinose may be exploited as a novel Stx2 prophage induction inhibitor against E. coli O157:H7 infection.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingjian Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyi Zhang
- Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Guerreiro DN, Boyd A, O'Byrne CP. The stressosome is required to transduce low pH signals leading to increased transcription of the amino acid-based acid tolerance mechanisms in Listeria monocytogenes. Access Microbiol 2022; 4:acmi000455. [PMID: 36415544 PMCID: PMC9675040 DOI: 10.1099/acmi.0.000455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/02/2022] [Indexed: 10/03/2023] Open
Abstract
Increasing proton concentration in the environment represents a potentially lethal stress for single-celled microorganisms. To survive in an acidifying environment, the foodborne pathogen Listeria monocytogenes quickly activates the alternative sigma factor B (σB), resulting in upregulation of the general stress response (GSR) regulon. Activation of σB is regulated by the stressosome, a multi-protein sensory complex involved in stress detection and signal transduction. In this study, we used L. monocytogenes strains harbouring two stressosome mutants to investigate the role of this complex in triggering expression of known amino acid-based resistance mechanisms in response to low pH. We found that expression of glutamate decarboxylase (gadD3) and arginine and agmatine deiminases (arcA and aguA1, respectively) were upregulated upon acid shock (pH 5 for 15 min) in a stressosome-dependent manner. In contrast, transcription of the arg operons (argGH and argCJBDF), which encode enzymes for the l-arginine biosynthesis pathway, were upregulated upon acid shock in a stressosome-independent manner. Finally, we found that transcription of argR, which encodes a transcriptional regulator of the arc and arg operons, was largely unaffected by acidic shock. Thus, our findings suggest that the stressosome plays a role in activating amino acid-based pH homeostatic mechanisms in L. monocytogenes . Additionally, we show that genes encoding the l-arginine biosynthesis pathway are highly upregulated under acidic conditions, suggesting that intracellular arginine can help withstand environmental acidification in this pathogen.
Collapse
Affiliation(s)
- Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P. O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
31
|
Xiong L, Yi F, Yu Q, Huang X, Ao K, Wang Y, Xie Y. Transcriptomic analysis reveals the regulatory role of quorum sensing in the Acinetobacter baumannii ATCC 19606 via RNA-seq. BMC Microbiol 2022; 22:198. [PMID: 35971084 PMCID: PMC9380347 DOI: 10.1186/s12866-022-02612-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acinetobacter baumannii has emerged as the major opportunistic pathogen in healthcare-associated infections with high-level antibiotic resistance and high mortality. Quorum sensing (QS) system is a cell-to-cell bacterial communication mediated by the synthesis, secretion, and binding of auto-inducer signals. It is a global regulatory system to coordinate the behavior of individual bacteria in a population. The present study focused on the QS system, aiming to investigate the regulatory role of QS in bacterial virulence and antibiotic resistance. Method The auto-inducer synthase gene abaI was deleted using the A. baumannii ATCC 19606 strain to interrupt the QS process. The RNA-seq was performed to identify the differentially expressed genes (DEGs) and pathways in the mutant (△abaI) strain compared with the wild-type (WT) strain. Results A total of 380 DEGs [the adjusted P value < 0.05 and the absolute value of log2(fold change) > log21.5] were identified, including 256 upregulated genes and 124 downregulated genes in the △abaI strain. The enrichment analysis indicated that the DEGs involved in arginine biosynthesis, purine metabolism, biofilm formation, and type VI secretion system (T6SS) were downregulated, while the DEGs involved in pathways related to fatty acid metabolism and amino acid metabolism were upregulated. Consistent with the expression change of the DEGs, a decrease in biofilm formation was observed in the △abaI strain compared with the WT strain. On the contrary, no obvious changes were found in antimicrobial resistance following the deletion of abaI. Conclusions The present study demonstrated the transcriptomic profile of A. baumannii after the deletion of abaI, revealing an important regulatory role of the QS system in bacterial virulence. The deletion of abaI suppressed the biofilm formation in A. baumannii ATCC 19606, leading to decreased pathogenicity. Further studies on the role of abaR, encoding the receptor of auto-inducer in the QS circuit, are required for a better understanding of the regulation of bacterial virulence and pathogenicity in the QS network. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02612-z.
