1
|
Pharmacokinetics of chromium-enriched yeast in rats following oral administration. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:167-170. [PMID: 36383250 DOI: 10.1007/s00210-022-02334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Chromium (Cr) is required for carbohydrate, lipid, and protein metabolisms in humans and animals. Cr insufficiency is associated with diabetes and cardiovascular disease. Chromium-enriched yeast (CrY) is a widely used Cr dietary supplement, but its pharmacokinetics remains unavailable. CrY was orally administered to rats at a single dose of 1 mg Cr/kg, and plasma Cr concentration at different time points was measured by inductively coupled plasma mass spectrometry. Pharmacokinetics of CrY in rats was well fitted to a non-compartmental model. Plasma Cr concentration reached the maximum of 8.68 ± 2.87 ng/mL at 0.25 h, and gradually decreased to 4.05 ± 0.47 ng/mL at 24 h. CrY was rapidly absorbed into the blood and was slowly eliminated after the oral administration, which could lead to the accumulation of Cr in vivo.
Collapse
|
2
|
Sanchez-Gonzalez C, Moreno L, Lopez-Chaves C, Nebot E, Pietschmann P, Rodriguez-Nogales A, Galvez J, Montes-Bayon M, Sanz-Medel A, Llopis J. Effect of vanadium on calcium homeostasis, osteopontin mRNA expression, and bone microarchitecture in diabetic rats. Metallomics 2017; 9:258-267. [PMID: 28194470 DOI: 10.1039/c6mt00272b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine whether alterations caused by diabetes in calcium homeostasis, expression of osteopontin and the microarchitecture of bone are corrected by exposure to vanadium. Four study groups were examined over a period of five weeks: control (C), diabetic (DM), diabetic treated with 1 mg V per d (DMV), and diabetic treated with 3 mg V per d (DMVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(iv). Calcium was measured in the food, faeces, urine, serum, kidneys, liver, muscles, and femur. Osteopontin gene expression was determined in the liver, and the bone microarchitecture was studied with the aid of micro-computed tomography. In the DM group, food intake as well as calcium absorbed and retained and liver osteopontin mRNA increased, while Ca in the serum and femur decreased, and the bone microarchitecture worsened, in comparison with the control. In the DMV group, the amount of Ca absorbed and retained was similar to DM rats. Although the Ca content in the femur increased and osteopontin mRNA decreased, there were no significant changes in the bone microarchitecture, in comparison to the DM rats. In the DMVH group, the amount of Ca absorbed and retained, and the serum and femur content were equivalent to the control. The levels of osteopontin mRNA decreased and bone mineralization improved, compared to the DM group. We conclude that treatment with 3 mg V per d of the glucose lowering agent bis(maltolato)oxovanadium(iv) causes a decrease in osteopontin mRNA, which could favour the normalization of changes in Ca homeostasis and bone microarchitecture, both at the cortical and trabecular levels, caused by diabetes.
Collapse
Affiliation(s)
- Cristina Sanchez-Gonzalez
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Laura Moreno
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Carlos Lopez-Chaves
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Elena Nebot
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain. and Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | | | - Julio Galvez
- CIBERehd, Department of Pharmacology, University of Granada, 18071 Granada, Spain
| | - María Montes-Bayon
- Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain.
| | - Juan Llopis
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| |
Collapse
|
3
|
|
4
|
Shehata AS, Amer MG, Abd El-Haleem MR, Karam RA. The ability of hesperidin compared to that of insulin for preventing osteoporosis induced by type I diabetes in young male albino rats: A histological and biochemical study. ACTA ACUST UNITED AC 2017; 69:203-212. [DOI: 10.1016/j.etp.2017.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/12/2017] [Accepted: 01/20/2017] [Indexed: 11/28/2022]
|
5
|
Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, Mabilleau G. Stable Incretin Mimetics Counter Rapid Deterioration of Bone Quality in Type 1 Diabetes Mellitus. J Cell Physiol 2015; 230:3009-18. [PMID: 26016732 DOI: 10.1002/jcp.25033] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/04/2015] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients.
