1
|
Hayashi K, Zhang C, Taleb Alashkar AN, Ishikawa K. Carbonate Apatite Honeycomb Scaffold-Based Drug Delivery System for Repairing Osteoporotic Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45956-45968. [PMID: 39182190 PMCID: PMC11378151 DOI: 10.1021/acsami.4c08047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Osteoporotic bone defects are difficult to repair in elderly patients. This study aimed to repair osteoporotic bone defects using a combination of bone tissue engineering (BTE) and drug delivery systems (DDS). Herein, honeycomb granules (HCGs) composed of carbonate apatite microspheres were fabricated as BTE scaffolds. Each HCG possesses hexagonal macropores and abundant interconnected micropores between the microspheres. Owing to these multiscale interconnected pores, HCGs can readily contain antibodies against sclerostin (Scl), which causes imbalances in bone homeostasis. Anti-Scl antibody-loaded HCGs (Scl-Ab-HCGs) regulate the release of Scl-Abs in response to the pH of the osteoporotic environment. In ovariectomized rabbit osteoporotic femurs, HCG monotherapy forms new bone with less osteocyte damage (fewer empty bone lacunae) and fewer osteoclasts than osteoporotic bone; however, it is insufficient to prevent receptor activator of nuclear factor-kappa B ligand (RANKL) overexpression. Consequently, HCG monotherapy restores bone quantity better than no treatment but not to normal levels. In contrast, new bone tissue formed by Scl-Ab-HCG-based DDS predominantly expresses osteocalcin rather than RANKL, similar to normal bone, and shows a similar osteocyte apoptosis level, bone quantity, and osteoclast number as normal bone. Thus, Scl-Ab-HCG-based DDS is a promising approach for osteoporotic bone defect repair.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Cheng Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ahmad Nazir Taleb Alashkar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Boylan J, Turton J, Hicks Z, Cottam J, Stone M. A retrospective audit with subsequent cost and environmental analysis of a denosumab self-injection program. JBMR Plus 2024; 8:ziae092. [PMID: 39135631 PMCID: PMC11318350 DOI: 10.1093/jbmrpl/ziae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
The Metabolic Bone Health Department, Cardiff and Vale University Health Board, serves a local population of approximately 445 000 people. A retrospective audit of attendance data regarding the denosumab treatment clinic (the traditional treatment pathway) and the denosumab Self-Injection Program (SIP) was conducted to determine whether the SIP is both cost-effective and environmentally beneficial, compared to the traditional treatment pathway. Cost analysis was then conducted by the Finance Department. The audit was conducted over 3 years following the implementation of the service development; 233 patients had enrolled in the program at the time of the audit and 69 had completed 3 years of self-injected treatment. A control group of 497 patients were identified by the service. This group remained on the historical pathway and had consistent attendance activity over the 3-yr period from 2017 to 2019. Pre- and post-period activity of all patients on the program was compared, together with the activity for the independent control group. The SIP resulted in a reduction in clinical contacts, with financial analysis showing a total opportunity cost saving per patient of £420 per annum. There were obvious benefits to the patient of a reduced number of visits to a clinical site, which also resulted in an estimated carbon footprint reduction of 59 kg CO2 per patient per annum. The cost analysis is based on our organization's 2022 charges. The SIP demonstrates that by focusing on care "closer to home", it is possible to maximize resources, improve the patient experience through reduced travel, and reduce the environmental impact of healthcare.
Collapse
Affiliation(s)
- Jack Boylan
- Corresponding author: Jack Boylan, The Bone Research Unit, Llandough University Hospital, Llandough, Cardiff and Vale University Health Board, Wales, United Kingdom ()
| | - Jane Turton
- The Bone Research Unit, Llandough University Hospital, Llandough, Cardiff and Vale University Health Board, Wales, UK
| | - Zoe Hicks
- The Finance Department, Cardiff and Vale University Health Board, Wales, United Kingdom
| | - Julia Cottam
- The Finance Department, Cardiff and Vale University Health Board, Wales, United Kingdom
| | - Michael Stone
- The Bone Research Unit, Llandough University Hospital, Llandough, Cardiff and Vale University Health Board, Wales, UK
| |
Collapse
|
3
|
Saeki C, Saito M, Tsubota A. Association of chronic liver disease with bone diseases and muscle weakness. J Bone Miner Metab 2024; 42:399-412. [PMID: 38302761 DOI: 10.1007/s00774-023-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024]
Abstract
The liver is a vital organ involved in nutrient metabolism, hormone regulation, immunity, cytokine production, and gut homeostasis. Impairment in liver function can result in malnutrition, chronic inflammation, decreased anabolic hormone levels, and dysbiosis. These conditions eventually cause an imbalance in osteoblast and osteoclast activities, resulting in bone loss. Osteoporosis is a frequent complication of chronic liver disease (CLD) that adversely affects quality of life and increases early mortality. Sarcopenia is another common complication of CLD characterized by progressive loss of skeletal muscle mass and function. Assessment criteria for sarcopenia specific to liver disease have been established, and sarcopenia has been reported to be associated with an increase in the risk of liver disease-related events and mortality in patients with CLD. Owing to their similar risk factors and underlying pathophysiological mechanisms, osteoporosis and sarcopenia often coexist (termed osteosarcopenia), progress in parallel, and further exacerbate the conditions mentioned above. Therefore, comprehensive management of these musculoskeletal disorders is imperative. This review summarizes the clinical implications and characteristics of osteoporosis, extending to sarcopenia and osteosarcopenia, in patients with CLD caused by different etiologies.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Akihito Tsubota
- Project Research Units, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
4
|
Vogg B, Poetzl J, El Galta R, Fuhr R, Schwebig A, Sekhar S. Pharmacokinetics and pharmacodynamics of the proposed biosimilar denosumab GP2411 and reference denosumab in healthy males. Expert Opin Biol Ther 2024; 24:91-100. [PMID: 38269652 DOI: 10.1080/14712598.2024.2308645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND This Phase I study compared the pharmacokinetic (PK) and pharmacodynamic (PD) similarity of GP2411 proposed denosumab biosimilar to reference denosumab (a monoclonal antibody for specific pro-resorptive conditions). RESEARCH DESIGN AND METHODS Healthy males (28-65 years, 50-90 kg) were randomized to a single sub-therapeutic subcutaneous injection of 35 mg GP2411, EU-Xgeva® or US-Xgeva®, and followed for 39 weeks. The primary endpoints were AUCinf, AUClast, and Cmax. RESULTS Four hundred ninety-two participants completed treatment. The 90% confidence intervals (CIs) (AUCinf, AUClast, and Cmax) and 95% CI of the geometric mean ratios of AUEC of % change from baseline in serum CTX were fully contained within the prespecified equivalence margins (0.80, 1.25), demonstrating similarity. The occurrence of treatment-emergent adverse events (TEAEs) with GP2411, EU-Xgeva® and US-Xgeva® was similar (72.9%, 76.0%, and 71.0% of participants, respectively). Most were Grade 1 or 2, <30% were treatment-related, and there was only one TEAE-related study discontinuation. Rates of positive anti-drug antibodies (ADAs) were similar (57.8%, 64.9%, and 69.1% of participants respectively), but immunogenicity was only borderline detectable and of very low magnitude. Ninety-nine percent of positive ADAs were transient. CONCLUSION GP2411 demonstrated similarity with EU-Xgeva® and US-Xgeva® in PK, PD, safety, and immunogenicity in this population. CLINICAL TRIAL REGISTRATION EudraCT 2019-001651-39.