Collapse
Affiliation(s)
- Li Xiong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fanli Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuju Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyue Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanfang Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Wang HD, Xu JZ, Zhang WG. Metabolic engineering of Escherichia coli for efficient production of L-arginine. Appl Microbiol Biotechnol 2022; 106:5603-5613. [PMID: 35931894 DOI: 10.1007/s00253-022-12109-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
As an important semi-essential amino acid, L-arginine (L-Arg) has important application prospects in medicine and health care. However, it remains a challenge to efficiently produce L-Arg by Escherichia coli (E. coli). In the present study, we obtained an E. coli A1 with L-Arg accumulation ability, and carried out a series of metabolic engineering on it, and finally obtained an E. coli strain A7 with high L-Arg production ability. First, genome analysis of strain A1 was performed to explore the related genes affecting L-Arg accumulation. We found that gene speC and gene speF played an important role in the accumulation of L-Arg. Second, we used two strategies to solve the feedback inhibition of the L-Arg pathway in E. coli. One was the combination of a mutation of the gene argA and the deletion of the gene argR, and the other was the combination of a heterologous insertion of the gene argJ and the deletion of the gene argR. The combination of exogenous argJ gene insertion and argR gene deletion achieved higher titer accumulation with less impact on strain growth. Finally, we inserted the gene cluster argCJBDF of Corynebacterium glutamicum (C. glutamicum) to enhance the metabolic flux of the L-Arg pathway in E. coli. The final strain obtained 70.1 g/L L-Arg in a 5-L bioreactor, with a yield of 0.326 g/g glucose and a productivity of 1.17 g/(L· h). This was the highest level of L-Arg production by E. coli ever reported. Collectively, our findings provided valuable insights into the possibility of the industrial production of L-Arg by E. coli. KEY POINTS: • Genetic background of E. coli A1 genome analysis. • Heterologous argJ substitution of argA mutation promoted excessive accumulation of L-Arg in E. coli A1. • The overexpression of L-Arg synthesis gene cluster argCJBDF of Corynebacterium glutamicum (C. glutamate) promoted the accumulation of L-Arg, and 70.1 g/L L-Arg was finally obtained in fed-batch fermentation.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China.
| |
Collapse
|
33
|
Heat, cold, acid, and bile salt induced differential proteomic responses of a novel potential probiotic Lactococcus garvieae C47 isolated from camel milk. Food Chem 2022; 397:133774. [PMID: 35905615 DOI: 10.1016/j.foodchem.2022.133774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Probiotics encounter various stresses during food processing and digestion. This study evaluated the differential proteomic responses of a newly identified potential probiotic lactic acid bacteria, Lactococcus garvieae, isolated from camel milk. Lc. garvieae C47 was exposed to heat, cold, acid, and bile conditions, and stress-responsive proteins were identified. The proteomic analysis was done using 2D-IEF SDS PAGE and nano-LC-MS/MS. Out of 91 differentially expressed proteins, 20 upregulated and 27 downregulated proteins were shared among the stresses. The multivariate data analysis revealed abundance of elongation factor Ts (spot C42), uridine phosphorylase, fructose-bisphosphate aldolase, peptidase T, cobalt ECF transporter T component CbiQ, UDP-N-acetylmuramate-l-alanine ligase, uncharacterized protein, aspartokinase, chaperone protein DnaK, IGP synthase cyclase subunit, probable nicotinate-nucleotide adenylyltransferase, NADH-quinone oxidoreductase, holo-[acyl-carrier-protein] synthase, l-lactate dehydrogenase, and uncharacterized protein. The maximum number of differentially expressed proteins belonged to carbohydrate and protein metabolism, which indicates Lc. garvieae shifts towards growth and energy metabolism for resistance against stress conditions.
Collapse
|
34
|
Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance. Molecules 2022; 27:molecules27134308. [PMID: 35807553 PMCID: PMC9268307 DOI: 10.3390/molecules27134308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first time, a chloroform and methanol extraction method to investigate the antibacterial activity and components of the rhizomes of A. officinarum Hance. The results showed that the growth of five species of pathogenic bacteria was significantly inhibited by the galangal methanol-phase extract (GMPE) (p < 0.05). The GMPE treatment changed the bacterial cell surface hydrophobicity, membrane fluidity and/or permeability. Comparative transcriptomic analyses revealed approximately eleven and ten significantly altered metabolic pathways in representative Gram-positive Staphylococcus aureus and Gram-negative Enterobacter sakazakii pathogens, respectively (p < 0.05), demonstrating different antibacterial action modes. The GMPE was separated further using a preparative high-performance liquid chromatography (Prep-HPLC) technique, and approximately 46 and 45 different compounds in two major component fractions (Fractions 1 and 4, respectively) were identified using ultra-HPLC combined with mass spectrometry (UHPLC-MS) techniques. o-Methoxy cinnamaldehyde (40.12%) and p-octopamine (62.64%) were the most abundant compounds in Fractions 1 and 4, respectively. The results of this study provide data for developing natural products from galangal rhizomes against common pathogenic bacteria.
