1
|
Balcázar-Zumaeta CR, Fernández-Romero E, Lopes AS, Ferreira NR, Chagas-Júnior GCA, Yoplac I, López-Trigoso HA, Tuesta-Occ ML, Maldonado-Ramirez I, Maicelo-Quintana JL, Cayo-Colca IS, Castro-Alayo EM. Amino acid profile behavior during the fermentation of Criollo cocoa beans. Food Chem X 2024; 22:101486. [PMID: 38840720 PMCID: PMC11152668 DOI: 10.1016/j.fochx.2024.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The study investigated the behavior of seventeen amino acids during spontaneous (SF) and starter culture (SC) fermentation of Criollo cocoa beans from Copallín, Guadalupe and Tolopampa, Amazonas-Peru. For this purpose, liquid chromatography (UHPLC) was used to quantify amino acids. Multivariate analysis was used to differentiate the phases of the fermentation process. The percentage of essential amino acids during SC fermentation (63.4%) was higher than SF (61.8%); it was observed that the starter culture accelerated their presence and increased their concentration during the fermentation process. The multivariate analysis identified a first stage (day 0 to day 2), characterized by a low content of amino acids that increased due to protein hydrolysis. The study showed that adding the starter culture (Saccharomyces cerevisiae) to the fermentation mass increased the concentration of essential amino acids (63.0%) compared to the spontaneous process (61.8%). Moreover, this addition reduced the fermentation time (3-4 days less), demonstrating that the fermentation process with a starter culture allows obtaining a better profile of amino acids precursors of flavor and aroma.
Collapse
Affiliation(s)
- César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Piura, Jr. Tacna 748, Piura, Peru
| | - Editha Fernández-Romero
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
- Programa de Maestría en Cambio Climático, Agricultura y Desarrollo Rural Sostenible-MACCARD, Escuela de Posgrado, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Alessandra Santos Lopes
- Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Nelson Rosa Ferreira
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, 66075-110, Brazil
| | | | - Ives Yoplac
- Laboratorio de Nutrición Animal y Bromatología de Alimentos, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Heydi A. López-Trigoso
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Mery L. Tuesta-Occ
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Italo Maldonado-Ramirez
- Facultad de Ingeniería Mecánica y de Sistemas, Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Jorge L. Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Efrain M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
2
|
Tanács D, Berkecz R, Bozsó Z, Tóth GK, Armstrong DW, Péter A, Ilisz I. Liquid Chromatographic Enantioseparation of Newly Synthesized Fluorinated Tryptophan Analogs Applying Macrocyclic Glycopeptides-Based Chiral Stationary Phases Utilizing Core-Shell Particles. Int J Mol Sci 2024; 25:4719. [PMID: 38731937 PMCID: PMC11083430 DOI: 10.3390/ijms25094719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Due to the favorable features obtained through the incorporation of fluorine atom(s), fluorinated drugs are a group with emerging pharmaceutical importance. As their commercial availability is still very limited, to expand the range of possible candidates, new fluorinated tryptophan analogs were synthesized. Control of enantiopurity during the synthesis procedure requires that highly efficient enantioseparation methods be available. In this work, the enantioseparation of seven fluorinated tryptophans and tryptophan was studied and compared systematically to (i) develop analytical methods for enantioselective separations and (ii) explore the chromatographic features of the fluorotrytophans. For enantioresolution, macrocyclic glycopeptide-based selectors linked to core-shell particles were utilized, applying liquid chromatography-based methods. Application of the polar-ionic mode resulted in asymmetric and broadened peaks, while reversed-phase conditions, together with mobile-phase additives, resulted in baseline separation for all studied fluorinated tryptophans. The marked differences observed between the methanol and acetonitrile-containing eluent systems can be explained by the different solvation abilities of the bulk solvents of the applied mobile phases. Among the studied chiral selectors, teicoplanin and teicoplanin aglycone were found to work effectively. Under optimized conditions, baseline separations were achieved within 6 min. Ionic interactions were semi-quantitatively characterized and found to not influence enantiorecognition. Interestingly, fluorination of the analytes does not lead to marked changes in the chromatographic characteristics of the methanol-containing eluents, while larger differences were noticed when the polar but aprotic acetonitrile was applied. Experiments conducted on the influence of the separation temperature indicated that the separations are enthalpically driven, with only one exception. Enantiomeric elution order was found to be constant on both teicoplanin and teicoplanin aglycone-based chiral stationary phases (L < D) under all applied chromatographic conditions.
