1
|
Stauß AC, Fuchs C, Jansen P, Repert S, Alcock K, Ludewig S, Rozhon W. The Ninhydrin Reaction Revisited: Optimisation and Application for Quantification of Free Amino Acids. Molecules 2024; 29:3262. [PMID: 39064842 PMCID: PMC11278723 DOI: 10.3390/molecules29143262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The ninhydrin reaction is commonly used for the detection of amino acids. However, in the literature, different conditions with respect to the buffer system, its pH and concentration, type of organic solvent, incubation time, and temperature, as well as the concentrations of the reagents, are described. To identify the most suitable conditions, colour development with reagents of varying compositions and different reaction temperatures and times were investigated using asparagine as a model amino acid. Asparagine was selected since it is one of the most abundant free amino acids in many types of samples. The optimal reaction mixture consisted of 0.8 mol L-1 potassium acetate, 1.6 mol L-1 acetic acid, 20 mg mL-1 ninhydrin and 0.8 mg mL-1 hydrindantin in DMSO/acetate buffer 40/60 (v/v) (final concentrations). The best reaction condition was heating the samples in 1.5 mL reaction tubes to 90 °C for 45 min. Afterwards, the samples were diluted with 2-propanol/water 50/50 (v/v) and the absorbance was measured at 570 nm. The proteinogenic amino acids showed a similar response except for cysteine and proline. The method was highly sensitive and showed excellent linearity as well as intra-day and inter-day reproducibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Saxony-Anhalt, Germany; (A.C.S.); (C.F.); (P.J.); (S.R.); (K.A.); (S.L.)
| |
Collapse
|
2
|
Zhang Y, Wang S, Li Y, Li X, Du Z, Liu S, Song Y, Li Y, Zhang G. A Sterile, Injectable, and Robust Sericin Hydrogel Prepared by Degraded Sericin. Gels 2023; 9:948. [PMID: 38131934 PMCID: PMC10742692 DOI: 10.3390/gels9120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The application of sericin hydrogels is limited mainly due to their poor mechanical strength, tendency to be brittle and inconvenient sterilization. To address these challenges, a sericin hydrogel exhibiting outstanding physical and chemical properties along with cytocompatibility was prepared through crosslinking genipin with degraded sericin extracted from fibroin deficient silkworm cocoons by the high temperature and pressure method. Our reported sericin hydrogels possess good elasticity, injectability, and robust behaviors. The 8% sericin hydrogel can smoothly pass through a 16 G needle. While the 12% sericin hydrogel remains intact until its compression ratio reaches 70%, accompanied by a compression strength of 674 kPa. 12% sericin hydrogel produce a maximum stretch of 740%, with breaking strength and tensile modulus of 375 kPa and 477 kPa respectively. Besides that, the hydrogel system demonstrated remarkable cell-adhesive capabilities, effectively promoting cell attachment and, proliferation. Moreover, the swelling and degradation behaviors of the hydrogels are pH responsiveness. Sericin hydrogel releases drugs in a sustained manner. Furthermore, this study addresses the challenge of sterilizing sericin hydrogels (sterilization will inevitably lead to the destruction of their structures). In addition, it challenges the prior notion that sericin extracted under high temperature and pressure is difficult to directly cross-linked into a stable hydrogel. This developed hydrogel system in this study holds promise to be a new multifunctional platform expanding the application area scope of sericin.
Collapse
Affiliation(s)
- Yeshun Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| | - Susu Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
| | - Yurong Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
| | - Zhanyan Du
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
| | - Siyu Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
| | - Yushuo Song
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
| | - Yanyan Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
| | - Guozheng Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.W.); (Y.L.); (X.L.); (Z.D.); (S.L.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
3
|
New LE, Yanagawa Y, McConkey GA, Deuchars J, Deuchars SA. GABAergic regulation of cell proliferation within the adult mouse spinal cord. Neuropharmacology 2023; 223:109326. [PMID: 36336067 DOI: 10.1016/j.neuropharm.2022.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Manipulation of neural stem cell proliferation and differentiation in the postnatal CNS is receiving significant attention due to therapeutic potential. In the spinal cord, such manipulations may promote repair in conditions such as multiple sclerosis or spinal cord injury, but may also limit excessive cell proliferation contributing to tumours such as ependymomas. We show that when ambient γ-aminobutyric acid (GABA) is increased in vigabatrin-treated or decreased by GAD67 allele haplodeficiency in glutamic acid decarboxylase67-green fluorescent protein (GAD67-GFP) mice of either sex, the numbers of proliferating cells respectively decreased or increased. Thus, intrinsic spinal cord GABA levels are correlated with the extent of cell proliferation, providing important evidence for manipulating these levels. Diazepam binding inhibitor, an endogenous protein that interacts with GABA receptors and its breakdown product, octadecaneuropeptide, which preferentially activates central benzodiazepine (CBR) sites, were highly expressed in spinal cord, especially in ependymal cells surrounding the central canal. Furthermore, animals with reduced CBR activation via treatment with flumazenil or Ro15-4513, or with a G2F77I mutation in the CBR binding site had greater numbers of Ethynyl-2'-deoxyuridine positive cells compared to control, which maintained their stem cell status since the proportion of newly proliferated cells becoming oligodendrocytes or astrocytes was significantly lower. Altering endogenous GABA levels or modulating GABAergic signalling through specific sites on GABA receptors therefore influences NSC proliferation in the adult spinal cord. These findings provide a basis for further study into how GABAergic signalling could be manipulated to enable spinal cord self-regeneration and recovery or limit pathological proliferative activity.