Collapse
Affiliation(s)
- Sity Aishah Mansur
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom.,University Tun Hussein Onn Malaysia, Johor, Malaysia
| | | | - Béatrice Bouvard
- GEROM-LHEA, Institut de Biologie en Santé, LUNAM Université, Angers, France
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Daniel Chappard
- GEROM-LHEA, Institut de Biologie en Santé, LUNAM Université, Angers, France.,SCIAM, Institut de Biologie en Santé, LUNAM Université, Angers, France
| | - Nigel Irwin
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Guillaume Mabilleau
- GEROM-LHEA, Institut de Biologie en Santé, LUNAM Université, Angers, France.,SCIAM, Institut de Biologie en Santé, LUNAM Université, Angers, France
| |
Collapse
|
6
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
7
|
Mieczkowska A, Mansur SA, Irwin N, Flatt PR, Chappard D, Mabilleau G. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study. Bone 2015; 76:31-9. [PMID: 25813583 DOI: 10.1016/j.bone.2015.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/23/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix.
Collapse
Affiliation(s)
| | - Sity Aishah Mansur
- School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom; University Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Daniel Chappard
- LUNAM Université, GEROM-LHEA, Institut de Biologie en Santé, Angers, France; LUNAM Université, SCIAM, Institut de Biologie en Santé, Angers, France
| | - Guillaume Mabilleau
- LUNAM Université, GEROM-LHEA, Institut de Biologie en Santé, Angers, France; LUNAM Université, SCIAM, Institut de Biologie en Santé, Angers, France.
| |
Collapse
|
8
|
Bortolin RH, da Graça Azevedo Abreu BJ, Abbott Galvão Ururahy M, Costa de Souza KS, Bezerra JF, Bezerra Loureiro M, da Silva FS, Marques DEDS, Batista AADS, Oliveira G, Luchessi AD, Lima VMGDM, Miranda CES, Lia Fook MV, Almeida MDG, de Rezende LA, de Rezende AA. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats. PLoS One 2015; 10:e0125349. [PMID: 25933189 PMCID: PMC4416905 DOI: 10.1371/journal.pone.0125349] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/16/2015] [Indexed: 02/01/2023] Open
Abstract
Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days) type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM), and T1DM plus zinc supplementation (T1DMS). Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus), and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic and protective effect of zinc under chronic diabetic conditions. Furthermore, these results indicate that zinc supplementation could act as a complementary therapy in chronic T1DM.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Bone Density/drug effects
- Bone Resorption/prevention & control
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/diet therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Dietary Supplements
- Elastic Modulus
- Femur/drug effects
- Femur/metabolism
- Femur/pathology
- Gene Expression Regulation
- Humans
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Osteocalcin/genetics
- Osteocalcin/metabolism
- Osteoprotegerin/genetics
- Osteoprotegerin/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin
- Tibia/drug effects
- Tibia/metabolism
- Tibia/pathology
- Zinc/administration & dosage
Collapse
Affiliation(s)
- Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Marcela Abbott Galvão Ururahy
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla Simone Costa de Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Felipe Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Melina Bezerra Loureiro
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Flávio Santos da Silva
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Gisele Oliveira
- Department of Chemistry, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Marcus Vinicius Lia Fook
- Laboratory of Evaluation and Development of Biomaterials, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- * E-mail:
| |
Collapse
|
9
|
Makinen MW, Salehitazangi M. The Structural Basis of Action of Vanadyl (VO 2+) Chelates in Cells. Coord Chem Rev 2014; 279:1-22. [PMID: 25237207 DOI: 10.1016/j.ccr.2014.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Much emphasis has been given to vanadium compounds as potential therapeutic reagents for the treatment of diabetes mellitus. Thus far, no vanadium compound has proven efficacious for long-term treatment of this disease in humans. Therefore, in review of the research literature, our goal has been to identify properties of vanadium compounds that are likely to favor physiological and biochemical compatibility for further development as therapeutic reagents. We have, therefore, limited our review to those vanadium compounds that have been used in both in vivo experiments with small, laboratory animals and in in vitro studies with primary or cultured cell systems and for which pharmacokinetic and pharmacodynamics results have been reported, including vanadium tissue content, vanadium and ligand lifetime in the bloodstream, structure in solution, and interaction with serum transport proteins. Only vanadyl (VO2+) chelates fulfill these requirements despite the large variety of vanadium