Collapse
Affiliation(s)
- Dániel Tanács
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary; (D.T.); (R.B.); (A.P.)
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary; (D.T.); (R.B.); (A.P.)
| | - Zsolt Bozsó
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (Z.B.); (G.K.T.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (Z.B.); (G.K.T.)
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA;
| | - Antal Péter
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary; (D.T.); (R.B.); (A.P.)
| | - István Ilisz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary; (D.T.); (R.B.); (A.P.)
| |
Collapse
|
3
|
Inoue K, Fujihara A. Differentiation of free d-amino acids and amino acid isomers in solution using tandem mass spectrometry of hydrogen-bonded clusters. J Pharm Biomed Anal 2023; 234:115567. [PMID: 37441889 DOI: 10.1016/j.jpba.2023.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Free d-amino acids and amino acid isomers were differentiated using tandem mass spectrometry without chromatographic separation. Ultraviolet photodissociation and water adsorption of leucine (Leu) and isoleucine (Ile) enantiomers hydrogen-bonded with tryptophan (Trp) were investigated at 8 K in the gas phase. The enantiomer-selective Cα-Cβ bond cleavage of Trp was observed in the product ion spectra obtained by 285 nm photoexcitation, where the abundance of NH2CHCOOH-eliminated ion of heterochiral H+(d-Trp)(l-Leu) was higher than that of homochiral H+(l-Trp)(l-Leu). When comparing water adsorption on the surfaces of the heterochiral and homochiral clusters in a cold ion trap, the number of water molecules adsorbed on the heterochiral cluster was greater than that adsorbed on the homochiral cluster. These results indicate that the stronger intermolecular interactions within the homochiral H+(l-Trp)(l-Leu) compared to the heterochiral cluster inhibit enantiomer-selective photodissociation. Leu and Ile were differentiated by the isomer-selective Cα-Cβ bond cleavage of Trp in the clusters. Calibration curves for the differentiation of isomeric amino acids and their enantiomers were developed using monitoring isomer- and enantiomer-selective photodissociation, indicating that the molar fractions in solution could be determined from a single product ion spectrum.
Collapse
Affiliation(s)
- Kanako Inoue
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan.
| |
Collapse
|
4
|
Tanács D, Berkecz R, Armstrong DW, Péter A, Ilisz I. Enantioseparation of a-substituted proline analogs with macrocyclic glycopeptide-based chiral stationary phases immobilized on superficially porous particles of silica applying liquid chromatography with ultraviolet and mass spectrometric detection. J Chromatogr A 2023; 1697:463997. [PMID: 37084694 DOI: 10.1016/j.chroma.2023.463997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
In this study, the liquid chromatography-based direct enantioseparation of the stereoisomers of α-substituted proline analogs has been investigated utilizing chiral stationary phases with UV and/or mass spectrometric (MS) detection. Macrocyclic antibiotics, such as vancomycin, teicoplanin, modified teicoplanin, and teicoplanin aglycone, all covalently immobilized to 2.7 μm superficially porous silica particles have been applied as stationary phases. Mobile phases utilizing mixtures of methanol and acetonitrile with different additives (polar-ionic mode) were optimized during method development. Best separations were achieved with mobile phases of 100% MeOH containing either 20 mM acetic acid or 20 mM triethylammonium acetate. Special attention was given to the applicability of MS-compatible mobile phases. Acetic acid was found to be advantageous as a mobile phase additive for MS detection. Enantioselective chromatographic behaviors are interpreted based on the explored correlations between the analytes' structural features and those of the applied chiral stationary phases. For the thermodynamic characterization, separations were studied in the temperature range of 5-50 °C. Generally, retention and selectivity decreased with increasing temperature, and in most cases, enthalpy-driven enantiorecognition was observed, but entropic contributions also were present. Unexpectedly, unusual shapes for the van Deemter curves were registered in the kinetic evaluations. General trends could be observed in the enantiomeric elution orders: S < R on VancoShell and NicoShell, and opposite R < S on TeicoShell and TagShell columns.