Collapse
Affiliation(s)
- Lauryn E New
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University, Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Susan A Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
4
|
Gong Y, Yang B, Zhang D, Zhang Y, Tang Z, Yang L, Coate KC, Yin L, Covington BA, Patel RS, Siv WA, Sellick K, Shou M, Chang W, Danielle Dean E, Powers AC, Chen W. Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways. Nat Commun 2023; 14:235. [PMID: 36646689 PMCID: PMC9842633 DOI: 10.1038/s41467-022-35705-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Glucagon has emerged as a key regulator of extracellular amino acid (AA) homeostasis. Insufficient glucagon signaling results in hyperaminoacidemia, which drives adaptive proliferation of glucagon-producing α cells. Aside from mammalian target of rapamycin complex 1 (mTORC1), the role of other AA sensors in α cell proliferation has not been described. Here, using both genders of mouse islets and glucagon receptor (gcgr)-deficient zebrafish (Danio rerio), we show α cell proliferation requires activation of the extracellular signal-regulated protein kinase (ERK1/2) by the AA-sensitive calcium sensing receptor (CaSR). Inactivation of CaSR dampened α cell proliferation, which was rescued by re-expression of CaSR or activation of Gq, but not Gi, signaling in α cells. CaSR was also unexpectedly necessary for mTORC1 activation in α cells. Furthermore, coactivation of Gq and mTORC1 induced α cell proliferation independent of hyperaminoacidemia. These results reveal another AA-sensitive mediator and identify pathways necessary and sufficient for hyperaminoacidemia-induced α cell proliferation.
Collapse
Affiliation(s)
- Yulong Gong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Dingdong Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Liu Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Linlin Yin
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Ravi S Patel
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Walter A Siv
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Matthew Shou
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Wenhan Chang
- University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, 94158, USA
| | - E Danielle Dean
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Alvin C Powers
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Dhyani R, Jain S, Bhatt A, Kumar P, Navani NK. Genetic regulatory element based whole-cell biosensors for the detection of metabolic disorders. Biosens Bioelectron 2021; 199:113869. [PMID: 34915213 DOI: 10.1016/j.bios.2021.113869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022]
Abstract
Clinicians require simple, and cost-effective diagnostic tools for the quantitative determination of amino acids in physiological fluids for the detection of metabolic disorder diseases. Besides, amino acids also act as biological markers for different types of cancers and cardiovascular diseases. Herein, we applied an in-silico based approach to identify potential amino acid-responsive genetic regulatory elements for the detection of metabolic disorders in humans. Identified sequences were further transcriptionally fused with GFP, thus generating an optical readout in response to their cognate targets. Screening of genetic regulatory elements led us to discover two promoter elements (pmetE::GFP and ptrpL::GFP) that showed a significant change in the fluorescence response to homocysteine and tryptophan, respectively. The developed biosensors respond specifically and sensitively with a limit of detection of 3.8 μM and 3 μM for homocysteine and tryptophan, respectively. Furthermore, the clinical utility of this assay was demonstrated by employing it to identify homocystinuria and tryptophanuria diseases through the quantification of homocysteine and tryptophan in plasma and urine samples within 5 h. The precision and accuracy of the biosensors for disease diagnosis were well within an acceptable range. The general strategy used in this system can be expanded to screen different genetic regulatory elements present in other gram-negative and gram-positive bacteria for the detection of metabolic disorders.
Collapse
Affiliation(s)
- Rajat Dhyani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Shubham Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Ankita Bhatt
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
6
|
Wang Z, Zhu W, Chen F, Yue L, Ding Y, Xu H, Rasmann S, Xiao Z. Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146378. [PMID: 33725595 DOI: 10.1016/j.scitotenv.2021.146378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Silicon, in its nanoscale form, has shown plant-promoting and insecticidal properties. To date, however, we lack mechanistic evidence for how nanoscale silicon influences the regulation of plant chemical defenses against herbivore attacks. To address this gap, we compared the effect of Si nanodots (NDs) and sodium silicate, a conventional silicate fertilizer, on maize (Zea mays L.) chemical defenses against the oriental armyworm (Mythimna separata, Walker) caterpillars. We found that Si NDs and sodium silicate additions, at the dose of 50 mg/L, significantly inhibited the growth of caterpillars by 53.5% and 34.2%, respectively. This increased plant resistance was associated with a 44.2% increase in the production of chlorogenic acid, as well as the expression of PAL, C4H, 4CL, C3H and HCT, core genes involved in the biosynthesis of chlorogenic acid, by 1.7, 2.4, 1.9, 1.8 and 4.5 folds, respectively. Particularly, in the presence of M. separata, physiological changes in maize plants treated with 50 mg/L Si NDs, including changes in shoot biomass, leaf nutrients (e.g., K, P, Si), and chemical defense compounds (e.g., chlorogenic acid, total phenolics), were higher than those of plants added with equivalent concentrations of conventional silicate fertilizer. Taken together, our findings indicate that Si, in nanoscale form, could replace synthetic pesticides, and be implemented for a more effective and ecologically-sound management of insect pests in maize crop farming.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenqing Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ying Ding
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue-Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
7
|
Abstract
Barramundi (Lates calcarifer) are a highly valued aquaculture species, and, as obligate carnivores, they have a demonstrated preference for dietary protein over lipid or starch to fuel energetic growth demands. In order to investigate how carnivorous fish regulate nutritional cues, we examined the metabolic effects of feeding two isoenergetic diets that contained different proportions of digestible protein or starch energy. Fish fed a high proportion of dietary starch energy had a higher proportion of liver SFA, but showed no change in plasma glucose levels, and few changes in the expression of genes regulating key hepatic metabolic pathways. Decreased activation of the mammalian target of rapamycin growth signalling cascade was consistent with decreased growth performance values. The fractional synthetic rate (lipogenesis), measured by TAG 2H-enrichment using 2H NMR, was significantly higher in barramundi fed with the starch diet compared with the protein diet (0·6 (se 0·1) v. 0·4 (se 0·1) % per d, respectively). Hepatic TAG-bound glycerol synthetic rates were much higher than other closely related fish such as sea bass, but were not significantly different (starch, 2·8 (se 0·3) v. protein, 3·4 (se 0·3) % per d), highlighting the role of glycerol as a metabolic intermediary and high TAG-FA cycling in barramundi. Overall, dietary starch significantly increased hepatic TAG through increased lipogenesis. Compared with other fish, barramundi possess a unique mechanism to metabolise dietary carbohydrates and this knowledge may define ways to improve performance of advanced formulated feeds.