Collapse
Affiliation(s)
- Barbara Vogg
- Clinical Development Biopharmaceuticals, Hexal AG, Holzkirchen, Germany
| | - Johann Poetzl
- Clinical Development Biopharmaceuticals, Hexal AG, Holzkirchen, Germany
| | - Rachid El Galta
- Clinical Development Biopharmaceuticals, Hexal AG, Holzkirchen, Germany
| | - Rainard Fuhr
- Principal Investigator Early Phase Clinical Unit, Parexel International GmbH, Berlin, Germany
| | - Arnd Schwebig
- Clinical Development Biopharmaceuticals, Hexal AG, Holzkirchen, Germany
| | - Susmit Sekhar
- Clinical Development Biopharmaceuticals, Hexal AG, Holzkirchen, Germany
| |
Collapse
|
5
|
Pickering ME, Javier RM, Malochet S, Pickering G, Desmeules J. Osteoporosis treatment and pain relief: A scoping review. Eur J Pain 2024; 28:3-20. [PMID: 37403555 DOI: 10.1002/ejp.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/11/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Anti-osteoporosis (OP) drugs have been suggested to contribute to pain reduction during OP management. This scoping review aimed at mapping the literature on pain relief with anti-OP drugs in OP treatment. DATABASES AND DATA TREATMENT Medline, Pubmed and Cochrane databases were searched by two reviewers with keywords combinations. Randomized controlled and real-life English studies, pain as an endpoint, antiosteoporosis drugs were inclusion criteria. Case reports, surveys, comment letters, conference abstracts, animal studies and grey literature were excluded. Predetermined data were extracted by two reviewers and disagreement solved through discussion. RESULTS A total of 130 articles were identified, 31 publications were included, 12 randomized clinical trials and 19 observational studies. Pain reduction was assessed by different tools: Visual Analogue Scale, Verbal Rating Scale, Facial Scale or as a domain of quality of life questionnaires including Short form 8, 36, mini-OP, Japanese OP, Qualeffo, Roland Morris Disability questionnaires. Collective data show that anti-OP drugs may display an analgesic effect that may be linked to the local mode of action of drugs on bone and consecutive modulation of pain sensitization. The methodology of the studies showed a heterogeneity of endpoints, comparators, statistical approaches and follow-up duration. CONCLUSION Considering the limitations of the literature, there is a need for more rigorous trials and larger real-life studies taking into account the recommendations published for research in rheumatology and in pain medicine. The identification of responders, patient subtypes, and of analgesic-effect doses would allow optimization and individualization for pain relief in patients with OP. SIGNIFICANCE STATEMENT This scoping review shows that anti-OP drugs may improve pain and quality of life of patients with OP. The heterogeneity in design, choice of endpoints, methodology, comparators and follow-up duration of included randomized clinical trials and real-life studies does not allow so far to identify a predominant antiosteoporosis drug or an optimal dosage for pain relief. These gaps need to be addressed and warrant further research in the future for optimizing pain improvement in the course of OP drug treatment.
Collapse
Affiliation(s)
| | - Rose-Marie Javier
- Centre d'Evaluation et de Traitement de la Douleur et Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sandrine Malochet
- Rheumatology Department, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Gisele Pickering
- Clinical Investigation Center, PIC/CIC, University Hospital, CHU, Clermont-Ferrand, France
| | - Jules Desmeules
- Service de Pharmacologie et Toxicologie Cliniques, Centre multidisciplinaire de la douleur, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
6
|
Priya PS, Pavithra V, Vaishnavi S, Pachaiappan R, Kumar TTA, Rady A, Darwish NM, Arokiyaraj S, Karthick Raja Namasivayam S, Arockiaraj J. Understanding the mechanisms and implications of acacetin in mitigating diabetic osteoporosis: Insights from a zebrafish model. Process Biochem 2023; 134:63-74. [DOI: 10.1016/j.procbio.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
7
|
Hou J, Xu P, Zhong Y, Zhou Z, Zhang W. Interleukin-21 knockout reduces bone loss in ovariectomized mice by inhibiting osteoclastogenesis. Biosci Biotechnol Biochem 2023; 87:1265-1273. [PMID: 37708033 DOI: 10.1093/bbb/zbad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Estrogen deficiency accelerates osteoporosis in elderly women. However, the role of IL-21 in postmenopausal osteoporosis remains unclear. Female wild-type (WT) C57BL/6 and IL-21 knockout (KO) mice were used for ovariectomy (OVX). Here, IL-21 levels were significantly increased in the serum and bone tissues of WT-OVX mice. The trabecular bone space of the femur was significantly increased, and the bone mass was reduced in OVX mice, accompanied by a significant decrease in the maximum load, energy absorption, and elastic modulus indices. In contrast, IL-21 knockout effectively alleviated the effects of OVX on bone mass. Serum TRACP-5b and receptor activator of nuclear factor kappa B ligand (RANKL) levels and osteoclastogenesis were significantly higher in OVX mice than in sham mice, while serum TRACP-5b and RANKL levels and osteoclastogenesis were significantly decreased in IL-21 KO + OVX mice compared to WT + OVX mice. IL-21 knockdown reduces TRACP-5b, RANKL, and osteoclastogenesis, effectively preventing bone resorption and alleviating the progression of OVX-induced osteoporosis.