Collapse
|
35
|
Luo K, Chen L, Du L, Zhao Y, Chen Q. Response of the aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 to low temperature and zinc oxide nanoparticles stress. BIORESOURCE TECHNOLOGY 2022; 354:127162. [PMID: 35429594 DOI: 10.1016/j.biortech.2022.127162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Performance and molecular changes of an aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 have been investigated under different temperatures and ZnO nanoparticles (NPs) exposures. Strain HA-2 removed 95.7% of total nitrogen (TN) and 24.6% of phosphorus at 10 °C, which was attributed to the joint up-regulation of intracellular energy metabolism and ribosome. Moreover, with the increase of ZnO NPs from 0 to 100 mg/L, TN and phosphurs removal efficiencies decreased from 95.7% to 44.5% and 24.6% to 6.8% at 10 °C, respectively, whereas phosphorus removal rate increased from 10.5% to 24.5% at 20 °C. Further transcriptomics and proteomics revealed that significant down-regulation of purine and amino acid metabolisms was the main reason for the inhibitory effect at 10 °C, while the up-regulation of antioxidant pathways and functional genes expressions was responsible for the promoted phosphorus accumulation at 20 °C. This study provides a potential solution for improving biological nutrients removal processes in winter months.
Collapse
Affiliation(s)
- Kongyan Luo
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Long Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Lei Du
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuanyi Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
36
|
Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine. mBio 2022; 13:e0039522. [PMID: 35475645 PMCID: PMC9239276 DOI: 10.1128/mbio.00395-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1. Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or SNPs identified upstream of arcA1B1D1C1 increased the transcription of both arcB1 and argGH, encoding ornithine carbamoyltransferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthesis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth within CDM-R. Complementation with arcB1 or arcA1B1D1C1, but not argGH, rescued growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth, as did mutations in genes (proC and rocA) that presumably increased the pyrroline-5-carboxylate and ornithine pools. Collectively, these data suggest that the transcriptional regulation of ornithine carbamoyltransferase and, in addition, the availability of intracellular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glucose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These data suggest that S. aureus is selected to repress arginine biosynthesis in environments with or without glucose; however, mutants may be readily selected that facilitate arginine biosynthesis and growth in specific environments lacking arginine.
Collapse
|
37
|
Zhang J, Hu L, Zhang H, He Z. Cyclic
di‐GMP
triggers the hypoxic adaptation of
Mycobacterium bovis
through a metabolic switching regulator
ArgR. Environ Microbiol 2022; 24:4382-4400. [DOI: 10.1111/1462-2920.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jiaxun Zhang
- College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and Technology Guangxi University Nanning 530004 China
| | - Hua Zhang
- College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Zheng‐Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and Technology Guangxi University Nanning 530004 China
| |
Collapse
|
38
|
Zhou X, Gu M, Zhu L, Wu D, Yang M, Gao Y, Wang X, Bai C, Wei Z, Yang L, Li G. Comparison of Microbial Community and Metabolites in Four Stomach Compartments of Myostatin-Gene-Edited and Non-edited Cattle. Front Microbiol 2022; 13:844962. [PMID: 35401485 PMCID: PMC8988179 DOI: 10.3389/fmicb.2022.844962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Myostatin (MSTN), a major negative regulator of skeletal muscle mass and an endocrine factor, can regulate the metabolism of various organisms. Inhibition of the MSTN gene can improve meat production from livestock. Rumen microorganisms are associated with production and health traits of cattle, but changes in the microbial composition and metabolome in the four stomach compartments of MSTN gene-edited cattle have not previously been studied. Our results indicated that microbial diversity and dominant bacteria in the four stomach compartments were very similar between MSTN gene-edited and wild-type (WT) cattle. The microbiota composition was significantly different between MSTN gene-edited and WT cattle. Our results show that the relative abundance of the phylum Proteobacteria in the reticulum of MSTN gene-edited cattle was lower than that of WT cattle, whereas the relative abundance of the genus Prevotella in the omasum of MSTN gene-edited cattle was significantly higher than that of WT cattle. Metabolomics analysis revealed that the intensity of L-proline and acetic acid was significantly different in the rumen, reticulum, and abomasum between the two types of cattle. Meanwhile, pathway topology analysis indicated that the differential metabolites were predominantly involved in arginine biosynthesis and glutamate metabolism in the rumen, reticulum, and omasum but were mainly involved in pyruvate metabolism and glycolysis/gluconeogenesis in the abomasum. Spearman correlation network analysis further demonstrated that there was a significant correlation between microflora composition and metabolic pathways. These findings provide clues for studying nutrient digestion and absorption ability of MSTN gene-edited cattle.