Collapse
|
8
|
Medeiros IPM, Faria SC, Souza MM. Osmoionic homeostasis in bivalve mollusks from different osmotic niches: Physiological patterns and evolutionary perspectives. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110582. [PMID: 31669880 DOI: 10.1016/j.cbpa.2019.110582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
Physiological knowledge gained from questions focused on the challenges faced and strategies recruited by organisms in their habitats assumes fundamental importance about understanding the ability to survive when subjected to unfavorable situations. In the aquatic environment, salinity is particularly recognized as one of the main abiotic factors that affects the physiology of organisms. Although the physiological patterns and challenges imposed by each occupied environment are distinct, they tend to converge to osmotic oscillations. From a comparative perspective, we aimed to characterize the osmoregulatory patterns of the bivalve mollusks Corbicula largillierti (purple Asian cockle), Erodona mactroides (lagoon cockle), and Amarilladesma mactroides (white clam) - inhabitants of different osmotic niches - when submitted to hypo- and/or hyperosmotic salinity variations. We determined the hemolymph osmotic and ionic concentrations, tissue hydration, and the intracellular isosmotic regulation (IIR) from the use of osmolytes (organic and inorganic) after exposure to species-specific salinity intervals. Additionally, we incorporated phylogenetic perspectives to infer and even broaden the understanding about the patterns that comprise the osmoionic physiology of Bivalvia representatives. According to the variables analyzed in the hemolymph, the three species presented a pattern of osmoconformation. Furthermore, both ionic regulation and conformation patterns were observed in freshwater, estuarine, and marine species. The patterns verified experimentally show greater use of inorganic osmolytes compared to the participation of organic molecules, which varied according to the osmotic niche occupied in the IIR for the mantle, adductor muscle, and gills. This finding widens the classic vision about the preferential use of certain osmolytes by animals from distinct niches. Our phylogenetic perspective also indicates that environmental salinity drives physiological trait variations, including hemolymph osmolality and the ion composition of the extracellular fluid (sodium, chloride, magnesium, and calcium). We also highlight the important role played by the shared ancestry, which influences the interspecific variability of the hemolymph K+ in selected representatives of Bivalvia.
Collapse
Affiliation(s)
| | - Samuel Coelho Faria
- Instituto de Biociências, Universidade de São Paulo, USP, Brazil; Department of Evolution, Ecology and Organismal Biology. University of California, Riverside, CA 92521, USA
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, FURG, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Brazil.
| |
Collapse
|
9
|
Rahmadian Y, Supriyadi, Santoso U, Mahmudah NA, Akbar Nur Ichsan O. Non-volatile taste components and amino acid profile ofjengkol(Pithecellobium jiringa) seed flour after steam blanching. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1657445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yudi Rahmadian
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Supriyadi
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Umar Santoso
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Aini Mahmudah
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Onne Akbar Nur Ichsan
- Department of Estate and Crop Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
10
|
SUI H, CHEN L, HAN XX, ZHANG X, WANG X, ZHAO B. Quantitative Determination of Total Amino Acids Based on Surface-Enhanced Raman Scattering and Ninhydrin Derivatization. ANAL SCI 2017; 33:53-57. [DOI: 10.2116/analsci.33.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Huimin SUI
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University
| | - Lei CHEN
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University
| | - Xiao Xia HAN
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University
| | - Xiaolei ZHANG
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University
| | - Xiaolei WANG
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University
| | - Bing ZHAO
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University
| |
Collapse
|
11
|
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks. Talanta 2016; 161:31-39. [DOI: 10.1016/j.talanta.2016.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/31/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022]
|
12
|
Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump. Proc Natl Acad Sci U S A 2016; 113:1405-10. [PMID: 26787896 DOI: 10.1073/pnas.1525143113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Efflux pumps of the resistance-nodulation division superfamily, such as AcrB, make a major contribution to multidrug resistance in Gram-negative bacteria. Inhibitors of such pumps would improve the efficacy of antibiotics, and ameliorate the crisis in health care caused by the prevalence of multidrug resistant Gram-negative pathogens. Phenylalanyl-arginine β-naphthylamide (PAβN), is a well-known inhibitor of AcrB and its homologs. However, its mechanism of inhibition is not clear. Because the hydrolysis of PAβN in Escherichia coli was nearly entirely dependent on an aminopeptidase, PepN, expression of PepN in periplasm allowed us to carry out a quantitative determination of PAβN efflux kinetics through the determination of its periplasmic concentrations by quantitation of the first hydrolysis product, phenylalanine, after a short period of treatment. We found that PAβN is efficiently pumped out by AcrB, with a sigmoidal kinetics. We also examined the behavior of PAβN homologs, Ala β-naphthylamide, Arg β-naphthylamide, and Phe β-naphthylamide, as substrates of AcrB and as modulators of nitrocefin efflux through AcrB. Furthermore, molecular dynamics simulations indicated that the mode of binding of these compounds to AcrB affects the modulatory activity on the efflux of other substrates. These results, and the finding that PAβN changes the nitrocefin kinetics into a sigmoidal one, suggested that PAβN inhibited the efflux of other drugs by binding to the bottom of the distal binding pocket, the so-called hydrophobic trap, and also by interfering with the binding of other drug substrates to the upper part of the binding pocket.