Collapse
Affiliation(s)
- Junlong Hou
- Department of Orthopaedics, Jieyang People's Hospital, Jieyang, China
| | - Ping Xu
- Spinal Trauma Area 2, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanheng Zhong
- Spinal Trauma Area 2, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhigang Zhou
- Spinal Trauma Area 2, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Orthopaedics, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Wencai Zhang
- Spinal Trauma Area 2, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Tetradis S, Allen MR, Ruggiero SL. Pathophysiology of Medication-Related Osteonecrosis of the Jaw-A Minireview. JBMR Plus 2023; 7:e10785. [PMID: 37614299 PMCID: PMC10443081 DOI: 10.1002/jbm4.10785] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 08/25/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse effect of antiresorptive medications administered for control of osseous malignancy, osteoporosis, or other bone metabolic diseases. Despite being reported in the literature two decades ago, MRONJ etiology, pathophysiology, and progression remain largely unknown, and current nonoperative or operative treatment strategies are mostly empirical. Several hypotheses that attempt to explain the mechanisms of MRONJ pathogenesis have been proposed. However, none of these hypotheses alone is able to capture the complex mechanistic underpinnings of the disease. In this minireview, we aim to highlight key findings from clinical and translational studies and propose a unifying model for the pathogenesis and progression of MRONJ. We also identify aspects of the disease process that require further investigation and suggest areas for future research efforts toward calibrating methodologic approaches and validating experimental findings. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sotirios Tetradis
- Division of Diagnostic and Surgical SciencesUCLA School of DentistryLos AngelesCAUSA
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Salvatore L. Ruggiero
- New York Center for Orthognathic and Maxillofacial SurgeryLake SuccessNYUSA
- Department Oral and Maxillofacial SurgeryStony Brook School of Dental MedicineStony BrookNYUSA
- Division of Oral and Maxillofacial SurgeryHofstra‐Northwell School of MedicineHempsteadNYUSA
| |
Collapse
|
9
|
Muñoz-Garcia J, Heymann D, Giurgea I, Legendre M, Amselem S, Castañeda B, Lézot F, William Vargas-Franco J. Pharmacological options in the treatment of osteogenesis imperfecta: A comprehensive review of clinical and potential alternatives. Biochem Pharmacol 2023; 213:115584. [PMID: 37148979 DOI: 10.1016/j.bcp.2023.115584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous connective tissue disorder characterized by bone fragility and different extra-skeletal manifestations. The severity of these manifestations makes it possible to classify OI into different subtypes based on the main clinical features. This review aims to outline and describe the current pharmacological alternatives for treating OI, grounded on clinical and preclinical reports, such as antiresorptive agents, anabolic agents, growth hormone, and anti-TGFβ antibody, among other less used agents. The different options and their pharmacokinetic and pharmacodynamic properties will be reviewed and discussed, focusing on the variability of their response and the molecular mechanisms involved to attain the main clinical goals, which include decreasing fracture incidence, improving pain, and promoting growth, mobility, and functional independence.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Irina Giurgea
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Marie Legendre
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Beatriz Castañeda
- Service d'Orthopédie Dento-Facial, Département d'Odontologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris F75013, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France.
| | | |
Collapse
|
10
|
Rahman MT, Kaung Y, Shannon L, Androjna C, Sharifi N, Labhasetwar V. Nanoparticle-mediated synergistic drug combination for treating bone metastasis. J Control Release 2023; 357:498-510. [PMID: 37059400 PMCID: PMC10243348 DOI: 10.1016/j.jconrel.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Bone metastasis at an advanced disease stage is common in most solid tumors and is untreatable. Overexpression of receptor activator of nuclear factor κB ligand (RANKL) in tumor-bone marrow microenvironment drives a vicious cycle of tumor progression and bone resorption. Biodegradable nanoparticles (NPs), designed to localize in the tumor tissue in bone marrow, were evaluated in a prostate cancer model of bone metastasis. The combination treatment, encapsulating docetaxel, an anticancer drug (TXT-NPs), and Denosumab, a monoclonal antibody that binds to RANKL (DNmb-NPs), administered intravenously regressed the tumor completely, preventing bone resorption, without causing any mortality. With TXT-NPs alone treatment, after an initial regression, the tumor relapsed and acquired resistance, whereas DNmb-NPs alone treatment was ineffective. Only in the combination treatment, RANKL was not detected in the tumor tibia, thus negating its role in tumor progression and bone resorption. The combination treatment was determined to be safe as the vital organ tissue showed no increase in inflammatory cytokine or the liver ALT/AST levels, and animals gained weight. Overall, dual drug treatment acted synergistically to modulate the tumor-bone microenvironment with encapsulation enhancing their therapeutic potency to achieve tumor regression.
Collapse
Affiliation(s)
- Mohammed Tanjimur Rahman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youzhi Kaung
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Logan Shannon
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
Maciel GBM, Maciel RM, Danesi CC. Bone cells and their role in physiological remodeling. Mol Biol Rep 2023; 50:2857-2863. [PMID: 36609750 DOI: 10.1007/s11033-022-08190-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE This work compiles the characteristics of bone cells involved in the physiological bone remodeling. METHODS A narrative review of the literature was performed. RESULTS Remodeling is a different process from modeling. Remodeling allows old or damaged bone tissue to be renewed, ensuring the maintenance of bone fracture resistance, as well as maintaining calcium and phosphorus homeostasis. We present the role of osteoclasts, a multinucleated cell with hematopoietic origin responsible for resorbing bone. The formation of osteoclasts depends on the cytokines macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) and can be blocked by osteoprotegerin. Furthermore, this review highlights the features of osteoblasts, polarized cubic cells of mesenchymal origin that deposit bone and also covers osteocytes and bone lining cells. This review presents the five fundamental phases of bone remodeling and addresses aspects of its regulation through hormones and growth factors. CONCLUSIONS Knowledge of the current concepts of physiological bone remodeling is necessary for the study of the different pathologies that affect the bone tissue and thus helps in the search for new therapies.
Collapse
Affiliation(s)
- Gabriel Bassan Marinho Maciel
- Postgraduate Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil. .,Department of Pathology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97015-900, RS, Brazil.
| | | | | |
Collapse
|
12
|
Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L, He X. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal 2023; 19:207-219. [PMID: 35106736 PMCID: PMC9984661 DOI: 10.1007/s11302-021-09836-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that both the occurrence and progression of osteoporosis are associated with inflammation, especially in primary osteoporosis. The maintenance of skeletal homeostasis is dependent on the complex regulation of bone metabolism. Numerous evidence suggested that purinoceptor networks are essential for bone homeostasis. In this review, the relationship between inflammation and the development of osteoporosis and the role of P2X7 receptor (P2X7R) in regulating the dynamic regulation of bone reconstruction were covered. We also discussed how P2X7R regulates the balance between resorption and bone formation by osteoblasts and reviewed the relevance of P2X7R polymorphisms in skeletal physiology. Finally, we analyzed potential targets of P2X7R for osteoporosis.