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Miaomiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xueqiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
39
|
Role of the Transcriptional Regulator ArgR in the Connection between Arginine Metabolism and c-di-GMP Signaling in Pseudomonas putida. Appl Environ Microbiol 2022; 88:e0006422. [PMID: 35254100 DOI: 10.1128/aem.00064-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The second messenger cyclic di-GMP (c-di-GMP) is a key molecule that controls different physiological and behavioral processes in many bacteria, including motile-to-sessile lifestyle transitions. Although the external stimuli that modulate cellular c-di-GMP contents are not fully characterized, there is growing evidence that certain amino acids act as environmental cues for c-di-GMP turnover. In the plant-beneficial bacterium Pseudomonas putida KT2440, both arginine biosynthesis and uptake influence second messenger contents and the associated phenotypes. To further understand this connection, we have analyzed the role of ArgR, which in different bacteria is the master transcriptional regulator of arginine metabolism but had not been characterized in P. putida. The results show that ArgR controls arginine biosynthesis and transport, and an argR-null mutant grows poorly with arginine as the sole carbon or nitrogen source and also displays increased biofilm formation and reduced surface motility. Modulation of c-di-GMP levels by exogenous arginine requires ArgR. The expression of certain biofilm matrix components, namely, the adhesin LapF and the exopolysaccharide Pea, as well as the diguanylate cyclase CfcR is influenced by ArgR, likely through the alternative sigma factor RpoS. Our data indicate the existence of a regulatory feedback loop between ArgR and c-di-GMP mediated by FleQ. IMPORTANCE Identifying the molecular mechanisms by which metabolic and environmental signals influence the turnover of the second messenger c-di-GMP is key to understanding the regulation of bacterial lifestyles. The results presented here point at the transcriptional regulator ArgR as a central node linking arginine metabolism and c-di-GMP signaling and indicate the existence of a complex balancing mechanism that connects cellular arginine contents and second messenger levels, ultimately controlling the lifestyles of Pseudomonas putida.
Collapse
|
40
|
Correa-Aragunde N, Nejamkin A, Del Castello F, Foresi N, Lamattina L. Nitric oxide synthases from photosynthetic organisms improve growth and confer nitrosative stress tolerance in E. coli. Insights on the pterin cofactor. Nitric Oxide 2022; 119:41-49. [PMID: 34942379 DOI: 10.1016/j.niox.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthase (NOS) catalyzes NO formation from the substrate l-arginine (Arg). Previously, NOS with distinct biochemical properties were characterized from two photosynthetic microorganisms, the unicellular algae Ostreococcus tauri (OtNOS) and the cyanobacteria Synechococcus PCC 7335 (SyNOS). In this work we studied the effect of recombinant OtNOS and SyNOS expressed under IPTG-induced promoter in E. coli, a bacterium that lacks NOS. Results show that OtNOS and SyNOS expression promote E. coli growth in a nutrient replete medium and allow to better metabolize Arg as N source. In LB medium, OtNOS induces the expression of the NO dioxygenase hmp in E. coli, in accordance with high NO levels visualized with the probe DAF-FM DA. In contrast, SyNOS expression does not induce hmp and show a slight increase of NO production compared to OtNOS. NOS expression reduces ROS production and increases viability of E. coli cultures growing in LB. A strong nitrosative stress provoked by the addition of 1 mM of the NO donors sodium nitroprusside (SNP) and nitrosoglutathione (GSNO) inhibits bacterial growth rate. Under these conditions, the expression of OtNOS or SyNOS counteracts NO donor toxicity restoring bacterial growth. Finally, using bioinformatic tools and ligand docking analyses, we postulate that tetrahydromonapterin (MH4), an endogenous pterin found in E. coli, could act as cofactor required for NOS catalytic activity. Our findings could be useful for the development of biotechnological applications using NOS expression to improve growth in NOS-lacking bacteria.