Collapse
|
13
|
Errico F, Mothet JP, Usiello A. d-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 2015; 116:7-17. [DOI: 10.1016/j.jpba.2015.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
|
14
|
Wade NM, Skiba-Cassy S, Dias K, Glencross BD. Postprandial molecular responses in the liver of the barramundi, Lates calcarifer. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:427-43. [PMID: 23990285 DOI: 10.1007/s10695-013-9854-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/21/2013] [Indexed: 05/25/2023]
Abstract
The regulation of gene expression by nutrients is an important mechanism governing energy storage and growth in most animals, including fish. At present, very few genes that regulate intermediary metabolism have been identified in barramundi, nor is there any understanding of their nutritional regulation. In this study, a partial barramundi liver transcriptome was assembled from next-generation sequencing data and published barramundi EST sequences. A large number of putative metabolism genes were identified in barramundi, and the changes in the expression of 24 key metabolic regulators of nutritional pathways were investigated in barramundi liver over a time series immediately after a meal of a nutritionally optimised diet for this species. Plasma glucose and free amino acid levels showed a mild postprandial elevation which peaked 2 h after feeding, and had returned to basal levels within 4 or 8 h, respectively. Significant activation or repression of metabolic nuclear receptor regulator genes were observed, in combination with activation of glycolytic and lipogenic pathways, repression of the final step of gluconeogenesis and activation of the Akt-mTOR pathway. Strong correlations were identified between a number of different metabolic genes, and the coordinated co-regulation of these genes may underlie the ability of this fish to utilise dietary nutrients. Overall, these data clearly demonstrate a number of unique postprandial responses in barramundi compared with other fish species and provide a critical step in defining the response to different dietary nutrient sources.
Collapse
Affiliation(s)
- Nicholas M Wade
- Division of Marine and Atmospheric Research, Ecosciences Precinct, CSIRO Food Futures Flagship, Dutton Park, QLD, 4102, Australia,
| | | | | | | |
Collapse
|
15
|
Kim MI, Park TJ, Heo NS, Woo MA, Cho D, Lee SY, Park HG. Cell-based method utilizing fluorescent Escherichia coli auxotrophs for quantification of multiple amino acids. Anal Chem 2014; 86:2489-96. [PMID: 24475885 DOI: 10.1021/ac403429s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cell-based assay system for simultaneous quantification of the three amino acids, phenylalanine (Phe), methionine (Met), and leucine (Leu) in a single biological sample, was developed and applied in the multiplex diagnosis of three key metabolic diseases of newborn babies. The assay utilizes three Escherichia coli auxotrophs, which grow only in the presence of the corresponding target amino acids and which contain three different fluorescent reporter plasmids that produce distinguishable fluorescence signals (red, green, and cyan) in concert with cell growth. To mixtures of the three auxotrophs, immobilized on agarose gels arrayed on a well plate, is added a test sample. Following incubation, the concentrations of the three amino acids in the sample are simultaneously determined by measuring the intensities of three fluorescence signals that correspond to the reporter plasmids. The clinical utility of this assay system was demonstrated by employing it to identify metabolic diseases of newborn babies through the quantification of Phe, Met, and Leu in clinically derived dried blood spot specimens. The general strategy developed in this effort should be applicable to the design of new assay systems for the quantification of multiple amino acids derived from complex biological samples and, as such, to expand the utilization of cell-based analytical systems that replace conventional, yet laborious methods currently in use.
Collapse
Affiliation(s)
- Moon Il Kim
- Department of Chemical & Biomolecular Engineering (BK21+ Program), KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Voehringer P, Fuertig R, Ferger B. A novel liquid chromatography/tandem mass spectrometry method for the quantification of glycine as biomarker in brain microdialysis and cerebrospinal fluid samples within 5min. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 939:92-7. [PMID: 24121745 DOI: 10.1016/j.jchromb.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/24/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Glycine is an important amino acid neurotransmitter in the central nervous system (CNS) and a useful biomarker to indicate biological activity of drugs such as glycine reuptake inhibitors (GRI) in the brain. Here, we report how a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the fast and reliable analysis of glycine in brain microdialysates and cerebrospinal fluid (CSF) samples has been established. Additionally, we compare this method with the conventional approach of high performance liquid chromatography (HPLC) coupled to fluorescence detection (FD). The present LC-MS/MS method did not require any derivatisation step. Fifteen microliters of sample were injected for analysis. Glycine was detected by a triple quadrupole mass spectrometer in the positive electrospray ionisation (ESI) mode. The total running time was 5min. The limit of quantitation (LOQ) was determined as 100nM, while linearity was given in the range from 100nM to 100μM. In order to demonstrate the feasibility of the LC-MS/MS method, we measured glycine levels in striatal in vivo microdialysates and CSF of rats after administration of the commercially available glycine transporter 1 (GlyT1) inhibitor LY 2365109 (10mg/kg, p.o.). LY 2365109 produced 2-fold and 3-fold elevated glycine concentrations from 1.52μM to 3.6μM in striatal microdialysates and from 10.38μM to 36μM in CSF, respectively. In conclusion, we established a fast and reliable LC-MS/MS method, which can be used for the quantification of glycine in brain microdialysis and CSF samples in biomarker studies.