Collapse
Affiliation(s)
- Haoyun Huang
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu-Mei He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Miao-Miao Lin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomei Zhang
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China
| | - Li Liang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Lu Y, Ruan Y, Hong P, Rui K, Liu Q, Wang S, Cui D. T-cell senescence: A crucial player in autoimmune diseases. Clin Immunol 2023; 248:109202. [PMID: 36470338 DOI: 10.1016/j.clim.2022.109202] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Senescent T cells are proliferative disabled lymphocytes that lack antigen-specific responses. The development of T-cell senescence in autoimmune diseases contributes to immunological disorders and disease progression. Senescent T cells lack costimulatory markers with the reduction of T cell receptor repertoire and the uptake of natural killer cell receptors. Senescent T cells exert cytotoxic effects through the expression of perforin, granzymes, tumor necrosis factor, and other molecules without the antigen-presenting process. DNA damage accumulation, telomere damage, and limited DNA repair capacity are important features of senescent T cells. Impaired mitochondrial function and accumulation of reactive oxygen species contribute to T cell senescence. Alleviation of T-cell senescence could provide potential targets for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yinyun Lu
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Yongchun Ruan
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Pan Hong
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, China
| | - Ke Rui
- Department of Transfusion, Shaoxing People's Hospital, Shaoxing, China
| | - Qi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Lončar SR, Halcrow SE, Swales D. Osteoimmunology: The effect of autoimmunity on fracture healing and skeletal analysis. Forensic Sci Int Synerg 2023; 6:100326. [PMID: 37091290 PMCID: PMC10120377 DOI: 10.1016/j.fsisyn.2023.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 04/25/2023]
Abstract
Understanding factors that affect bone response to trauma is integral to forensic skeletal analysis. It is essential in forensic anthropology to identify if impaired fracture healing impacts assessment of post-traumatic time intervals and whether a correction factor is required. This paper presents a synthetic review of the intersection of the literature on the immune system, bone biology, and osteoimmunological research to present a novel model of interactions that may affect fracture healing under autoimmune conditions. Results suggest that autoimmunity likely impacts fracture healing, the pathogenesis however, is under researched, but likely multifactorial. With autoimmune diseases being relatively common, significant clinical history should be incorporated when assessing skeletal remains. Future research includes the true natural healing rate of bone; effect of autoimmunity on this rate; variation of healing with different autoimmune diseases; and if necessary, development of a correction factor on the natural healing rate to account for impairment in autoimmunity.
Collapse
Affiliation(s)
- Stephie R. Lončar
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Scotland, United Kingdom
- Department of Anatomy, University of Otago, New Zealand
- Corresponding author. Centre for Anatomy and Human Identification School of Science and Engineering, MSI/WTB Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom.
| | - Siân E. Halcrow
- Department of Anatomy, University of Otago, New Zealand
- Corresponding author. Biological Anthropology Research Group, Department of Anatomy, 270 Great King Street, University of Otago, Dunedin, 9016, New Zealand.
| | - Diana Swales
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Scotland, United Kingdom
| |
Collapse
|
15
|
Sheppard AJ, Paravastu SS, Wojnowski NM, Osamor CC, Farhadi F, Collins MT, Saboury B. Emerging Role of 18F-NaF PET/Computed Tomographic Imaging in Osteoporosis: A Potential Upgrade to the Osteoporosis Toolbox. PET Clin 2023; 18:1-20. [PMID: 36442958 PMCID: PMC9773817 DOI: 10.1016/j.cpet.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Osteoporosis is a metabolic bone disorder that leads to a decline in bone microarchitecture, predisposing individuals to catastrophic fractures. The current standard of care relies on detecting bone structural change; however, these methods largely miss the complex biologic forces that drive these structural changes and response to treatment. This review introduces sodium fluoride (18F-NaF) positron emission tomography/computed tomography (PET/CT) as a powerful tool to quantify bone metabolism. Here, we discuss the methods of 18F-NaF PET/CT, with a special focus on dynamic scans to quantify parameters relevant to bone health, and how these markers are relevant to osteoporosis.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Sriram S. Paravastu
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Natalia M. Wojnowski
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA;,Northwestern University Feinberg School of Medicine, 420 East Superior Street, Chicago, IL 60611, USA
| | - Charles C. Osamor
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-4320, USA;,Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Michael T. Collins
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-4320, USA;,Corresponding author. 10 Center Drive, Bethesda, MD 20892.
| |
Collapse
|
16
|
Cabling MG, Sandhu VK, Downey CD, Torralba KD. Cardiovascular disease and bone health in aging female rheumatic disease populations: A review. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231155286. [PMID: 36825447 PMCID: PMC9969471 DOI: 10.1177/17455057231155286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Rheumatic diseases cover a wide spectrum of conditions, including primary and secondary degenerative joint diseases and autoimmune inflammatory rheumatic diseases. The risks of cardiovascular disease and osteoporosis and resultant fractures in aging female rheumatic disease populations, especially those with autoimmune rheumatic diseases, are increased. Changes in the immune system in aging populations need to be considered especially among patients with autoimmune rheumatic diseases. Immunosenescence is closely aligned to reduced adaptive immunity and increased non-specific innate immunity leading to chronic inflammation of inflammaging. The effective use of disease-modifying antirheumatic drugs to control autoimmune rheumatic diseases may also mitigate factors leading to cardiovascular disease and osteoporosis. Rheumatic diseases, which largely manifest as arthritis, predispose patients to premature joint degeneration and poor bone health and therefore have a higher risk of developing end-stage arthritis requiring joint arthroplasties sooner or more often than other patients without rheumatic disease.
Collapse
Affiliation(s)
- Marven G Cabling
- Division of Rheumatology, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Vaneet K Sandhu
- Division of Rheumatology, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christina D Downey
- Division of Rheumatology, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Karina D Torralba
- Division of Rheumatology, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
17
|
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022; 44:6346-6367. [PMID: 36547094 PMCID: PMC9776574 DOI: 10.3390/cimb44120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.
Collapse
Affiliation(s)
- Yajing Yang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lei Yuan
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Correspondence: (X.Z.); (Z.Z.)
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
18
|
AKT/GSK3β/NFATc1 and ROS signal axes are involved in AZD1390-mediated inhibitory effects on osteoclast and OVX-induced osteoporosis. Int Immunopharmacol 2022; 113:109370. [DOI: 10.1016/j.intimp.2022.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
19
|
Bandeira F, Oliveira LBD, Bilezikian JP. Long-term consequences of osteoporosis therapy with denosumab. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:717-723. [PMID: 36382761 PMCID: PMC10118828 DOI: 10.20945/2359-3997000000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Denosumab (DMAb) is a human monoclonal antibody used as an antiresorptive drug in the treatment of osteoporosis. Approval at a dosage of 60 mg every 6 months was based on the results of the randomized, placebo-controlled trial (FREEDOM). The design of this 3-year study included an extension for up to 10 years. Those who were randomized to DMAb continued on drug, while those who were randomized to placebo transitioned to DMAb. The 10-year experience with DMAb provides data on efficacy of drug in terms of reduced fractures and continued increases in bone mineral density (BMD). The 10-year experience with denosumab also provides information about rare complications associated with the use of DMAb, such as osteonecrosis of the jaw (ONJ), and atypical femoral fractures (AFF). This experience provided new insights into the reversibility of effects upon discontinuation without follow-on therapy with another agent. This review focuses upon prolonged treatment with DMAb, with regard to beneficial effects on fracture reduction and safety. Additionally, its use in patients with impaired renal function, compare its results with those of bisphosphonates (BPs), the occurrence/frequency of complications, in addition to the use of different tools, from imaging techniques to histological findings, to evaluate its effects on bone tissue.