Collapse
Affiliation(s)
- Dániel Tanács
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Somogyi utca 4, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Somogyi utca 4, Hungary
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, United States of America
| | - Antal Péter
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Somogyi utca 4, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Somogyi utca 4, Hungary.
| |
Collapse
|
5
|
Lander AJ, Jin Y, Luk LYP. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. Chembiochem 2023; 24:e202200537. [PMID: 36278392 PMCID: PMC10805118 DOI: 10.1002/cbic.202200537] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.
Collapse
Affiliation(s)
- Alexander J. Lander
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Yi Jin
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
6
|
D-Amino Acids and Cancer: Friends or Foes? Int J Mol Sci 2023; 24:ijms24043274. [PMID: 36834677 PMCID: PMC9962368 DOI: 10.3390/ijms24043274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
α-amino acids exist in two configurations, named D-(dextro) and L-(levo) enantiomers. L-amino acids are used in protein synthesis and play a central role in cell metabolism. The effects of the L-amino acid composition of foods and the dietary modifications of this composition on the efficacy of cancer therapies have been widely investigated in relation to the growth and reproduction of cancerous cells. However, less is known about the involvement of D-amino acids. In recent decades, D-amino acids have been identified as natural biomolecules that play interesting and specific roles as common components of the human diet. Here, we focus on recent investigations showing altered D-amino acid levels in specific cancer types and on the various roles proposed for these biomolecules related to cancer cell proliferation, cell protection during therapy, and as putative, innovative biomarkers. Notwithstanding recent progress, the relationship between the presence of D-amino acids, their nutritional value, and cancer cell proliferation and survival represents an underrated scientific issue. Few studies on human samples have been reported to date, suggesting a need for routine analysis of D-amino acid content and an evaluation of the enzymes involved in regulating their levels in clinical samples in the near future.
Collapse
|
7
|
Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018-2022). Molecules 2023; 28:615. [PMID: 36677673 PMCID: PMC9867211 DOI: 10.3390/molecules28020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cyclopeptides are considered as one of the most important classes of compounds derived from marine sources, due to their structural diversity and a myriad of their biological and pharmacological activities. Since marine-derived cyclopeptides consist of different amino acids, many of which are non-proteinogenic, they possess various stereogenic centers. In this respect, the structure elucidation of new molecular scaffolds obtained from natural sources, including marine-derived cyclopeptides, can become a very challenging task. The determination of the absolute configurations of the amino acid residues is accomplished, in most cases, by performing acidic hydrolysis, followed by analyses by liquid chromatography (LC). In a continuation with the authors' previous publication, and to analyze the current trends, the present review covers recently published works (from January 2018 to November 2022) regarding new cyclopeptides from marine organisms, with a special focus on their biological/pharmacological activities and the absolute stereochemical assignment of the amino acid residues. Ninety-one unreported marine-derived cyclopeptides were identified during this period, most of which displayed anticancer or antimicrobial activities. Marfey's method, which involves LC, was found to be the most frequently used for this purpose.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography. Molecules 2022; 28:molecules28010085. [PMID: 36615283 PMCID: PMC9822235 DOI: 10.3390/molecules28010085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Macrocyclic glycopeptide antibiotics immobilized on silica are one of the effective classes of stationary phases for chiral recognition and HPLC separation of a wide range of optically active compounds. Enantioselectivity primarily depends on the chemical structure of the chiral ligand, immobilization chemistry, and separation conditions. In the present work, three new chiral stationary phases (CSPs) based on macrocyclic antibiotic eremomycin were prepared and investigated for enantioseparation of amino acids. Two eremomycin derivatives, including simple non-substituted amide and bulky adamantyl amide, provided important information on the role of the carboxylic group in the eremomycin structure in the chiral recognition mechanism concerning amino acid optical isomers. One more CSP having a chlorine atom in the same position elucidates the role of the first aromatic ring in the eremomycin structure as a crucial point for chiral recognition. CSP with immobilized chloreremomycin was the most successful among the phases prepared in this work. It was additionally investigated under various separation conditions, including the type and content of the organic solvent in the eluent, the effects of different additives, and the concentration and pH of the buffer. Importantly, an efficient enantioselective separation of amino acids was achieved with pure water as the eluent.