Collapse
Affiliation(s)
- Patrizia Voehringer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach, Germany
| | | | | |
Collapse
|
17
|
Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1367-79. [PMID: 23378380 PMCID: PMC3598423 DOI: 10.1093/jxb/ers400] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arginine is an important medium for the transport and storage of nitrogen, and arginase (also known as arginine amidohydrolase, ARGAH) is responsible for catalyse of arginine into ornithine and urea in plants. In this study, the impact of AtARGAHs on abiotic stress response was investigated by manipulating AtARGAHs expression. In the knockout mutants of AtARGAHs, enhanced tolerances were observed to multiple abiotic stresses including water deficit, salt, and freezing stresses, while AtARGAH1- and AtARGAH2-overexpressing lines exhibited reduced abiotic stress tolerances compared to the wild type. Consistently, the enhanced tolerances were confirmed by the changes of physiological parameters including electrolyte leakage, water loss rate, stomatal aperture, and survival rate. Interestingly, the direct downstream products of arginine catabolism including polyamines and nitric oxide (NO) concentrations significantly increased in the AtARGAHs-knockout lines, but decreased in overexpressing lines under control conditions. Additionally, the AtARGAHs-overexpressing and -knockout lines displayed significantly reduced relative arginine (% of total free amino acids) relative to the wild type. Similarly, reactive oxygen species accumulation was remarkably regulated by AtARGAHs under abiotic stress conditions, as shown from hydrogen peroxide (H2O2), superoxide radical ( ) concentrations, and antioxidant enzyme activities. Taken together, this is the first report, as far as is known, to provide evidence that AtARGAHs negatively regulate many abiotic stress tolerances, at least partially, attribute to their roles in modulating arginine metabolism and reactive oxygen species accumulation. Biotechnological strategy based on manipulation of AtARGAHs expression will be valuable for future crop breeding.
Collapse
Affiliation(s)
- Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tiantian Ye
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fangfang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhangmin Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanping Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yansheng Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Analysis of free amino acids during fermentation by Bacillus subtilis using capillary electrophoresis. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0292-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Zhang N, Guo XF, Wang H, Zhang HS. Determination of amino acids and catecholamines derivatized with 3-(4-chlorobenzoyl)-2-quinolinecarboxaldehyde in PC12 and HEK293 cells by capillary electrophoresis with laser-induced fluorescence detection. Anal Bioanal Chem 2011; 401:297-304. [DOI: 10.1007/s00216-011-5056-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 11/29/2022]
|
20
|
Kim MI, Yu BJ, Woo MA, Cho D, Dordick JS, Cho JH, Choi BO, Park HG. Multiplexed Amino Acid Array Utilizing Bioluminescent Escherichia coli Auxotrophs. Anal Chem 2010; 82:4072-7. [DOI: 10.1021/ac100087r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moon Il Kim
- Department of Chemical and Biomolecular Engineering, KAIST 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, LabGenomics Co., Ltd., #1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, and Department of Neurology, College of Medicine
| | - Byung Jo Yu
- Department of Chemical and Biomolecular Engineering, KAIST 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, LabGenomics Co., Ltd., #1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, and Department of Neurology, College of Medicine
| | - Min-Ah Woo
- Department of Chemical and Biomolecular Engineering, KAIST 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, LabGenomics Co., Ltd., #1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, and Department of Neurology, College of Medicine
| | - Daeyeon Cho
- Department of Chemical and Biomolecular Engineering, KAIST 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, LabGenomics Co., Ltd., #1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, and Department of Neurology, College of Medicine
| | - Jonathan S. Dordick
- Department of Chemical and Biomolecular Engineering, KAIST 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, LabGenomics Co., Ltd., #1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, and Department of Neurology, College of Medicine
| | - June Hyoung Cho
- Department of Chemical and Biomolecular Engineering, KAIST 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, LabGenomics Co., Ltd., #1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, and Department of Neurology, College of Medicine
| | - Byung-Ok Choi
- Department of Chemical and Biomolecular Engineering, KAIST 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, LabGenomics Co., Ltd., #1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, and Department of Neurology, College of Medicine
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering, KAIST 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, LabGenomics Co., Ltd., #1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, and Department of Neurology, College of Medicine
| |
Collapse
|
21
|
Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm. J Chem Ecol 2009; 35:297-306. [PMID: 19221843 DOI: 10.1007/s10886-009-9600-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/20/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
Three corn (Zea mays) germplasm lines [i.e., Ab24E (susceptible control), Mp708 (resistant control), and a locally selected partial inbred line FAW7050 (resistant)] were examined for Spodoptera frugiperda (J.E. Smith; Lepidoptera: Noctuidae) resistance. Nutritional [i.e., total protein content, amino acids, glucose, total nonstructural carbohydrates (TNC), protein to TNC (P/C) ratios] and biochemical (i.e., peroxidase and lipoxygenase 3) properties in the seedlings of these corn lines were examined to categorize resistance mechanisms to S. frugiperda. Physiological changes in photosynthetic rates also were examined in an attempt to explain nutritional and biochemical dynamics among corn germplasm lines and between insect-infested and noninfested corn plants within a germplasm line. Results indicated that S. frugiperda larvae survived better and developed faster in susceptible Ab24E than in resistant FAW7050 or Mp708. The three germplasm lines differed in resistance mechanisms to S. frugiperda, and the observed patterns of resistance were probably collective results of the P/C ratio and defensive proteins. That is, the susceptibility of Ab24E to S. frugiperda was due to a high P/C ratio and a low level of induced defensive compounds in response to insect herbivory, while the resistance of FAW7050 resulted from elevated defensive proteins following insect herbivory, low P/C ratio, and elevated defensive proteins in Mp708 contributed to its resistance to S. frugiperda. The elevated protein amounts in resistant Mp708 and FAW7050 following S. frugiperda injury were likely due to greater conversion of photosynthates to defensive proteins following the greater photosynthetic rates in these entries. Greater photosynthetic capacity in Mp708 and FAW7050 also led to higher amino acid and glucose contents in these two lines. Neither amino acid nor lipoxygenase 3 played a critical role in corn resistance to S. frugiperda. However, high inducibility of peroxidase may be an indicator of S. frugiperda susceptibility as observed elsewhere.