Collapse
|
20
|
Gong Y, Bu Y, Li Y, Hao D, He B, Kong L, Huang W, Gao X, Zhang B, Qu Z, Wang D, Yan L. Hydrogel-based delivery system applied in the local anti-osteoporotic bone defects. Front Bioeng Biotechnol 2022; 10:1058300. [PMID: 36440439 PMCID: PMC9691673 DOI: 10.3389/fbioe.2022.1058300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is an age-related systemic skeletal disease leading to bone mass loss and microarchitectural deterioration. It affects a large number of patients, thereby economically burdening healthcare systems worldwide. The low bioavailability and complications, associated with systemic drug consumption, limit the efficacy of anti-osteoporosis drugs currently available. Thus, a combination of therapies, including local treatment and systemic intervention, may be more beneficial over a singular pharmacological treatment. Hydrogels are attractive materials as fillers for bone injuries with irregular shapes and as carriers for local therapeutic treatments. They exhibit low cytotoxicity, excellent biocompatibility, and biodegradability, and some with excellent mechanical and swelling properties, and a controlled degradation rate. This review reports the advantages of hydrogels for adjuvants loading, including nature-based, synthetic, and composite hydrogels. In addition, we discuss functional adjuvants loaded with hydrogels, primarily focusing on drugs and cells that inhibit osteoclast and promote osteoblast. Selecting appropriate hydrogels and adjuvants is the key to successful treatment. We hope this review serves as a reference for subsequent research and clinical application of hydrogel-based delivery systems in osteoporosis therapy.
Collapse
Affiliation(s)
- Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yazhong Bu
- Department of Biophysics, Institute of Medical Engineering, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yongliang Li
- Department of Rehabilitation, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wangli Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zechao Qu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Xu Z, Xu J, Li S, Cui H, Zhang G, Ni X, Wang J. S-Equol enhances osteoblastic bone formation and prevents bone loss through OPG/RANKL via the PI3K/Akt pathway in streptozotocin-induced diabetic rats. Front Nutr 2022; 9:986192. [PMID: 36337646 PMCID: PMC9633996 DOI: 10.3389/fnut.2022.986192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to explore whether S-Equol delays diabetes-induced osteoporosis and the molecular mechanisms underlying its therapeutic effects. Materials and methods Thirty-five male Sprague–Dawley rats were randomized into five groups. The diabetic osteoporosis (DOP) group and three S-Equol treatment groups were intraperitoneally injected with streptozotocin (STZ) to develop a DOP model. After the 12-week intervention, bone transformation indicators were detected using an enzyme-linked immunosorbent assay kit; bone mineral density (BMD) and bone microstructure were obtained using dual-energy X-ray absorptiometry and microCT; morphological changes in the bone tissue were investigated using HE staining; bone morphogenetic proteins were detected using immunohistochemical staining. ROS17/2.8 cells were cultured in vitro, and Cell Counting Kit-8 was used to test the protective effects of S-Equol in osteoblastic cells in a high-fat and high-glucose environment. Furthermore, the expression of osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), estrogen receptor β(ERβ), phosphorylated Akt (pAKT)/protein kinase B (AKT), and osteocalcin (OC) in bone tissue and ROS17/2.8 cells was assessed using reverse transcription polymerase chain reaction (RT-PCR) and western blotting. To determine whether ERβ and phosphatidylinositol 3’ -kinase (PI3K)/AKT signaling pathways are involved in the process, LY294002 (PI3K signaling pathway inhibitor) and small interfering RNA targeting ERβ mRNA (si-ERβ) were used to verify the function of the ERβ-mediated PI3K/AKT pathway in this process. Results After the 12-week intervention, S-Equol enhanced BMD, improved bone microarchitecture in DOP rats (P < 0.05), and improved markers of bone metabolism (P < 0.05). In vitro, 10–6 mmol/L S-Equol was selected to significantly protect osteoblasts from high- and high-glucose environments (P < 0.05). Gene expression of OPG, ERβ, pAKT/AKT, and OC was upregulated compared to the DOP group, and RANKL was downregulated compared to the DOP group (P < 0.05) both in bone tissue and osteoblastic cells. The promotion of OPG and pAKT/AKT is mediated by LY294002 and siERβ. Conclusion S-Equol binds to ERβ to regulate OPG/RANKL via the PI3K/AKT pathway and improve DOP. Our results demonstrate the potential role of S-Equol in the treatment of DOP by targeting ERβ. Thus, S-Equol may have the potential to be an adjuvant drug for treating DOP.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Nutrition, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Li
- Department of Nutrition, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hanqiang Cui
- Department of Nutrition, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guiming Zhang
- Department of Nutrition, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiangmin Ni
- Department of Nutrition, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Xiangmin Ni,
| | - Jian Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jian Wang,
| |
Collapse
|
22
|
Jin H, Jiang N, Xu W, Zhang Z, Yang Y, Zhang J, Xu H. Effect of flavonoids from Rhizoma Drynariae on osteoporosis rats and osteocytes. Biomed Pharmacother 2022; 153:113379. [DOI: 10.1016/j.biopha.2022.113379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022] Open
|
23
|
Gomez R, Tejada MÁ, Rodríguez-García V, Burgués O, Santos-Llamas AI, Martínez-Massa A, Marín-Montes A, Tarín JJ, Cano A. Histological Grade and Tumor Stage Are Correlated with Expression of Receptor Activator of Nuclear Factor Kappa b (Rank) in Epithelial Ovarian Cancers. Int J Mol Sci 2022; 23:ijms23031742. [PMID: 35163671 PMCID: PMC8836022 DOI: 10.3390/ijms23031742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
The receptor activator of nuclear factor kappa B (RANK) is becoming recognized as a master regulator of tumorigenesis, yet its role in gynecological cancers remains mostly unexplored. We investigated whether there is a gradation of RANK protein and mRNA expression in epithelial ovarian cancer (EOC) according to malignancy and tumor staging. Immunohistochemical expression of RANK was examined in a cohort of 135 (benign n = 29, borderline n= 23 and malignant n = 83) EOCs. Wild type and truncated RANK mRNA isoform quantification was performed in a cohort of 168 (benign n = 26, borderline n = 13 and malignant n = 129) EOCs. RANK protein and mRNA values were increased in malignant vs. benign or borderline conditions across serous, mucinous and endometrioid cancer subtypes. Additionally, a trend of increased RANK values with staging was observed for the mucinous and serous histotype. Thus, increased expression of RANK appears associated with the evolution of disease to the onset of malignancy in EOC. Moreover, in some EOC histotypes, RANK expression is additionally associated with clinicopathological markers of tumor aggressiveness, suggesting a role in further progression of tumor activity.
Collapse
Affiliation(s)
- Raul Gomez
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (M.Á.T.); (A.I.S.-L.); (J.J.T.)