compounds of different oxidation states, ligand structure, and coordination geometry synthesized as potential therapeutic agents. Extensive review of research results obtained with use of organic VO2+-chelates shows that the vanadyl chelate bis(acetylacetonato)oxidovanadium(IV) [hereafter abbreviated as VO(acac)2], exhibits the greatest capacity to enhance insulin receptor kinase activity in cells compared to other organic VO2+-chelates, is associated with a dose-dependent capacity to lower plasma glucose in diabetic laboratory animals, and exhibits a sufficiently long lifetime in the blood stream to allow correlation of its dose-dependent action with blood vanadium content. The properties underlying this behavior appear to be its high stability and capacity to remain intact upon binding to serum albumin. We relate the capacity to remain intact upon binding to serum albumin to the requirement to undergo transcytosis through the vascular endothelium to gain access to target tissues in the extravascular space. Serum albumin, as the most abundant transport protein in the blood stream, serves commonly as the carrier protein for small molecules, and transcytosis of albumin through capillary endothelium is regulated by a Src protein tyrosine kinase system. In this respect it is of interest to note that inorganic VO2+ has the capacity to enhance insulin receptor kinase activity of intact 3T3-L1 adipocytes in the presence of albumin, albeit weak; however, in the presence of transferrin no activation is observed. In addition to facilitating glucose uptake, the capacity of VO2+- chelates for insulin-like, antilipolytic action in primary adipocytes has also been reviewed. We conclude that measurement of inhibition of release of only free fatty acids from adipocytes stimulated by epinephrine is not a sufficient basis to ascribe the observations to purely insulin-mimetic, antilipolytic action. Adipocytes are known to contain both phosphodiesterase-3 and phosphodiesterase-4 (PDE3 and PDE4) isozymes, of which insulin antagonizes lipolysis only through PDE3B. It is not known whether the other isozyme in adipocytes is influenced directly by VO2+- chelates. In efforts to promote improved development of VO2+- chelates for therapeutic purposes, we propose synergism of a reagent with insulin as a criterion for evaluating physiological and biochemical specificity of action. We highlight two organic compounds that exhibit synergism with insulin in cellular assays. Interestingly, the only VO2+- chelate for which this property has been demonstrated, thus far, is VO(acac)2.
Collapse
Affiliation(s)
- Marvin W Makinen
- Department of Biochemistry & Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 USA
| | - Marzieh Salehitazangi
- Department of Biochemistry & Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 USA
| |
Collapse
|
10
|
Paglia DN, Wey A, Hreha J, Park AG, Cunningham C, Uko L, Benevenia J, O'Connor JP, Lin SS. Local vanadium release from a calcium sulfate carrier accelerates fracture healing. J Orthop Res 2014; 32:727-34. [PMID: 24375684 DOI: 10.1002/jor.22570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/05/2013] [Indexed: 02/04/2023]
Abstract
This study evaluated the efficacy of using calcium sulfate (CaSO4 ) as a carrier for intramedullary delivery of an organic vanadium salt, vanadyl acetylacetonate (VAC) after femoral fracture. VAC can act as an insulin-mimetic and can be used to accelerate fracture healing in rats. A heterogenous mixture of VAC and CaSO4 was delivered to the fracture site of BB Wistar rats, and mechanical testing, histomorphometry, micro-computed tomography (micro-CT) were performed to measure healing. At 4 weeks after fracture, maximum torque to failure, effective shear modulus, and effective shear stress were all significantly higher (p < 0.05) in rats treated with 0.25 mg/kg VAC-CaSO4 as compared to carrier control rats. Histomorphometry found a 71% increase in percent cartilage matrix (p < 0.05) and a 64% decrease in percent mineralized tissue (p < 0.05) at 2 weeks after fracture in rats treated with 0.25 mg/kg of VAC-CaSO4 . Micro-CT analyses at 4 weeks found a more organized callus structure and higher trending maximum connected z-ray. fraction for VAC-CaSO4 groups. Evaluation of radiographs and serial histological sections at 12 weeks did not show any evidence of ectopic bone formation. As compared to previous studies, CaSO4 was an effective carrier for reducing the dose of VAC required to accelerate femoral fracture healing in rats.
Collapse
Affiliation(s)
- David N Paglia
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey, 07103
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Korres N, Tsiridis E, Pavlou G, Mitsoudis A, Perrea DN, Zoumbos AB. Biomechanical characteristics of bone in streptozotocin-induced diabetic rats: An in-vivo randomized controlled experimental study. World J Orthop 2013; 4:124-129. [PMID: 23878780 PMCID: PMC3717245 DOI: 10.5312/wjo.v4.i3.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/04/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the in vivo effects of type I diabetes on the mechanical strength of tibial bone in a rodent model.