Collapse
|
22
|
Substrate utilization by Clostridium estertheticum cultivated in meat juice medium. Int J Food Microbiol 2009; 128:501-5. [DOI: 10.1016/j.ijfoodmicro.2008.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/08/2008] [Accepted: 10/23/2008] [Indexed: 11/21/2022]
|
23
|
Kaneko K, Tamamaki N, Owada H, Kakizaki T, Kume N, Totsuka M, Yamamoto T, Yawo H, Yagi T, Obata K, Yanagawa Y. Noradrenergic excitation of a subpopulation of GABAergic cells in the basolateral amygdala via both activation of nonselective cationic conductance and suppression of resting K+ conductance: a study using glutamate decarboxylase 67-green fluorescent protein knock-in mice. Neuroscience 2008; 157:781-97. [PMID: 18950687 DOI: 10.1016/j.neuroscience.2008.09.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/31/2008] [Accepted: 09/16/2008] [Indexed: 11/29/2022]
Abstract
GABAergic interneurons play central roles in the regulation of neuronal activity in the basolateral nucleus of the amygdala (BLA). They are also suggested to be the principal targets of the brainstem noradrenergic afferents which are involved in the enhancement of the BLA-related memory. In addition, behavioral stress has been shown to impair noradrenergic facilitation of GABAergic transmission. However, the noradrenaline (NA) effects in the BLA have not been differentiated among medium- to large-sized GABAergic neurons and principal cells, and remain to be elucidated in terms of their underlying mechanisms. Glutamate decarboxylase 67 (GAD67) is a biosynthetic enzyme of GABA and is specifically expressed in GABAergic neurons. To facilitate the study of the NA effects on GABAergic neurons in live preparations, we generated GAD67-green fluorescent protein (GFP) knock-in mice, in which GFP was expressed under the control of an endogenous GAD67 gene promoter. Here, we show that GFP was specifically expressed in GABAergic neurons in the BLA of this GAD67-GFP knock-in mouse. Under whole-cell patch-clamp recordings in vitro, we identified a certain subpopulation of GABAergic neurons in the BLA chiefly on the basis of the electrophysiological properties. When depolarized by a current injection, these neurons, which are referred to as type A, generated action potentials at relatively low frequency. We found that NA directly excited type-A cells via alpha1-adrenoceptors, whereas its effects on the other types of neurons were negligible. Two ionic mechanisms were involved in this excitability: the activation of nonselective cationic conductance and the suppression of the resting K+ conductance. NA also increased the frequency of spontaneous IPSCs in the principal cells of the BLA. It is suggested that the NA-dependent excitation of type-A cells attenuates the BLA output for a certain period.
Collapse
Affiliation(s)
- K Kaneko
- Division of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, 683-0826, Japan; CREST, Japan Science and Technology Corporation, Kawaguchi, 332-0012, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fimmen RL, Trouts TD, Richter DD, Vasudevan D. Improved speciation of dissolved organic nitrogen in natural waters: amide hydrolysis with fluorescence derivatization. J Environ Sci (China) 2008; 20:1273-1280. [PMID: 19143355 DOI: 10.1016/s1001-0742(08)62221-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The objective of this study was to improve primary-amine nitrogen (1 degree-N) quantification in dissolved organic matter (DOM) originating from natural waters where inorganic forms of N, which may cause analytical interference, are commonly encountered. Efforts were targeted at elucidating organic-N structural criteria influencing the response of organic amines to known colorimetric and fluorescent reagents and exploring the use of divalent metal-assisted amide hydrolysis in combination with fluorescence analyses. We found that reaction of o-phthaldialdehyde (OPA) with primary amines is significantly influenced by steric factors, whereas fluorescamine (FLU) lacks sensitivity to steric factors and allows for the detection of a larger suite of organic amines, including di- and tri-peptides and sterically hindered 1degree-N. Due to the near quantitative recovery of dissolved peptides with the FLU reagent and lack of analytical response to inorganic nitrogen, we proposed that FLU be utilized for the quantification of primary amine nitrogen. In exploring the application of divalent metal promoted peptide hydrolysis to the analysis of organic forms of nitrogen in DOM, we found that Zn(II) reaction increased the total fraction of organic-N detectable by both OPA and FLU reagents. Zn-hydrolysis improved recovery of organic-N in natural waters from < 5% to 35%. The above method, coupled with standard inorganic-N analyses, allows for enhanced resolution of dissolved organic nitrogen (DON) speciation in natural waters.