Collapse
|
9
|
Maiti P, Saren U, Chakraborty U, Singha T, Paul S, Paul PK. Comparative and Selective Interaction of Amino Acid d-Cysteine with Colloidal Gold Nanoparticles in the Presence of a Fluorescent Probe in Aqueous Medium. ACS OMEGA 2022; 7:29013-29026. [PMID: 36033694 PMCID: PMC9404198 DOI: 10.1021/acsomega.2c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2022] [Indexed: 05/20/2023]
Abstract
In this communication, we report the comparative and selective interaction of amino acid d-cysteine (d-Cys) with citrate caped gold nanoparticles (Au NPs) in the presence of a fluorescent dye, rhodamine B (RhB), in aqueous solution. Au NPs of size 27.5 nm could almost fully quench the steady-state fluorescence emission of RhB at their optimum concentrations in the mixed solution. The interactions of d-Cys, l-Cys, all other relevant d- and l-amino acids, neurotransmitters, and other relevant biological compounds with the Au NPs/RhB mixed solution have been explored by monitoring the fluorescence recovery efficiencies from the almost fully quenched state of RhB fluorescence via a simple steady-state spectrofluorometric method. The higher fluorescence recovery for the interaction of d-Cys with the Au NPs/RhB mixed system is accompanied by a distinct color change (red-wine to bluish-black) of the assay medium after the reaction compared to that of all other interfering compounds considered in this work. The sensitivity of this fluorometric response lies in a broad linear range of concentrations of d-Cys and the limit of detection (LOD) is found to be 4.2 nM, which is low compared to many other methods available in the literature. The different degrees of interaction of d-Cys and l-Cys with the Au NPs/RhB mixed sample have been further explored by circular dichroism (CD) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The selective interaction of d-Cys with the proposed Au NPs/RhB mixed system is also found to be correlated with interparticle cross-linking and aggregations of nanoparticles by the analysis of ζ potential and dynamic light scattering (DLS) study, transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy etc. The proposed interaction mechanism is further studied with a normal human urine sample to elucidate that the optimized combination of Au NPs and RhB may be realized as an efficient platform for detection of the amino acid d-Cys in a real biosample via a simple fluorometric approach.
Collapse
Affiliation(s)
- Pradip Maiti
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Ujjal Saren
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Utsav Chakraborty
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Tanmoy Singha
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Sharmistha Paul
- West
Bengal State Council of Science and Technology, Department of Science and Technology and Biotechnology, Vigyan Chetana Bhavan, Sector-I, Salt Lake, Kolkata 700064, India
| | - Pabitra Kumar Paul
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
- , . Phone: +91-9477631142 (M), +91-33-24138917 (O). Fax:
+91-33-24138917 (O)
| |
Collapse
|
10
|
Piestansky J, Olesova D, Matuskova M, Cizmarova I, Chalova P, Galba J, Majerova P, Mikus P, Kovac A. Amino acids in inflammatory bowel diseases: Modern diagnostic tools and methodologies. Adv Clin Chem 2022; 107:139-213. [PMID: 35337602 DOI: 10.1016/bs.acc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amino acids are crucial building blocks of living organisms. Together with their derivatives, they participate in many intracellular processes to act as hormones, neuromodulators, and neurotransmitters. For several decades amino acids have been studied for their potential as markers of various diseases, including inflammatory bowel diseases. Subsequent improvements in sample pretreatment, separation, and detection methods have enabled the specific and very sensitive determination of these molecules in multicomponent matrices-biological fluids and tissues. The information obtained from targeted amino acid analysis (biomarker-based analytical strategy) can be further used for early diagnostics, to monitor the course of the disease or compliance of the patients. This review will provide an insight into current knowledge about inflammatory bowel diseases, the role of proteinogenic amino acids in intestinal inflammation and modern analytical techniques used in its diagnosis and disease activity monitoring. Current advances in the analysis of amino acids focused on sample pretreatment, separation strategy, or detection methods are highlighted, and their potential in clinical laboratories is discussed. In addition, the latest clinical data obtained from the metabolomic profiling of patients suffering from inflammatory bowel diseases are summarized with a focus on proteinogenic amino acids.