Collapse
Affiliation(s)
- Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina.
| | - Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC1245, Mar del Plata, Argentina.
| |
Collapse
|
41
|
Yang F, Xu J, Zhu Y, Wang Y, Xu M, Rao Z. High-level production of the agmatine in engineered Corynebacterium crenatum with the inhibition-releasing arginine decarboxylase. Microb Cell Fact 2022; 21:16. [PMID: 35101042 PMCID: PMC8805389 DOI: 10.1186/s12934-022-01742-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023] Open
Abstract
Abstract
Background
Agmatine is a member of biogenic amines and is an important medicine which is widely used to regulate body balance and neuroprotective effects. At present, the industrial production of agmatine mainly depends on the chemical method, but it is often accompanied by problems including cumbersome processes, harsh reaction conditions, toxic substances production and heavy environmental pollution. Therefore, to tackle the above issues, arginine decarboxylase was overexpressed heterologously and rationally designed in Corynebacterium crenatum to produce agmatine from glucose by one-step fermentation.
Results
In this study, we report the development in the Generally Regarded as Safe (GRAS) l-arginine-overproducing C. crenatum for high-titer agmatine biosynthesis through overexpressing arginine decarboxylase based on metabolic engineering. Then, arginine decarboxylase was mutated to release feedback inhibition and improve catalytic activity. Subsequently, the specific enzyme activity and half-inhibitory concentration of I534D mutant were increased 35.7% and 48.1%, respectively. The agmatine production of the whole-cell bioconversion with AGM3 was increased by 19.3% than the AGM2. Finally, 45.26 g/L agmatine with the yield of 0.31 g/g glucose was achieved by one-step fermentation of the engineered C. crenatum with overexpression of speAI534D.
Conclusions
The engineered C. crenatum strain AGM3 in this work was proved as an efficient microbial cell factory for the industrial fermentative production of agmatine. Based on the insights from this work, further producing other valuable biochemicals derived from l-arginine by Corynebacterium crenatum is feasible.
Collapse
|
42
|
Hai-De W, Shuai L, Bing-Bing W, Jie L, Jian-Zhong X, Wei-Guo Z. Metabolic engineering of Escherichia coli for efficient production of l-arginine. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:127-150. [PMID: 37085192 DOI: 10.1016/bs.aambs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a semi-essential amino acid, l-arginine (l-Arg) plays an important role in food, health care, and medical treatment. At present, the main method of producing l-Arg is the use of microbial fermentation. Therefore, the selection and breeding of high-efficiency microbial strains is the top priority. To continuously improve the l-Arg production performance of the strains, a series of metabolic engineering strategies have been tried to transform the strains. The production of l-Arg by metabolically engineered Corynebacterium glutamicum (C. glutamicum) reached a relatively high level. Escherichia coli (E. coli), as a strain with great potential for l-Arg production, also has a large number of research strategies aimed at screening effective E. coli for producing l-Arg. E. coli also has a number of advantages over C. glutamicum in producing l-Arg. Therefore, it is of great significance to screen out excellent and stable E. coli to produce l-Arg. Here, based on recent research results, we review the metabolic pathways of l-Arg production in E. coli, the research progress of l-Arg production in E. coli, and various regulatory strategies implemented in E. coli.
Collapse
|
43
|
Grossert JS, White RL. Fragmentation reactions of protonated α,ω-diamino carboxylic acids: The importance of functional group interactions. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4770. [PMID: 34120394 DOI: 10.1002/jms.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Protonated members of a homologous series of biologically significant α,ω-diamino carboxylic acids were subjected to collision induced dissociation (CID). The resulting fragmentation patterns were studied using isotopic labeling, quantum mechanical computations, and pseudo MS3 experiments conducted primarily on an ion trap mass spectrometer. Each protonated α,ω-diamino acid showed a primary neutral loss of either ammonia or water; a clear explanation was developed for the observed variation of the two losses within the series. Protonated 2,3-diaminopropanoic acid, 2,4-diaminobutanoic acid, and 2,7-diaminoheptanoic acid gave secondary losses of water, carbon monoxide, and a loss of water plus carbon monoxide, respectively. In the parallel pathways characterized for the fragmentations of protonated ornithine and lysine, the α-nitrogen of the diamino acid was maintained in the cyclic iminium product formed by successive losses of NH3 and (H2 O + CO), whereas the side-chain nitrogen was retained by consecutive losses of H2 O and (CO, NH3 ). The 1-piperideine ion from protonated lysine was fragmented further, losing ethylene from carbons 4 and 5. Protonated 2,6-diaminopimelic acid fragmented by analogous reactions. Detailed mechanistic schemes for the fragmentation of both protonated 2,3-diaminopropanoic and ornithine were generated from MP2/DFT computations. This work highlights the participation of the side-chain amino group, which distinguishes the gas-phase chemistry of protonated α,ω-diamino acids from the well-documented fragmentation reactions of protonated α-amino acids bearing a hydrogen atom or an alkyl side chain. In general, the results further illustrate the importance of intramolecular separations affecting the specific interactions between functional groups leading to the fragmentation of multifunctional ions.
