1
|
Wang Y, Zhang Y, Gao M, Chen Z, Lu J, Li Y, Di Y, Zhao Y, Liu B, Tang R. Lipocalin-2 promotes CKD vascular calcification by aggravating VSMCs ferroptosis through NCOA4/FTH1-mediated ferritinophagy. Cell Death Dis 2024; 15:865. [PMID: 39613734 DOI: 10.1038/s41419-024-07260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD), for which no effective therapies are available. Hyperphosphatemia, a feature of CKD, is a well-known inducer of VC. High phosphate (HP)-induced ferroptosis plays a crucial role in CKD-related VC (CKD-VC), but the mechanisms remain unclear. Lipocalin-2 (LCN2), an iron-trafficking protein, has been implicated in ferroptosis regulation. In the present study, the role of LCN2 as a potential mediator of CKD-VC was investigated. HP-induced LCN2 expression in the arteries of CKD-VC patients, animal models and vascular smooth muscle cells (VSMCs). LCN2 knockout (LCN2KO) mice and wild-type (WT) mice fed with a high adenine and phosphate (AP) diet were studied to explore CKD-VC. Compared with WT mice, LCN2KO mice showed an amelioration of the CKD-VC induced by the AP diet. The inhibition of LCN2 also alleviated HP-induced calcium deposition and phenotypic transition in VSMCs. Conversely, VSMCs-targeted LCN2 overexpression or recombinant LCN2 treatment exacerbated CKD-VC in vivo and in vitro. Mechanistically, nuclear receptor coactivator 4 (NCOA4)/ferritin heavy chain 1 (FTH1)-mediated ferritinophagy-dependent ferroptosis was involved in LCN2-mediated CKD-VC. Under HP conditions, LCN2 interacted with NCOA4, potentially accelerating the degradation of FTH1 and inducing ferroptosis. The inhibition of LCN2 may rescue the degradation of FTH1 and thus ameliorate ferroptosis, significantly suppressing VSMCs calcification. In summary, our study revealed a novel role for LCN2 induced ferritinophagy-dependent ferroptosis in CKD-VC, and targeting LCN2 might be a promising treatment for CKD-VC.
Collapse
MESH Headings
- Animals
- Lipocalin-2/metabolism
- Lipocalin-2/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Ferroptosis
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Humans
- Nuclear Receptor Coactivators/metabolism
- Nuclear Receptor Coactivators/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Ferritins/metabolism
- Male
- Disease Models, Animal
- Oxidoreductases
Collapse
Affiliation(s)
- Yujia Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuxia Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Min Gao
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhiqing Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jing Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yongqi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yan Di
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yinan Zhao
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bicheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rining Tang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int J Mol Sci 2023; 24:10470. [PMID: 37445650 DOI: 10.3390/ijms241310470] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a 25-kDa protein that is secreted mostly by immune cells such as neutrophils, macrophages, and dendritic cells. Its production is stimulated in response to inflammation. The concentrations of NGAL can be measured in plasma, urine, and biological fluids such as peritoneal effluent. NGAL is known mainly as a biomarker of acute kidney injury and is released after tubular damage and during renal regeneration processes. NGAL is also elevated in chronic kidney disease and dialysis patients. It may play a role as a predictor of the progression of renal function decreases with complications and mortality due to kidney failure. NGAL is also useful in the diagnostic processes of cardiovascular diseases. It is highly expressed in injured heart tissue and atherosclerostic plaque; its serum concentrations correlate with the severity of heart failure and coronary artery disease. NGAL increases inflammatory states and its levels rise in arterial hypertension, obesity, diabetes, and metabolic complications such as insulin resistance, and is also involved in carcinogenesis. In this review, we present the current knowledge on NGAL and its involvement in different pathologies, especially its role in renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Romejko
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Magdalena Markowska
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| |
Collapse
|
3
|
Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Res Rev 2022; 82:101766. [PMID: 36283617 DOI: 10.1016/j.arr.2022.101766] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The protein Klotho (KL) was first discovered in KL-deficient mice, which developed a syndrome similar to premature aging in humans. Since then, KL has been implicated in multiple molecular signaling pathways and diseases. KL has been shown to have anti-aging, healthspan and lifespan extending, cognitive enhancing, anti-oxidative, anti-inflammatory, and anti-tumor properties. KL levels decrease with age and in many diseases. Therefore, it has been of great interest to develop a KL-boosting or restoring drug, or to supplement endogenous Klotho with exogenous Klotho genetic material or recombinant Klotho protein, and to use KL levels in the body as a marker for the efficacy of such drugs and as a biomarker for the diagnosis and management of diseases. OBJECTIVE The goal of this study was to provide a comprehensive review of KL levels across age groups in individuals who are healthy or have certain health conditions, using four sources: blood, cerebrospinal fluid, urine, and whole biopsy/necropsy tissue. By doing so, baseline KL levels can be identified across the lifespan, in the absence or presence of disease. In turn, these findings can be used to guide the development of future KL-based therapeutics and biomarkers, which will heavily rely on an individual's baseline KL range to be efficacious. METHODS A total of 65 studies were collected primarily using the PubMed database. Research articles that were published up to April 2022 were included. Statistical analysis was conducted using RStudio. RESULTS Mean and median blood KL levels in healthy individuals, mean blood KL levels in individuals with renal conditions, and mean blood KL levels in individuals with metabolic or endocrine conditions were shown to decrease with age. Similarly, CSF KL levels in patients with AD also declined compared with age-matched controls. CONCLUSIONS The present study confirms the trend that KL levels in blood decrease with age in humans, among those who are healthy, and even further among those with renal and endocrine/metabolic illnesses. Further, by drawing this trend from multiple published works, we were able to provide a general idea of baseline KL ranges, specifically in blood in these populations. These data add to the current knowledge on normal KL levels in the body and how they change with time and in disease, and can potentially support efforts to create KL-based treatments and screening tools to better manage aging, renal, and metabolic/endocrine diseases.
Collapse
Affiliation(s)
- Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, USA.
| | - Anne Li
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Wei K, Song G, Xi L, Chen J, Sun C, Chen P, Wei Y, Wang L, Kong X, Li Y, Xu D, Jia X. Association of plasma neutrophil gelatinase-associated lipocalin and thoracic aorta calcification in maintenance hemodialysis patients with and without diabetes. BMC Nephrol 2022; 23:156. [PMID: 35459121 PMCID: PMC9026670 DOI: 10.1186/s12882-022-02773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Neutrophil gelatinase-associated lipocalin (NGAL) is not only a bone-derived factor involved in metabolism, but also a biomarker of kidney disease and cardiovascular pathophysiology. We conducted this cross-sectional observational study to explore relationships between plasma NGAL and thoracic aorta calcification (TAC) in maintenance hemodialysis (MHD) patients with and without diabetes. Methods Plasma NGAL was measured by ELISA, TAC was evaluated via computed tomography scan using a 3D quantification method or chest radiography aortic arch calcification score. Spearman correlation, Logistic regression and Partial correlation analysis were used to describe the correlations between NGAL and TAC. Results Plasma NGAL levels were lower in MHD patients with diabetes compared to those without diabetes (49.33(42.37, 55.48) vs 56.78(44.37, 674.13) ng/mL, P = 0.026). In MHD patients without diabetes, lg (NGAL) was positively correlated with ARC value(R = 0.612, P = 0.003) analyzed by Spearman correlation; for partial correlation analysis, lg (NGAL) was positively correlated with ARC value, after adjusting for age and sex (R = 0.550, P = 0.015), adjusting for age, sex and CHD (R = 0.565, P = 0.015), adjusting for age, sex, CHD and Alb (R = 0.536, P = 0.027), or adjusting for age, sex, CHD, Alb, and dialyzer membrane (polysulfone) (R = 0.590, P = 0.016); however, when adjusting for age, sex, CHD, Alb and Ca, the correlation between lg (NGAL) and ARC value disappeared. Positive correlation were found between NGAL and Ca (R = 0.644, P < 0.001), Ca and ACR (R = 0.534, P = 0.013) in Spearman coefficient analysis. Conclusion There were positive correlations among plasma NGAL, serum Ca and ARC in MHD patients without diabetes; which suggests that NGAL is possibly a participant in cardiovascular calcification, in non-diabetic MHD. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02773-z.
Collapse
Affiliation(s)
- Kai Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Gesheng Song
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Linhe Xi
- Department of Plastic and Reconstruction, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Juan Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Chuancai Sun
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Yong Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Li Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Yang Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Dongmei Xu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China.,Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Xiaoyan Jia
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), No.16766, Jingshi Road, Jinan, 250014, China. .,Shandong Provincial Insititute of Nephrology, Jinan, China.
| |
Collapse
|