Collapse
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Matuskova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
11
|
Bellotto O, Semeraro S, Bandiera A, Tramer F, Pavan N, Marchesan S. Polymer Conjugates of Antimicrobial Peptides (AMPs) with d-Amino Acids (d-aa): State of the Art and Future Opportunities. Pharmaceutics 2022; 14:pharmaceutics14020446. [PMID: 35214178 PMCID: PMC8879212 DOI: 10.3390/pharmaceutics14020446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, antimicrobial peptides (AMPs) have enjoyed a renaissance, as the world is currently facing an emergency in terms of severe infections that evade antibiotics’ treatment. This is due to the increasing emergence and spread of resistance mechanisms. Covalent conjugation with polymers is an interesting strategy to modulate the pharmacokinetic profile of AMPs and enhance their biocompatibility profile. It can also be an effective approach to develop active coatings for medical implants and devices, and to avoid biofilm formation on their surface. In this concise review, we focus on the last 5 years’ progress in this area, pertaining in particular to AMPs that contain d-amino acids, as well as their role, and the advantages that may arise from their introduction into AMPs.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
| | - Sabrina Semeraro
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
| | - Antonella Bandiera
- Life Sciences Department, University of Trieste, 34127 Trieste, Italy; (A.B.); (F.T.)
| | - Federica Tramer
- Life Sciences Department, University of Trieste, 34127 Trieste, Italy; (A.B.); (F.T.)
| | - Nicola Pavan
- Medical, Surgical and Health Sciences Department, University of Trieste, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
- Correspondence:
| |
Collapse
|
12
|
Calderón C, Lämmerhofer M. Enantioselective metabolomics by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2022; 207:114430. [PMID: 34757254 DOI: 10.1016/j.jpba.2021.114430] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
Metabolomics strives to capture the entirety of the metabolites in a biological system by comprehensive analysis, often by liquid chromatography hyphenated to mass spectrometry. A particular challenge thereby is the differentiation of structural isomers. Common achiral targeted and untargeted assays do not distinguish between enantiomers. This may lead to information loss. An increasing number of publications demonstrate that the enantiomeric ratio of certain metabolites can be meaningful biomarkers of certain diseases emphasizing the importance of introducing enantioselective analytical procedures in metabolomics. In this work, the state-of-the-art in the field of LC-MS based metabolomics is summarized with focus on developments in the recent decade. Methodologies, tagging strategies, workflows and general concepts are outlined. Selected biological applications in which enantioselective metabolomics has documented its usefulness are briefly discussed. In general, targeted enantioselective metabolomics assays are often based on a direct approach using chiral stationary phases (CSP) with polysaccharide derivatives, macrocyclic antibiotics, chiral crown ethers, chiral ion exchangers, donor-acceptor phases as chiral selectors. Rarely, these targeted assays focus on more than 20 analytes and usually are restricted to a certain metabolite class. In a variety of cases, pre-column derivatization of metabolites has been performed, especially for amino acids, to improve separation and detection sensitivity. Triple quadrupole instruments are the detection methods of first choice in targeted assays. Here, issues like matrix effect, absence of blank matrix impair accuracy of results. In selected applications, multiple heart cutting 2D-LC (RP followed by chiral separation) has been pursued to overcome this problem and alleviate bias due to interferences. Non-targeted assays, on the other hand, are based on indirect approach involving tagging with a chiral derivatizing agent (CDA). Besides classical CDAs numerous innovative reagents and workflows have been proposed and are discussed. Thereby, a critical issue for the accuracy is often neglected, viz. the validation of the enantiomeric impurity in the CDA. The majority of applications focus on amino acids, hydroxy acids, oxidized fatty acids and oxylipins. Some potential clinical applications are highlighted.