Collapse
Affiliation(s)
- J Stuart Grossert
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert L White
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
44
|
Integrating thermodynamic and enzymatic constraints into genome-scale metabolic models. Metab Eng 2021; 67:133-144. [PMID: 34174426 DOI: 10.1016/j.ymben.2021.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/04/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Stoichiometric genome-scale metabolic network models (GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric ratios, other constraints such as enzyme availability and thermodynamic feasibility can also limit the phenotype solution space. Extended GEM models considering either enzymatic or thermodynamic constraints have been shown to improve prediction accuracy. In this paper, we propose a novel method that integrates both enzymatic and thermodynamic constraints in a single Pyomo modeling framework (ETGEMs). We applied this method to construct the EcoETM (E. coli metabolic model with enzymatic and thermodynamic constraints). Using this model, we calculated the optimal pathways for cellular growth and the production of 22 metabolites. When comparing the results with those of iML1515 and models with one of the two constraints, we observed that many thermodynamically unfavorable and/or high enzyme cost pathways were excluded from EcoETM. For example, the synthesis pathway of carbamoyl-phosphate (Cbp) from iML1515 is both thermodynamically unfavorable and enzymatically costly. After introducing the new constraints, the production pathways and yields of several Cbp-derived products (e.g. L-arginine, orotate) calculated using EcoETM were more realistic. The results of this study demonstrate the great application potential of metabolic models with multiple constraints for pathway analysis and phenotype prediction.
Collapse
|
45
|
Evaluation of the Mechanisms Underlying Amino Acid and Microbiota Interactions in Intestinal Infections Using Germ-Free Animals. INFECTIOUS MICROBES AND DISEASES 2021. [DOI: 10.1097/im9.0000000000000060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Nakamura A, Kurihara S, Takahashi D, Ohashi W, Nakamura Y, Kimura S, Onuki M, Kume A, Sasazawa Y, Furusawa Y, Obata Y, Fukuda S, Saiki S, Matsumoto M, Hase K. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun 2021; 12:2105. [PMID: 33833232 PMCID: PMC8032791 DOI: 10.1038/s41467-021-22212-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal microbiota-derived metabolites have biological importance for the host. Polyamines, such as putrescine and spermidine, are produced by the intestinal microbiota and regulate multiple biological processes. Increased colonic luminal polyamines promote longevity in mice. However, no direct evidence has shown that microbial polyamines are incorporated into host cells to regulate cellular responses. Here, we show that microbial polyamines reinforce colonic epithelial proliferation and regulate macrophage differentiation. Colonisation by wild-type, but not polyamine biosynthesis-deficient, Escherichia coli in germ-free mice raises intracellular polyamine levels in colonocytes, accelerating epithelial renewal. Commensal bacterium-derived putrescine increases the abundance of anti-inflammatory macrophages in the colon. The bacterial polyamines ameliorate symptoms of dextran sulfate sodium-induced colitis in mice. These effects mainly result from enhanced hypusination of eukaryotic initiation translation factor. We conclude that bacterial putrescine functions as a substrate for symbiotic metabolism and is further absorbed and metabolised by the host, thus helping maintain mucosal homoeostasis in the intestine.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Wakana Ohashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masayoshi Onuki
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Aiko Kume
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Kurokawa, Toyama, Japan
| | - Yuuki Obata
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- The Francis Crick Institute, London, UK
| | - Shinji Fukuda
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
| | - Shinji Saiki
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan.