METHODS: The biomechanical effect of diabetes on the structural integrity of the tibia in streptozotocin induced diabetic Wistar rats was analysed. Induction of diabetes was achieved by an intra-peritoneal injection and confirmed by measuring serial blood glucose levels (> 150 mg/dL). After 8 wk the tibiae were harvested and compared to a control group. Biomechanical analysis of harvested tibiae was performed using a three-point bending technique on a servo hydraulic MTS 858 MiniBionix frame. Maximum force applied to failure (N), stiffness (N × mm) and energy absorbed (N/mm) were recorded and plotted on load displacement curves. A displacement control loading mode of 1 mm/min was selected to simulate quasi-static loading conditions. Measurements from load-displacement curves were directly compared between groups.
RESULTS: Fourteen streptozotocin induced diabetic Wistar rats were compared against nineteen non-diabetic controls. An average increase of 155.2 g in body weight was observed in the control group compared with only 5 g in the diabetic group during the experimental study period. Levels of blood glucose increased to 440.25 mg/dL in the diabetic group compared to 116.62 mg/dL in the control group.The biomechanical results demonstrate a highly significant reduction in the maximum load to failure from 69.5 N to 58 N in diabetic group compared to control (P = 0.011). Energy absorption to fracture was reduced from 28.2 N in the control group to 23.5 N in the diabetic group (P = 0.082). No significant differences were observed between the groups for bending stiffness.
CONCLUSION: Streptozotocin-induced diabetes in rodents reduces the maximum force and energy absorption to failure of bone, suggesting a predisposition for fracture risk.
Collapse
|
12
|
Paglia DN, Wey A, Park AG, Breitbart EA, Mehta SK, Bogden JD, Kemp FW, Benevenia J, O'Connor JP, Lin SS. The effects of local vanadium treatment on angiogenesis and chondrogenesis during fracture healing. J Orthop Res 2012; 30:1971-8. [PMID: 22653614 DOI: 10.1002/jor.22159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 05/09/2012] [Indexed: 02/04/2023]
Abstract
This study quantified the effects of local intramedullary delivery of an organic vanadium salt, which may act as an insulin-mimetic on fracture healing. Using a BB Wistar rat femoral fracture model, local vanadyl acetylacetonate (VAC) was delivered to the fracture site and histomorphometry, mechanical testing, and immunohistochemistry were performed. Callus percent cartilage was 200% higher at day 7 (p < 0.05) and 88% higher at day 10 (p < 0.05) in the animals treated with 1.5 mg/kg of VAC. Callus percent mineralized tissue was 37% higher at day 14 (p < 0.05) and 31% higher at day 21 (p < 0.05) in the animals treated with 1.5 mg/kg of VAC. Maximum torque to failure was 104% and 154% higher at 4 weeks post-fracture (p < 0.05) for the healing femurs from the VAC-treated (1.5 and 3.0 mg/kg) animals. Animals treated with other VAC doses demonstrated increased mechanical parameters at 4 weeks (p < 0.05). Immunohistochemistry detected 62% more proliferating cells at days 7 (p < 0.05) and 94% more at day 10 (p < 0.05) in the animals treated with 1.5 mg/kg VAC. Results showed 100% more vascular endothelial growth factor-C (VEGF-C) positive cells and 80% more blood vessels at day 7 (p < 0.05) within the callus subperiosteal region of VAC-treated animals (1.5 mg/kg) compared to controls. The results suggest that local VAC treatment affects chondrogenesis and angiogenesis within the first 7-10 days post-fracture, which leads to enhanced mineralized tissue formation and accelerated fracture repair as early as 3-4 weeks post-fracture.