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (R.G.); (A.C.)
| | - Miguel Á. Tejada
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (M.Á.T.); (A.I.S.-L.); (J.J.T.)
| | - Víctor Rodríguez-García
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
| | - Octavio Burgués
- Department of Pathology, Hospital Clinico Universitario, 46010 Valencia, Spain;
| | - Ana I. Santos-Llamas
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (M.Á.T.); (A.I.S.-L.); (J.J.T.)
| | - Andrea Martínez-Massa
- Service of Obstetrics and Gynecology, Hospital Clínico Universitario, Av Blasco Ibáñez 17, 46010 Valencia, Spain; (A.M.-M.); (A.M.-M.)
| | - Antonio Marín-Montes
- Service of Obstetrics and Gynecology, Hospital Clínico Universitario, Av Blasco Ibáñez 17, 46010 Valencia, Spain; (A.M.-M.); (A.M.-M.)
| | - Juan J. Tarín
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (M.Á.T.); (A.I.S.-L.); (J.J.T.)
- Department of Cellular Biology, Functional Biology, and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (M.Á.T.); (A.I.S.-L.); (J.J.T.)
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
- Correspondence: (R.G.); (A.C.)
| |
Collapse
|
24
|
He B, Zhao J, Zhang M, Yin L, Quan Z, Ou Y, Huang W. Causal roles of circulating adiponectin in osteoporosis and cancers. Bone 2022; 155:116266. [PMID: 34844025 DOI: 10.1016/j.bone.2021.116266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023]
Abstract
Circulating adiponectin has some association with the risk of osteoporosis and cancers, but their causal relationships remains elusive. Mendelian randomization (MR) study was used to explore the causal roles of circulating adiponectin in osteoporosis and cancers by using genome-wide association studies (GWASs) associated with circulating adiponectin, osteoporosis and cancers. Fifteen single nucleotide polymorphisms (SNPs) were used as instrumental variables for circulating adiponectin. Genetic predisposition to high circulating adiponectin was strongly associated with low femoral neck bone mineral density (FN-BMD, beta-estimate: -0.015, 95% CI: -0.023 to -0.006, SE: 0.004, P-value = 0.001), low forearm BMD (FA-BMD, beta-estimate: -0.027, 95% CI: -0.050 to -0.004, SE: 0.012, P-value = 0.023) and increased risk of breast cancer (beta-estimate: 0.011, 95% CI: 0.001 to 0.022, SE: 0.005, P-value = 0.031). There was limited evidence of the associations between circulating adiponectin and other outcomes (i.e. lumbar spine BMD [LS-BMD], colorectal cancer, liver cancer, lung cancer, bone cancer and prostate cancer). This study provides robust evidence that high circulating adiponectin is causally associated with low FN-BMD, low FA-BMD and increased risk of breast cancer, which may provide new insight to prevent and treat osteoporosis and breast cancer.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinqiu Zhao
- Department of Infectious diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Muzi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lifeng Yin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhengxue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
25
|
Su J, Liu C, Bai H, Cong W, Tang H, Hu H, Su L, He S, Wang Y. Development of novel bone targeting peptide-drug conjugate of 13-aminomethyl-15-thiomatrine for osteoporosis therapy. RSC Adv 2021; 12:221-227. [PMID: 35424502 PMCID: PMC8978659 DOI: 10.1039/d1ra08136e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
13-Aminomethyl-15-thiomatrine (M19) previously developed by our research group was a promising candidate for novel anti-osteoporosis drug development. However, the application of M19 was limited by its unsatisfactory druggability including poor chemical stability, excessively broad pharmacological activity and some degree of cytotoxicity. To solve these problems, M19-based bone targeting and cathepsin K sensitive peptide–drug conjugates (BTM19-1, BTM19-2 and BTM19-3) were developed to realize precise drug release in the bone tissue. Subsequent studies showed a rapid drug release process via cathepsin K digestion but sufficient stability over several hours in chymotrypsin. Besides, greatly improved chemical stability and strong hydroxyapatite binding affinity were also demonstrated. In biological evaluation studies, these PDCs showed less cytotoxicity and similar osteoclast inhibitory activity compared with the prototype drug. The optimal BTM19-2 could serve as a suitable candidate for further osteoporosis therapy research. 13-Aminomethyl-15-thiomatrine (M19) previously developed by our research group was a promising candidate for novel anti-osteoporosis drug development.![]()
Collapse
Affiliation(s)
- Jia Su
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Zhejiang China
| | - Chao Liu
- Institute of Translational Medicine, Shanghai University Shanghai China
| | - Haohao Bai
- Institute of Translational Medicine, Shanghai University Shanghai China
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University Shanghai China
| | - Hua Tang
- Institute of Translational Medicine, Shanghai University Shanghai China
| | - Honggang Hu
- Institute of Translational Medicine, Shanghai University Shanghai China
| | - Li Su
- Institute of Translational Medicine, Shanghai University Shanghai China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University Shanghai China
| | - Yong Wang
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Zhejiang China
| |
Collapse
|
26
|
Bonaccorsi G, Rizzati M, Salani L, Giganti M. Postmenopausal osteoporosis: risk evaluation and treatment options. Minerva Obstet Gynecol 2021; 73:714-729. [PMID: 34905877 DOI: 10.23736/s2724-606x.21.04896-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Postmenopausal osteoporosis is a chronic progressive condition characterized by reduced bone mass and impaired bone quality, leading to an increased risk of fragility fractures. Osteoporotic fractures reduce quality of life and are associated with high morbidity, mortality and economic burden. Primary and secondary prevention interventions are always recommended starting from the premenopausal age, in women after menopause, however, it is essential to develop a long-term intervention strategy that allows to identify patients at high risk of fracture and the choice of therapy based on the estimated risk. This narrative review described the tools for layering the management approach in relation to low, high and very high fracture risk. Several medications are now available for the treatment of osteoporosis and the prevention of fractures; the knowledge of the efficacy, safety and additional benefits profile of the individual preparations allows an appropriate choice between the different drugs available and the possibility of adapting the prescription to the lifetime fracture risk spectrum. From the literature it emerges that menopausal hormone therapy (MHT), TSEC combination and SERMs can be drugs of choice to counteract postmenopausal bone loss in younger women or at low risk of fracture, while bisphosphonates and denosumab are appropriate for women with high risk or at an older age. Therapy with denosumab and anabolic agents such as teriparatide and romosozumab is particularly indicated for subjects with very high risk of fracture.
