1
|
Chaouche L, Marcotte F, Maltais-Payette I, Tchernof A. Glutamate and obesity - what is the link? Curr Opin Clin Nutr Metab Care 2024; 27:70-76. [PMID: 37937722 DOI: 10.1097/mco.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
PURPOSE OF REVIEW Many studies using metabolomics have tried to unravel the metabolic signature of obesity and understand the pathophysiology of this complex and heterogeneous disease. Circulating levels of the amino acid glutamate have been consistently associated with obesity and more specifically with measurements of abdominal fat accumulation. The purpose of this narrative review is to highlight recent studies documenting this association. RECENT FINDINGS Circulating glutamate concentrations have been positively correlated with measurements of central fat accumulation such as waist circumference and visceral adipose tissue area. Moreover, elevated glutamate levels have been linked to a higher prevalence of type 2 diabetes, cardiovascular diseases and nonalcoholic fatty liver disease. The association with adiposity is detected in early life, and genetic predisposition does not appear as a major driver. Glutamate levels reflect in vivo synthesis rather than dietary intake. However, interventions generating metabolic improvements such as incretin receptor agonist treatment or dietary improvements may reduce plasma levels of this amino acid. SUMMARY Recent findings confirm the consistent association between circulating glutamate and abdominal obesity and its cardiometabolic complications. The pathophysiological pathways underlying this phenomenon are still unclear. Furthermore, studies are needed to establish the usefulness of this analyte as a biomarker of abdominal obesity.
Collapse
Affiliation(s)
- Lila Chaouche
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval
- École de nutrition, Université Laval, Québec, Québec, Canada
| | - Félix Marcotte
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval
- École de nutrition, Université Laval, Québec, Québec, Canada
| | - Ina Maltais-Payette
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval
- École de nutrition, Université Laval, Québec, Québec, Canada
| | - André Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval
- École de nutrition, Université Laval, Québec, Québec, Canada
| |
Collapse
|
2
|
Zhang X, Wang H, Kilpatrick LA, Dong TS, Gee GC, Labus JS, Osadchiy V, Beltran-Sanchez H, Wang MC, Vaughan A, Gupta A. Discrimination exposure impacts unhealthy processing of food cues: crosstalk between the brain and gut. NATURE MENTAL HEALTH 2023; 1:841-852. [PMID: 38094040 PMCID: PMC10718506 DOI: 10.1038/s44220-023-00134-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2023]
Abstract
Experiences of discrimination are associated with adverse health outcomes, including obesity. However, the mechanisms by which discrimination leads to obesity remain unclear. Utilizing multi-omics analyses of neuroimaging and fecal metabolites, we investigated the impact of discrimination exposure on brain reactivity to food images and associated dysregulations in the brain-gut-microbiome system. We show that discrimination is associated with increased food-cue reactivity in frontal-striatal regions involved in reward, motivation and executive control; altered glutamate-pathway metabolites involved in oxidative stress and inflammation as well as preference for unhealthy foods. Associations between discrimination-related brain and gut signatures were skewed towards unhealthy sweet foods after adjusting for age, diet, body mass index, race and socioeconomic status. Discrimination, as a stressor, may contribute to enhanced food-cue reactivity and brain-gut-microbiome disruptions that can promote unhealthy eating behaviors, leading to increased risk for obesity. Treatments that normalize these alterations may benefit individuals who experience discrimination-related stress.
Collapse
Affiliation(s)
- Xiaobei Zhang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hao Wang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou, China
| | - Lisa A. Kilpatrick
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tien S. Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| | - Gilbert C. Gee
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
- California Center for Population Research, UCLA, Los Angeles, CA, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Urology, UCLA, Los Angeles, CA, USA
| | - Hiram Beltran-Sanchez
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
- California Center for Population Research, UCLA, Los Angeles, CA, USA
| | - May C. Wang
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Allison Vaughan
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Maltais-Payette I, Lajeunesse-Trempe F, Pibarot P, Biertho L, Tchernof A. Association between Circulating Amino Acids and COVID-19 Severity. Metabolites 2023; 13:metabo13020201. [PMID: 36837819 PMCID: PMC9959167 DOI: 10.3390/metabo13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The severity of the symptoms associated with COVID-19 is highly variable, and has been associated with circulating amino acids as a group of analytes in metabolomic studies. However, for each individual amino acid, there are discordant results among studies. The aims of the present study were: (i) to investigate the association between COVID-19-symptom severity and circulating amino-acid concentrations; and (ii) to assess the ability of circulating amino-acid levels to predict adverse outcomes (intensive-care-unit admission or hospital death). We studied a sample of 736 participants from the Biobanque Québécoise COVID-19. All participants tested positive for COVID-19, and the severity of symptoms was determined using the World-Health-Organization criteria. Circulating amino acids were measured by HPLC-MS/MS. We used logistic models to assess the association between circulating amino acids concentrations and the odds of presenting mild vs. severe or mild vs. moderate symptoms, as well as their accuracy in predicting adverse outcomes. Patients with severe COVID-19 symptoms were older on average, and they had a higher prevalence of obesity and type 2 diabetes. Out of 20 amino acids tested, 16 were significantly associated with disease severity, with phenylalanine (positively) and cysteine (inversely) showing the strongest associations. These associations remained significant after adjustment for age, sex and body mass index. Phenylalanine had a fair ability to predict the occurrence of adverse outcomes, similar to traditionally measured laboratory variables. A multivariate model including both circulating amino acids and clinical variables had a 90% accuracy at predicting adverse outcomes in this sample. In conclusion, patients presenting severe COVID-19 symptoms have an altered amino-acid profile, compared to those with mild or moderate symptoms.
Collapse
Affiliation(s)
- Ina Maltais-Payette
- Quebec Heart and Lung Institute, Quebec City, QC G1V 4G5, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Fannie Lajeunesse-Trempe
- Quebec Heart and Lung Institute, Quebec City, QC G1V 4G5, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Philippe Pibarot
- Quebec Heart and Lung Institute, Quebec City, QC G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Laurent Biertho
- Quebec Heart and Lung Institute, Quebec City, QC G1V 4G5, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - André Tchernof
- Quebec Heart and Lung Institute, Quebec City, QC G1V 4G5, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-656-8711
| |
Collapse
|