Collapse
Affiliation(s)
- Ryan L Fimmen
- School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
25
|
Ishikawa T, Okazaki K, Kuroda H, Itoh K, Mitsui T, Hori H. Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. MOLECULAR PLANT PATHOLOGY 2007; 8:623-637. [PMID: 20507526 DOI: 10.1111/j.1364-3703.2007.00414.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Three isoforms of nitrilase were cloned from turnip, Brassica rapa L., and their expression during clubroot development caused by Plasmodiophora brassicae was investigated. The isoforms were designated BrNIT-T1, BrNIT-T2 and BrNIT-T4 based on homology to known nitrilases. BrNIT-T1 and BrNIT-T2 have 80% homology to three nitrilases from Arabidopsis thaliana (AtNIT1, AtNIT2 and AtNIT3). BrNIT-T4 showed 90% homology to AtNIT4. To confirm their enzyme activity, the recombinant proteins were expressed in Escherichia coli. The recombinant BrNIT-T1 and BrNIT-T2 but not BrNIT-T4 converted indole-3-acetonitrile to indole-3-acetic acid, an endogenous plant auxin, although kinetic analysis showed that indole-3-acetonitrile is a poor substrate compared with various aliphatic and aromatic nitriles. By contrast, the recombinant BrNIT-T4 specifically converted beta-cyano-l-alanine to aspartic acid and asparagine and these findings agree with the idea that it is involved in the cyanide detoxification pathway. Real-time PCR analysis clearly showed that these isoforms were differentially expressed during clubroot development. BrNIT-T1 transcripts were very low in non-infected roots but were enhanced up to 100-fold in infected roots exhibiting club growth. By contrast, BrNIT-T2 transcripts remained at a very low level during clubroot formation. All these results clearly indicate the specific involvement of BrNIT-T1 in clubroot formation. The BrNIT-T4 transcripts were substantially reduced in the clubroot-growing phase, but thereafter they increased rapidly to a level found in non-infected roots as the clubroot growth reached a plateau. These findings suggest the specific involvement of BrNIT-T4 in clubroot maturation. In fully developed clubs, the BrNIT-T1 and BrNIT-T2 transcripts also increased. Free indole-3-acetic acid (IAA) content increased in the early and the latest phase of infected roots compared with non-infected roots, but decreased substantially at the middle phase. Thus, free IAA may play a role in the initiation and maturation of clubroot. Total IAA content was significantly higher in infected roots than in non-infected roots throughout clubroot development and IAA conjugation/conjugate hydrolysis system as well as BrNIT-Ts appear to be involved in clubroot development.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Laboratories of Applied Bioscience, Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The newest results in the application of various chromatographic methods (gas-liquid chromatography, liquid chromatographic techniques, electrically driven systems) for the separation and quantitative determination of amino acids and short peptides in pure state and in complicated matrices are compiled. The results are concisely described and critically evaluated. The future trends of the chromatographic analysis of amino acids and short peptides are briefly discussed.
Collapse
Affiliation(s)
- T Cserháti
- Research Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
27
|
Talaue MT, Venketaraman V, Hazbón MH, Peteroy-Kelly M, Seth A, Colangeli R, Alland D, Connell ND. Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol 2006; 188:4830-40. [PMID: 16788192 PMCID: PMC1482997 DOI: 10.1128/jb.01687-05] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The competition for L-arginine between the inducible nitric oxide synthase and arginase contributes to the outcome of several parasitic and bacterial infections. The acquisition of L-arginine, however, is important not only for the host cells but also for the intracellular pathogen. In this study we observe that strain AS-1, the Mycobacterium bovis BCG strain lacking the Rv0522 gene, which encodes an arginine permease, perturbs l-arginine metabolism in J774.1 murine macrophages. Infection with AS-1, but not with wild-type BCG, induced l-arginine uptake in J774.1 cells. This increase in L-arginine uptake was independent of activation with gamma interferon plus lipopolysaccharide and correlated with increased expression of the MCAT1 and MCAT2 cationic amino acid transport genes. AS-1 infection also enhanced arginase activity in resting J774.1 cells. Survival studies revealed that AS-1 survived better than BCG within resting J774.1 cells. Intracellular growth of AS-1 was further enhanced by inhibiting arginase and ornithine decarboxylase activities in J774.1 cells using L-norvaline and difluoromethylornithine treatment, respectively. These results suggest that the arginine-related activities of J774.1 macrophages are affected by the arginine transport capacity of the infecting BCG strain. The loss of Rv0522 gene-encoded arginine transport may have induced other cationic amino acid transport systems during intracellular growth of AS-1, allowing better survival within resting macrophages.
Collapse
Affiliation(s)
- Meliza T Talaue
- Department of Microbiology and Molecular Genetics, UMDNJ/ New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-2714, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cortés-Rojo C, Clemente-Guerrero M, Saavedra-Molina A. Effects of D-amino acids on lipoperoxidation in rat liver and kidney mitochondria. Amino Acids 2006; 32:31-7. [PMID: 16868653 DOI: 10.1007/s00726-005-0356-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 11/16/2005] [Indexed: 10/24/2022]
Abstract
The effects of the amino acids D-ser, D-asp, and D-ala on lipoperoxidation under conditions of hypertension, alcoholism, and ammonemia in rat liver and kidney mitochondria were studied. Under normal conditions, D-alanine increased in 54% free radicals production in liver mitochondria (p < 0.05). The D-amino acids had no effect on kidney mitochondria. D-ser and D-ala increased lipoperoxidation in spontaneously hypertensive rats (SHR) as compared with their normotensive genetic control Wistar-Kyoto (WKY) rats (p < 0.05). During hypertension and in oxidative stress in the presence of calcium, only D-ala produced 46% and 29% free radicals in liver and kidney mitochondria (p < 0.05), respectively. During chronic alcoholism, D-ser increased lipoperoxidation in 80% in kidney mitochondria (p < 0.05), as compared to control. During ammonemia, D-ser produced 41% free radicals.
Collapse
Affiliation(s)
- C Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | | | | |
Collapse
|
29
|
Sun SW, Lin YC, Weng YM, Chen MJ. Efficiency improvements on ninhydrin method for amino acid quantification. J Food Compost Anal 2006. [DOI: 10.1016/j.jfca.2005.04.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Aoyama C, Santa T, Tsunoda M, Fukushima T, Kitada C, Imai K. A fully automated amino acid analyzer using NBD-F as a fluorescent derivatization reagent. Biomed Chromatogr 2005; 18:630-6. [PMID: 15386506 DOI: 10.1002/bmc.365] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A fully automated amino acid analyzer using NBD-F (4- fluoro-7-nitro-2,1,3-benzoxadiazole) as a fluorescent derivatization reagent was developed. The whole analytical process was fully automated from derivatization, injection to HPLC separation and quantitation. The derivatization reaction conditions were re-evaluated and optimized. Amino acids were derivatized by NBD-F for 40 min at room temperature in the borate buffer (pH 9.5). The derivatives were separated within 100 min and fluorometrically detected at 540 nm with excitation at 470 nm. The detection limits for amino acids were in the range of 2.8-20 fmol. The calibration curves were linear over the range of 20 fmol to 20 pmol on column with the correlation coefficients of 0.999. The coefficients of variation were less than 5% at 3 pmol injection for all amino acids. Amino acids in rat plasma were determined by the proposed HPLC method.