Collapse
Affiliation(s)
- Gloria Bonaccorsi
- Department of Translational Medicine, Menopause and Osteoporosis Center, University of Ferrara, Ferrara, Italy - .,University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy -
| | - Monica Rizzati
- Department of Translational Medicine, Menopause and Osteoporosis Center, University of Ferrara, Ferrara, Italy
| | - Lara Salani
- Department of Translational Medicine, Menopause and Osteoporosis Center, University of Ferrara, Ferrara, Italy
| | - Melchiore Giganti
- Department of Translational Medicine and for Romagna, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Hyperbaric Oxygen Therapy Does Not Have a Negative Impact on Bone Signaling Pathways in Humans. Healthcare (Basel) 2021; 9:healthcare9121714. [PMID: 34946440 PMCID: PMC8701274 DOI: 10.3390/healthcare9121714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction: Oxygen is emerging as an important factor in the local regulation of bone remodeling. Some preclinical data suggest that hyperoxia may have deleterious effects on bone cells. However, its clinical relevance is unclear. Hence, we studied the effect of hyperbaric oxygen therapy (HBOT) on serum biomarkers reflecting the status of the Wnt and receptor activator of NF-κB ligand (RANKL) pathways, two core pathways for bone homeostasis. Materials and methods: This was a prospective study of 20 patients undergoing HBOT (mean age 58 yrs., range 35–82 yrs.) because of complications of radiotherapy or chronic anal fissure. Patients were subjected to HBOT (100% oxygen; 2.4 atmospheres absolute for 90 min). The average number of HBOT sessions was 20 ± 5 (range 8–31). Serum hypoxia-inducible factor 1-α (HIF1-α), osteoprotegerin (OPG), RANKL, and the Wnt inhibitors sclerostin and dickkopf-1 (DKK1) were measured at baseline and after HBOT by using specific immunoassays. Results: HIF-1α in eight patients with measurable serum levels increased from 0.084 (0.098) ng/mL at baseline to 0.146 (0.130) ng/mL after HBOT (p = 0.028). However, HBOT did not induce any significant changes in the serum levels of OPG, RANKL, sclerostin or DKK1. This was independent of the patients’ diagnosis, either neoplasia or benign. Conclusion: Despite the potential concerns about hyperoxia, we found no evidence that HBOT has any detrimental effect on bone homeostasis.
Collapse
|
28
|
Hirota M, Takahashi T, Saito Y, Kawabata R, Nakatsuka R, Imamura H, Motoori M, Makari Y, Takeno A, Kishi K, Adachi S, Miyagaki H, Kurokawa Y, Yamasaki M, Eguchi H, Doki Y. Utility of monthly minodronate for osteoporosis after gastrectomy: Prospective multicenter randomized controlled trials. Ann Gastroenterol Surg 2021; 5:754-766. [PMID: 34755007 PMCID: PMC8560613 DOI: 10.1002/ags3.12474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
AIM Osteoporosis in patients after gastrectomy is increasing with the aging of gastric cancer patients. Bisphosphonates are effective treatments for osteoporosis; however, their safety or efficacy in postgastrectomy patients has not been established. The purpose of this multicenter prospective intervention study was to investigate the impact of monthly minodronate on osteoporosis after gastrectomy. METHODS Of the 261 enrolled gastric cancer patients, 164 patients were diagnosed with osteoporosis based on criteria of the Japan Society of Osteoporosis. They were randomly assigned 1:1 to groups treated with active vitamin D (VD group) or monthly minodronate (MIN group). The primary endpoint was changes in lumbar bone mineral density (L-BMD) 12 mo after the start of administration. The secondary endpoints were changes in bone metabolism markers, adverse events (AEs), or treatment completion rates. RESULTS There was no significant difference in patient background between the VD (n = 82) and MIN (n = 82) groups. In the MIN group, the increase in L-BMD was significantly higher than that in the VD group (4.52% vs 1.72%, P = .001), with a significant reduction in bone metabolism markers; blood NTX (-25.6% vs -1.6%, P < .01) and serum bone-specific alkaline phosphatase (-34.3% vs -20.1%, P < .01). AEs were observed in 26.8% and 9.3% of the patients and treatment completion rates were 77.5% and 89.3% in the MIN and VD groups, respectively. Serious AEs were not observed in either group. CONCLUSION This study demonstrated the safety and efficacy of monthly minodronate, suggesting that this treatment may be useful for osteoporosis after gastrectomy (UMIN000015517).
Collapse
Affiliation(s)
- Masashi Hirota
- Department of SurgeryToyonaka municipal hospitalOsakaJapan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yurina Saito
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | | | - Rie Nakatsuka
- Department of SurgeryOsaka General medical centerOsakaJapan
| | | | | | - Yoichi Makari
- Department of SurgerySakai city medical centerSakaiJapan
| | - Atsushi Takeno
- Department of SurgeryKansai Rosai HospitalAmagasakiJapan
| | - Kentaro Kishi
- Department of SurgeryOsaka police hospitalOsakaJapan
| | | | | | - Yukinori Kurokawa
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Makoto Yamasaki
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
29
|
Wang Y, Zhou X, Wang D. Mesenchymal Stem Cell-Derived Extracellular Vesicles Inhibit Osteoporosis via MicroRNA-27a-Induced Inhibition of DKK2-Mediated Wnt/β-Catenin Pathway. Inflammation 2021; 45:780-799. [PMID: 34676493 DOI: 10.1007/s10753-021-01583-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023]
Abstract
Osteoporosis (OP) is a systemic skeletal disease that promotes bone fragility and the risk of fractures. Recent studies have shown the relevance of microRNAs (miRNAs) in the development of OP. This study aimed to evaluate the possible mechanisms of action underlying miR-27a loaded by mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) in OP. Serum samples from OP patients and normal controls were collected for miRNA microarray analysis. The expression of filtered miRNA was upregulated in osteoblasts (OB) and osteoclasts (OCs) for biological activity assessment. After developing OP mice using ovariectomy (OVX) and confirming OP, the miR-27a expression level was upregulated in mice by MSC-EV application. Dual-luciferase assays were conducted to validate the relationship between miR-27a and DKK2 expression. The poor expression of miR-27a was observed in patients with OP. miR-27a increased the expression of OB markers, the number of ALP-positive cells, and the number of calcium nodules in OCs. In OVX mice, miR-27a increased bone density, improved bone structure damage recovery, decreased the levels of bone resorption markers, and decreased OC number. miR-27a transmitted by MSC-EVs interacted with DKK2. MSC-EVs exerted the same protective effects as miR-27a on OP, whereas miR-27a inhibitor abolished the attenuating effects of MSC-EVs. In contrast, DKK2 depletion reversed the stimulatory effects of the miR-27a inhibitor on OP. The Wnt/β-catenin pathway was activated upon MSC-EV application and DKK2 silencing and was impaired upon the downregulation of the expression of miR-27a. MSC-EVs are effective in preventing mouse OP. This mechanism is mediated by the miR-27a/DKK2/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Stomatology, Tibet Corps Hospital, Chinese People's Armed Police Forces, Chengguan District, Tibet Autonomous Region, No. 77, Sala Road, Zhaxi Street, 850000, Lhasa, People's Republic of China.