Collapse
Affiliation(s)
- Carlos Calderón
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Hou X, Song J, Wu Q, Lv H. Chiral carbon quantum dots as fluorescent probe for rapid chiral recognition of isoleucine enantiomers. Anal Chim Acta 2021; 1184:339012. [PMID: 34625245 DOI: 10.1016/j.aca.2021.339012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
Chiral recognition is always a significant and challenging work in analytical chemistry. A fluorescent chiral recognition method based on chiral carbon quantum dots (CCQDs) towards isoleucine (Ile) enantiomers was developed in this work. CCQDs were synthesized by one-step hydrothermal method using l-cysteine as chiral source. The fluorescence intensity of CCQDs enhanced obviously in the presence of L-Ile, but had no observable change in the presence of D-Ile. The response speed of this chiral sensing system is fast, Ile enantiomers can be discriminated by CCQDs within 5 min, the enantioselectivity (IL/ID) can reach up to 2.2. Good linearity for detecting L-Ile was obtained over the concentration range from 0 to 30 mM with a LOD of 0.29 mM. The fluorescence intensity also increased linearly with the enantiomeric percentages of L-Ile in the mixture of Ile enantiomers. Thus, the developed method not only can achieve quantitative detection of L-Ile but also can determine the enantiomeric percentage in racemates. The chiral recognition mechanism can be explained by the difference in binding energy and interaction types between D-Ile and L-Ile with CCQDs by molecular modeling. The current method was applied in detecting L-Ile in real samples of functional drinks, the detection results were in consistent with the results obtained from high performance liquid chromatography, and the recoveries of standard addition were also satisfactory, which verified the reliability of the developed method.
Collapse
Affiliation(s)
- Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiying Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Haitao Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
14
|
TAKANO Y, TAKAHASHI M, KOBAYASHI M, UEMURA T, FURUCHI T. <i>N</i><sup>α</sup>-(5-Fluoro-2,4-dinitrophenyl)-L-leucinamide-Derivatized LC/MS/MS Analysis of Amino Acid Enantiomers in HepG2 Cells. CHROMATOGRAPHY 2021. [DOI: 10.15583/jpchrom.2021.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yusuke TAKANO
- Faculty of Pharmaceutical Sciences, Josai University
| | | | | | | | | |
Collapse
|
15
|
Recent developments in separation methods for enantiomeric ratio determination of amino acids specifically involved in cataract and Alzheimer's disease. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Folprechtová D, Kalíková K. Macrocyclic glycopeptide-based chiral selectors for enantioseparation in sub/supercritical fluid chromatography. ANALYTICAL SCIENCE ADVANCES 2021; 2:15-32. [PMID: 38715744 PMCID: PMC10989558 DOI: 10.1002/ansa.202000099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Increasing number of reported works dealing with macrocyclic glycopeptide-based columns in sub/supercritical fluid chromatography (SFC) points to the growing interest in this area. With the development and production of sub 2 µm fully porous particles and superficially porous particles with bonded macrocyclic glycopeptides, significant improvements have been made in ultrafast high efficiency chiral SFC. This review article gives an overview of macrocyclic glycopeptide-based chiral selectors that were used in theoretical studies and/or applications in SFC. The review covers the period from 1997 when macrocyclic glycopeptides were first used in SFC till the end of July 2020 according to Web of Science. This work can also be helpful to analysts searching for an appropriate method for the separation/determination of enantiomers of their interest.
Collapse
Affiliation(s)
- Denisa Folprechtová
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
17
|
Rosini E, D’Antona P, Pollegioni L. Biosensors for D-Amino Acids: Detection Methods and Applications. Int J Mol Sci 2020; 21:E4574. [PMID: 32605078 PMCID: PMC7369756 DOI: 10.3390/ijms21134574] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (P.D.); (L.P.)
| | | | | |
Collapse
|