Collapse
Affiliation(s)
- David N Paglia
- Department of Orthopaedics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Nyman JS, Even JL, Jo CH, Herbert EG, Murry MR, Cockrell GE, Wahl EC, Bunn RC, Lumpkin CK, Fowlkes JL, Thrailkill KM. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone 2011; 48:733-40. [PMID: 21185416 PMCID: PMC3062641 DOI: 10.1016/j.bone.2010.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1DM) increases the likelihood of a fracture. Despite serious complications in the healing of fractures among those with diabetes, the underlying causes are not delineated for the effect of diabetes on the fracture resistance of bone. Therefore, in a mouse model of T1DM, we have investigated the possibility that a prolonged state of diabetes perturbs the relationship between bone strength and structure (i.e., affects tissue properties). At 10, 15, and 18 weeks following injection of streptozotocin to induce diabetes, diabetic male mice and age-matched controls were examined for measures of skeletal integrity. We assessed 1) the moment of inertia (I(MIN)) of the cortical bone within diaphysis, trabecular bone architecture of the metaphysis, and mineralization density of the tissue (TMD) for each compartment of the femur by micro-computed tomography and 2) biomechanical properties by three-point bending test (femur) and nanoindentation (tibia). In the metaphysis, a significant decrease in trabecular bone volume fraction and trabecular TMD was apparent after 10 weeks of diabetes. For cortical bone, type 1 diabetes was associated with decreased cortical TMD, I(MIN), rigidity, and peak moment as well as a lack of normal age-related increases in the biomechanical properties. However, there were only modest differences in material properties between diabetic and normal mice at both whole bone and tissue-levels. As the duration of diabetes increased, bone toughness decreased relative to control. If the sole effect of diabetes on bone strength was due to a reduction in bone size, then I(MIN) would be the only significant variable explaining the variance in the maximum moment. However, general linear modeling found that the relationship between peak moment and I(MIN) depended on whether the bone was from a diabetic mouse and the duration of diabetes. Thus, these findings suggest that the elevated fracture risk among diabetics is impacted by complex changes in tissue properties that ultimately reduce the fracture resistance of bone.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 27212, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem 2009; 104:371-8. [PMID: 20015552 DOI: 10.1016/j.jinorgbio.2009.11.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 12/28/2022]
Abstract
Vanadium compounds have been regarded as promising in therapeutic treatment of diabetes and in cancer prevention. In the present work, we studied the effects of vanadium compounds on mitochondria to investigate the mechanisms of toxicity. Mitochondria were isolated from rat liver and incubated with a variety of vanadium compounds, i.e. VOSO(4), NaVO(3), and vanadyl complexes with organic ligands. Our studies indicated that VO(2+), VO(3)(-), VO(acac)(2) and VOcit (1-100microM) could induce mitochondrial swelling in a concentration dependent manner and disrupt mitochondrial membrane potential (Deltapsi(m)) in a time dependent manner, which is quite different from the rapid Deltapsi(m) collapse caused by Ca(2+) or CCCP (carbonyl cyanide m-chlorophenylhydrazone, a mitochondrial uncoupling reagent). Release of cytochrome c (Cyt c) was observed and could be inhibited by cyclosporin A (CsA), an inhibitor of the mitochondrial permeability transition pore (PTP). Interestingly, VOdipic caused release of Cyt c without mitochondrial swelling and Deltapsi(m) disruption, an action previously only observed on the Bax protein, suggesting a potentially role of VOdipic in regulating PTP opening. In addition, all the vanadium compounds tested stimulated mitochondrial production of reactive oxygen species (ROS). Antioxidants, i.e. vitamin C and E, significantly delayed the Deltapsi(m) disruption. Overall, our experimental evidence indicated vanadium compounds exhibited multiple actions on mitochondria. Vanadium compounds did induce oxidative stress on mitochondrial and thus caused PTP opening, which led to collapse of Deltapsi(m) and Cyt c release as the initiation of cell apoptosis.
Collapse
Affiliation(s)
- Yuebin Zhao
- State Key Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To review recent research on type 1 and 2 diabetes mellitus, bone mineral density, and fractures and to identify high-priority research areas. RECENT FINDINGS Recent meta-analyses and cohort studies confirm that type 1 and 2 diabetes are associated with higher fracture risk. These findings are not completely explained by lower bone mineral density in type 1 diabetes or the higher bone mineral density in type 2 diabetes. Studies provide new information on fracture risk for middle-aged diabetic adults, type 1 diabetic men, type 2 diabetic black women, and multiple sites. Recent case-control studies adjusted for key risk factors, and lower bone mineral density in type 1 diabetic adults remained significant at multiple sites. Prospective studies suggest an increased bone mineral density loss for type 2 diabetic white women and with thiazolidinedione use. Longitudinal cohort studies found that subclinical and clinical alterations in peripheral nerve, vascular, and kidney function were associated with lower bone mineral density, higher bone mineral density loss, or higher fracture rates in type 2 diabetic and nondiabetic older adults. SUMMARY Prospective studies of risk factors for diabetic bone loss are needed. A greater elucidation of fracture etiology in diabetes has implications for preventive measures.
Collapse
Affiliation(s)
- Elsa S Strotmeyer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
17
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|