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
47
|
Bai H, Zhou D, Zhang X, Cao Y, Xiao X, Zhang Y, Yu Y. The responses of Salmonella enterica serovar Typhimurium to vanillin in apple juice through global transcriptomics. Int J Food Microbiol 2021; 347:109189. [PMID: 33838479 DOI: 10.1016/j.ijfoodmicro.2021.109189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serovar Typhimurium can survive some extreme environment in food processing, and vanillin generally recognized as safe is bactericidal to pathogens. Thus, we need to explore the responses of S. Typhimurium to vanillin in order to apply this antimicrobial agent in food processing. In this study, we exposed S. Typhimurium to commercial apple juice with/without vanillin (3.2 mg/mL) at 45 °C for 75 min to determine the survival rate. Subsequently, the 10-min cultures were selected for transcriptomic analysis. Using high-throughput RNA sequencing, genes related to vanillin resistance and their expression changes of S. Typhimurium were identified. The survival curve showed that S. Typhimurium treated with vanillin were inactivated by 5.5 log after 75 min, while the control group only decreased by 2.3 log. Such a discrepancy showed the significant antibacterial effect of vanillin on S. Typhimurium. As a result, 265 differentially expressed genes (DEGs) were found when coping with vanillin, among which, 225 showed up-regulation and 40 DEGs were down-regulated. Treated with vanillin, S. Typhimurium significantly up-regulated genes involved in cell membrane, acid tolerance response (ATR) and oxidative stress response, cold shock cross-protection, DNA repair, virulence factors and some key regulators. Firstly, membrane-related genes, including outer membrane (bamE, mepS, ygdI, lolB), inner membrane (yaiY, yicS) and other proteins (yciC, yjcH), were significantly up-regulated because of the damaged cell membrane. Then, up-regulated proteins associated with arginine synthesis (ArgABCDIG) and inward transportation (ArtI, ArtJ, ArtP and HisP), participated in ATR to pump out the protons inside the cell in this scenario. Next, superoxide stress response triggered by vanillin was found to have a significant up-regulation as well, which was controlled by SoxRS regulon. Besides, NADH-associated (nuoA, nuoB, nuoK, nadE, fre and STM3021), thioredoxin (trxA, trxC, tpx and bcp) and glutaredoxin (grxC and grxD) DEGs led to the increase of the oxidative stress response. Cold shock proteins such as CspA and CspC showed an up-regulation, suggesting it might play a role in cross-protecting S. Typhimurium from vanillin stress. Furthermore, DEGs in DNA repair and virulence factors, including flagellar assembly, adhesins and type III secretion system were up-regulated. Some regulators like fur, rpoE and csrA played a pivotal role in response to the stress caused by vanillin. Therefore, this study sounds an alarm for the risks caused by stress tolerance of S. Typhimurium in food industry.
Collapse
Affiliation(s)
- Hong Bai
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center, No.336 LiutingStreet, Haishu District, Ningbo City, Zhejiang Province 315012, China
| | - Xiaowei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| |
Collapse
|
48
|
Bolay P, Rozbeh R, Muro-Pastor MI, Timm S, Hagemann M, Florencio FJ, Forchhammer K, Klähn S. The Novel P II-Interacting Protein PirA Controls Flux into the Cyanobacterial Ornithine-Ammonia Cycle. mBio 2021; 12:e00229-21. [PMID: 33758091 PMCID: PMC8092223 DOI: 10.1128/mbio.00229-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Among prokaryotes, cyanobacteria have an exclusive position as they perform oxygenic photosynthesis. Cyanobacteria substantially differ from other bacteria in further aspects, e.g., they evolved a plethora of unique regulatory mechanisms to control primary metabolism. This is exemplified by the regulation of glutamine synthetase (GS) via small proteins termed inactivating factors (IFs). Here, we reveal another small protein, encoded by the ssr0692 gene in the model strain Synechocystis sp. PCC 6803, that regulates flux into the ornithine-ammonia cycle (OAC), the key hub of cyanobacterial nitrogen stockpiling and remobilization. This regulation is achieved by the interaction with the central carbon/nitrogen control protein PII, which commonly controls entry into the OAC by activating the key enzyme of arginine synthesis, N-acetyl-l-glutamate kinase (NAGK). In particular, the Ssr0692 protein competes with NAGK for PII binding and thereby prevents NAGK activation, which in turn lowers arginine synthesis. Accordingly, we termed it PII-interacting regulator of arginine synthesis (PirA). Similar to the GS IFs, PirA accumulates in response to ammonium upshift due to relief from repression by the global nitrogen control transcription factor NtcA. Consistent with this, the deletion of pirA affects the balance of metabolite pools of the OAC in response to ammonium shocks. Moreover, the PirA-PII interaction requires ADP and is prevented by PII mutations affecting the T-loop conformation, the major protein interaction surface of this signal processing protein. Thus, we propose that PirA is an integrator determining flux into N storage compounds not only depending on the N availability but also the energy state of the cell.IMPORTANCE Cyanobacteria contribute a significant portion to the annual oxygen yield and play important roles in biogeochemical cycles, e.g., as major primary producers. Due to their photosynthetic lifestyle, cyanobacteria also arouse interest as hosts for the sustainable production of fuel components and high-value chemicals. However, their broad application as microbial cell factories is hampered by limited knowledge about the regulation of metabolic fluxes in these organisms. Our research identified a novel regulatory protein that controls nitrogen flux, in particular arginine synthesis. Besides its role as a proteinogenic amino acid, arginine is a precursor for the cyanobacterial storage compound cyanophycin, which is of potential interest to biotechnology. Therefore, the obtained results will not only enhance our understanding of flux control in these organisms but also help to provide a scientific basis for targeted metabolic engineering and, hence, the design of photosynthesis-driven biotechnological applications.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Leipzig, Germany