| | - Xiaoqi Zhou
- Orthopaedic Sports Medicine Center, Jilin City People's Hospital, 132012, Jilin, People's Republic of China
| | - Dalin Wang
- Department of Orthopedics, Affiliated Hospital of Beihua University, 132012, Jilin, People's Republic of China
| |
Collapse
|
30
|
Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause 2021; 28:973-997. [PMID: 34448749 DOI: 10.1097/gme.0000000000001831] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To review evidence regarding osteoporosis screening, prevention, diagnosis, and management in the past decade and update the position statement published by The North American Menopause Society (NAMS) in 2010 regarding the management of osteoporosis in postmenopausal women as new therapies and paradigms have become available. DESIGN NAMS enlisted a panel of clinician experts in the field of metabolic bone diseases and/or women's health to review and update the 2010 NAMS position statement and recommendations on the basis of new evidence and clinical judgement. The panel's recommendations were reviewed and approved by the NAMS Board of Trustees. RESULTS Osteoporosis, especially prevalent in older postmenopausal women, increases the risk of fractures that can be associated with significant morbidity and mortality. Postmenopausal bone loss, related to estrogen deficiency, is the primary contributor to osteoporosis. Other important risk factors for postmenopausal osteoporosis include advanced age, genetics, smoking, thinness, and many diseases and drugs that impair bone health. An evaluation of these risk factors to identify candidates for osteoporosis screening and recommending nonpharmacologic measures such as good nutrition (especially adequate intake of protein, calcium, and vitamin D), regular physical activity, and avoiding smoking and excessive alcohol consumption are appropriate for all postmenopausal women. For women at high risk for osteoporosis, especially perimenopausal women with low bone density and other risk factors, estrogen or other therapies are available to prevent bone loss. For women with osteoporosis and/or other risk factors for fracture, including advanced age and previous fractures, the primary goal of therapy is to prevent new fractures. This is accomplished by combining nonpharmacologic measures, drugs to increase bone density and to improve bone strength, and strategies to reduce fall risk. If pharmacologic therapy is indicated, government-approved options include estrogen agonists/antagonists, bisphosphonates, RANK ligand inhibitors, parathyroid hormone-receptor agonists, and inhibitors of sclerostin. CONCLUSIONS Osteoporosis is a common disorder in postmenopausal women. Management of skeletal health in postmenopausal women involves assessing risk factors for fracture, reducing modifiable risk factors through dietary and lifestyle changes, and the use of pharmacologic therapy for patients at significant risk of osteoporosis or fracture. For women with osteoporosis, lifelong management is necessary. Treatment decisions occur continuously over the lifespan of a postmenopausal woman. Decisions must be individualized and should include the patient in the process of shared decision-making.
Collapse
|
31
|
Ishizu H, Arita K, Terkawi MA, Shimizu T, Iwasaki N. Risks vs. benefits of switching therapy in patients with postmenopausal osteoporosis. Expert Rev Endocrinol Metab 2021; 16:217-228. [PMID: 34310233 DOI: 10.1080/17446651.2021.1956902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Introduction: Osteoporosis is characterized by the fragility of bones, leading to fractures and, consequently, the deterioration of functional capacity and quality of life. Postmenopausal women, in particular, are prone to osteoporosis and often require anti-osteoporosis treatment. In the last few decades, various anti-osteoporosis drugs have been approved for clinical use. In an aging society, osteoporosis cannot be treated using a single agent; therefore, switching therapy is an important treatment strategy.Areas covered: This review covers switching therapy in patients with postmenopausal osteoporosis. It's extremely important to understand the characteristics of each drug including; limitations on the duration of use, side effects due to long-term use (such as atypical femur fracture and osteonecrosis of the jaw) or discontinuation (such as rebound phenomenon), compliance, and ability to prevent fractures. We review and summarize the risks and benefits of switching therapy.Expert opinion: When switching therapy, the order of drug administration is important. Routine monitoring should be continued after switching treatments. We recommend first using osteoanabolic agents in postmenopausal women with severe osteoporosis. In addition, identifying predictors of the efficacy and side effects of treatment may help prevent the inappropriate use of drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hotaka Ishizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kosuke Arita
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
32
|
Seely KD, Kotelko CA, Douglas H, Bealer B, Brooks AE. The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. Int J Mol Sci 2021; 22:9452. [PMID: 34502371 PMCID: PMC8431678 DOI: 10.3390/ijms22179452] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022] Open
Abstract
An expanding body of research asserts that the gut microbiota has a role in bone metabolism and the pathogenesis of osteoporosis. This review considers the human gut microbiota composition and its role in osteoclastogenesis and the bone healing process, specifically in the case of osteoporosis. Although the natural physiologic processes of bone healing and the pathogenesis of osteoporosis and bone disease are now relatively well known, recent literature suggests that a healthy microbiome is tied to bone homeostasis. Nevertheless, the mechanism underlying this connection is still somewhat enigmatic. Based on the literature, a relationship between the microbiome, osteoblasts, osteoclasts, and receptor activator of nuclear factor-kappa-Β ligand (RANKL) is contemplated and explored in this review. Studies have proposed various mechanisms of gut microbiome interaction with osteoclastogenesis and bone health, including micro-RNA, insulin-like growth factor 1, and immune system mediation. However, alterations to the gut microbiome secondary to pharmaceutical and surgical interventions cannot be discounted and are discussed in the context of clinical therapeutic consideration. The literature on probiotics and their mechanisms of action is examined in the context of bone healing. The known and hypothesized interactions of common osteoporosis drugs and the human gut microbiome are examined. Since dysbiosis in the gut microbiota can function as a biomarker of bone metabolic activity, it may also be a pharmacological and nutraceutical (i.e., pre- and probiotics) therapeutic target to promote bone homeostasis.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Cody A. Kotelko
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Hannah Douglas
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Brandon Bealer
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Amanda E. Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| |
Collapse
|
33
|
Kalinkovich A, Livshits G. Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol Res 2021; 171:105794. [PMID: 34329703 DOI: 10.1016/j.phrs.2021.105794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
On the cellular level, osteoporosis (OP) is a result of imbalanced bone remodeling, in which osteoclastic bone resorption outcompetes osteoblastic bone formation. Currently available OP medications include both antiresorptive and bone-forming drugs. However, their long-term use in OP patients, mainly in postmenopausal women, is accompanied by severe side effects. Notably, the fundamental coupling between bone resorption and formation processes underlies the existence of an undesirable secondary outcome that bone anabolic or anti-resorptive drugs also reduce bone formation. This drawback requires the development of anti-OP drugs capable of selectively stimulating osteoblastogenesis and concomitantly reducing osteoclastogenesis. We propose that the application of small synthetic biased and allosteric modulators of bone cell receptors, which belong to the G-protein coupled receptors (GPCR) family, could be the key to resolving the undesired anti-OP drug selectivity. This approach is based on the capacity of these GPCR modulators, unlike the natural ligands, to trigger signaling pathways that promote beneficial effects on bone remodeling while blocking potentially deleterious effects. Under the settings of OP, an optimal anti-OP drug should provide fine-tuned regulation of downstream effects, for example, intermittent cyclic AMP (cAMP) elevation, preservation of Ca2+ balance, stimulation of osteoprotegerin (OPG) and estrogen production, suppression of sclerostin secretion, and/or preserved/enhanced canonical β-catenin/Wnt signaling pathway. As such, selective modulation of GPCRs involved in bone remodeling presents a promising approach in OP treatment. This review focuses on the evidence for the validity of our hypothesis.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel; Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
34
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|