Collapse
Affiliation(s)
- Chiaki Aoyama
- The Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Kajimura M, Croke SJ, Glover CN, Wood CM. Dogmas and controversies in the handling of nitrogenous wastes: The effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. J Exp Biol 2004; 207:1993-2002. [PMID: 15143133 DOI: 10.1242/jeb.00901] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Ammonia and urea are the primary forms of nitrogen excretion in teleost fish. There exists, however, a discrepancy between the sum of ammonia plus urea nitrogen and total nitrogen, indicating that `unknown' nitrogen end products may play an important role in nitrogen metabolism. The current study analysed a wide range of nitrogen end products in both fed and fasted juvenile rainbow trout. Ammonia-N (53–68%) and urea-N (6–10%) were confirmed as the most important forms of nitrogenous waste, but an interesting finding was the considerable excretion of nitrogen as amino acids(4–10%), via the gills, and as protein (3–11%), probably via the body mucus. Use of anal sutures delineated an important role for the gastrointestinal tract in the production of ammonia-N and urea-N in fed fish, but amino acid-N and protein-N output by this route were both negligible. Alternative nitrogen products – trimethylamine,trimethylamine oxide, uric acid, and nitrite + nitrate – were not excreted in detectable quantities. Creatine-N and creatinine-N outputs were detected but contributed only a small fraction to total nitrogen excretion(<1.4%). Despite the wide scope of nitrogenous end products investigated, a considerable proportion (12–20%) of nitrogen excretion remains unknown. Possible alternative end products and methodological considerations are proposed to explain this phenomenon. The findings described above were used to recalculate the nitrogen quotient(NQ=ṀN/ṀO2)on trout that had been either fasted or fed various daily rations (1%, 3% or 5% dry food per unit wet body mass per day). Feeding increased oxygen consumption (ṀO2)and total-N excretion (ṀN). The NQ is often used as a measure of protein utilisation in aerobic metabolism and assumes that all protein (and amino acid) fuels are converted by oxidation to nitrogenous waste products that are excreted. However, the results showed that calculation of the NQ based on total nitrogen excretion may overestimate protein utilisation in aerobic metabolism because of significant excretion of N in the form of proteins and amino acids, whereas the use of summed ammonia-N and urea-N excretion probably underestimates the contribution of protein towards aerobic metabolism. These errors increase as ration increases, because the discrepancy between total-N excretion and ammonia-N + urea-N excretion increases.
Collapse
Affiliation(s)
- Makiko Kajimura
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1.
| | | | | | | |
Collapse
|
32
|
Sethuraman R, Lee TL, Tachibana S. Simple Quantitative HPLC Method for Measuring Physiologic Amino Acids in Cerebrospinal Fluid without Pretreatment. Clin Chem 2004; 50:665-9. [PMID: 14981041 DOI: 10.1373/clinchem.2003.026195] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rama Sethuraman
- Department of Anaesthesia, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
| | | | | |
Collapse
|
33
|
Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki JI, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2004; 467:60-79. [PMID: 14574680 DOI: 10.1002/cne.10905] [Citation(s) in RCA: 1035] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gamma-aminobutyric acid (GABA)ergic neurons in the central nervous system regulate the activity of other neurons and play a crucial role in information processing. To assist an advance in the research of GABAergic neurons, here we produced two lines of glutamic acid decarboxylase-green fluorescence protein (GAD67-GFP) knock-in mouse. The distribution pattern of GFP-positive somata was the same as that of the GAD67 in situ hybridization signal in the central nervous system. We encountered neither any apparent ectopic GFP expression in GAD67-negative cells nor any apparent lack of GFP expression in GAD67-positive neurons in the two GAD67-GFP knock-in mouse lines. The timing of GFP expression also paralleled that of GAD67 expression. Hence, we constructed a map of GFP distribution in the knock-in mouse brain. Moreover, we used the knock-in mice to investigate the colocalization of GFP with NeuN, calretinin (CR), parvalbumin (PV), and somatostatin (SS) in the frontal motor cortex. The proportion of GFP-positive cells among NeuN-positive cells (neocortical neurons) was approximately 19.5%. All the CR-, PV-, and SS-positive cells appeared positive for GFP. The CR-, PV, and SS-positive cells emitted GFP fluorescence at various intensities characteristics to them. The proportions of CR-, PV-, and SS-positive cells among GFP-positive cells were 13.9%, 40.1%, and 23.4%, respectively. Thus, the three subtypes of GABAergic neurons accounted for 77.4% of the GFP-positive cells. They accounted for 6.5% in layer I. In accord with unidentified GFP-positive cells, many medium-sized spherical somata emitting intense GFP fluorescence were observed in layer I.
Collapse
Affiliation(s)
- Nobuaki Tamamaki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Louie TM, Webster CM, Xun L. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 2002; 184:3492-500. [PMID: 12057943 PMCID: PMC135155 DOI: 10.1128/jb.184.13.3492-3500.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.
Collapse
Affiliation(s)
- Tai Man Louie
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234, USA
| | | | | |
Collapse
|