| | - Rokhsareh Rozbeh
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Tübingen, Germany
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Stefan Timm
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Tübingen, Germany
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Leipzig, Germany
| |
Collapse
|
49
|
Deng R, Yang K, Lin D. Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116071. [PMID: 33218776 DOI: 10.1016/j.envpol.2020.116071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Discharged carbon nanotubes (CNTs) likely interact with co-existing organic contaminants (OCs) and pose joint toxicity to environmental microbes. Herein, hydrophobic pentachlorophenol (PCP) and hydrophilic ciprofloxacin (CIP) were used as representative OCs and their joint toxicities with CNTs to Bacillus subtilis were systematically investigated at cellular, biochemical, and omics levels. The 3-h bacterial growth half inhibitory concentrations of CNTs, PCP, and CIP were 12.5 ± 2.6, 3.5 ± 0.5, and 0.46 ± 0.03 mg/L, respectively, and they all could damage cell membrane, increase intracellular oxidative stress, and alter bacterial metabolomics and transcriptomics; while CNTs-PCP and CNTs-CIP binary exposures exhibited distinct additive and synergistic toxicities, respectively. CNTs increased bacterial bioaccumulation of PCP and CIP via destabilizing and damaging cell membrane. PCP reduced the bioaccumulation of CNTs, while CIP had no significant effect; this difference could be owing to the different effects of the two OCs on cell-surface hydrophobicity and CNTs electronegativity. The additive toxicity outcome upon CNTs-PCP co-exposure could be a result of the balance between the increased toxicity from increased PCP bioaccumulation and the decreased toxicity from decreased CNTs bioaccumulation. The increased bioaccumulation of CIP contributed to the synergistic toxicity upon CNTs-CIP co-exposure, as confirmed by the increased inhibition of topoisomerase Ⅳ activity and interference in gene expressions regulating ABC transporters and lysine biosynthesis. The findings provide novel insights into environmental risks of CNTs.
Collapse
Affiliation(s)
- Rui Deng
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China; Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
50
|
Chen D, Li J, Jiao F, Wang Q, Li J, Pei Y, Zhao M, Song X, Guo X. ZmACY-1 Antagonistically Regulates Growth and Stress Responses in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2021; 12:593001. [PMID: 34367193 PMCID: PMC8343404 DOI: 10.3389/fpls.2021.593001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 06/21/2021] [Indexed: 05/17/2023]
Abstract
Aminoacylase-1 is a zinc-binding enzyme that is important in urea cycling, ammonia scavenging, and oxidative stress responses in animals. Aminoacylase-1 (ACY-1) has been reported to play a role in resistance to pathogen infection in the model plant Nicotiana benthamiana. However, little is known about its function in plant growth and abiotic stress responses. In this study, we cloned and analyzed expression patterns of ZmACY-1 in Zea mays under different conditions. We also functionally characterized ZmACY-1 in N. benthamiana. We found that ZmACY-1 is expressed specifically in mature shoots compared with other tissues. ZmACY-1 is repressed by salt, drought, jasmonic acid, and salicylic acid, but is induced by abscisic acid and ethylene, indicating a potential role in stress responses and plant growth. The overexpression of ZmACY-1 in N. benthamiana promoted growth rate by promoting growth-related genes, such as NbEXPA1 and NbEIN2. At the same time, the overexpression of ZmACY-1 in N. benthamiana reduced tolerance to drought and salt stress. With drought and salt stress, the activity of protective enzymes, such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) from micrococcus lysodeikticus was lower; while the content of malondialdehyde (MDA) and relative electrolytic leakage was higher in ZmACY-1 overexpression lines than that in wild-type lines. The results indicate that ZmACY-1 plays an important role in the balance of plant growth and defense and can be used to assist plant breeding under abiotic stress conditions.
Collapse
Affiliation(s)
- Dongbin Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Junhua Li
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Fuchao Jiao
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jun Li
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yuhe Pei
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Meiai Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Xiyun Song
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Xiyun Song,
| | - Xinmei Guo
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Xinmei Guo,
| |
Collapse
|