• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624939)   Today's Articles (0)   Subscriber (49440)
For: Siegbahn PEM. The catalytic cycle of catechol oxidase. J Biol Inorg Chem 2004;9:577-90. [PMID: 15185133 DOI: 10.1007/s00775-004-0551-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 04/15/2004] [Indexed: 10/26/2022]
Number Cited by Other Article(s)
1
Tripathy RR, Singha S, Sarkar S. A review on bio-functional models of catechol oxidase probed by less explored first row transition metals. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2122053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
2
Zahirović A, Roca S, Višnjevac A, Kahrović E. Ruthenium organometallics of chloro-substituted 2′-hydroxychalcones – A story of catecholase biomimetics beyond copper. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
3
Samame RA, Zu C, Knueppel D. Identification of vicinal diols using a diagnostic ion derived from the electron ionization of orthoester functional groups. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020;34:e8842. [PMID: 32445253 DOI: 10.1002/rcm.8842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
4
Jiang H, Lai W. Monophenolase and catecholase activity of Aspergillus oryzae catechol oxidase: insights from hybrid QM/MM calculations. Org Biomol Chem 2020;18:5192-5202. [PMID: 32589184 DOI: 10.1039/d0ob00969e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
Sarkar S, Lee HI. Synthesis, structure, magnetic properties, and catecholase-like activity of a phenoxo bridged dinuclear cobalt(II) complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
6
Polatoğlu İ, Karataş D. Modeling of molecular interaction between catechol and tyrosinase by DFT. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
7
Liao RZ, Siegbahn PEM. Energetics for the Mechanism of Nickel-Containing Carbon Monoxide Dehydrogenase. Inorg Chem 2019;58:7931-7938. [PMID: 31141352 DOI: 10.1021/acs.inorgchem.9b00644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Trammell R, Rajabimoghadam K, Garcia-Bosch I. Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O2 Model Systems to Organometallic Transformations. Chem Rev 2019;119:2954-3031. [PMID: 30698952 DOI: 10.1021/acs.chemrev.8b00368] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
9
Ségaud N, Drienovská I, Chen J, Browne WR, Roelfes G. Artificial Metalloproteins for Binding and Stabilization of a Semiquinone Radical. Inorg Chem 2018;56:13293-13299. [PMID: 29027794 PMCID: PMC5676253 DOI: 10.1021/acs.inorgchem.7b02073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
10
Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
11
Singha Mahapatra T, Basak D, Chand S, Lengyel J, Shatruk M, Bertolasi V, Ray D. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity. Dalton Trans 2016;45:13576-89. [DOI: 10.1039/c6dt02494g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
12
Dey SK, Mukherjee A. Investigation of 3d-transition metal acetates in the oxidation of substituted dioxolene and phenols. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Shaban SY, Ramadan AEMM, Ibrahim MM, Mohamed MA, van Eldik R. Spectroscopic, thermodynamic, kinetic studies and oxidase/antioxidant biomimetic catalytic activities of tris(3,5-dimethylpyrazolyl)borate Cu(II) complexes. Dalton Trans 2015;44:14110-21. [PMID: 26172408 DOI: 10.1039/c5dt01817j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Camargo TP, Maia FF, Chaves C, de Souza B, Bortoluzzi AJ, Castilho N, Bortolotto T, Terenzi H, Castellano EE, Haase W, Tomkowicz Z, Peralta RA, Neves A. Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity. J Inorg Biochem 2015;146:77-88. [DOI: 10.1016/j.jinorgbio.2015.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
15
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014;114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
16
Dey SK, Mukherjee A. The synthesis, characterization and catecholase activity of dinuclear cobalt(ii/iii) complexes of an O-donor rich Schiff base ligand. NEW J CHEM 2014. [DOI: 10.1039/c4nj00715h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
17
The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae. J Biol Inorg Chem 2013;18:917-29. [PMID: 24043469 DOI: 10.1007/s00775-013-1038-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
18
Dey SK, Mukherjee A. Zero-Order Catechol Oxidase Activity by a Mononuclear Manganese(III) Complex Showing High Turnover Comparable to Catechol Oxidase Enzyme. ChemCatChem 2013. [DOI: 10.1002/cctc.201300596] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
19
Liao RZ, Thiel W. On the Effect of Varying Constraints in the Quantum Mechanics Only Modeling of Enzymatic Reactions: The Case of Acetylene Hydratase. J Phys Chem B 2013;117:3954-61. [DOI: 10.1021/jp311705s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
20
Hou Q, Hu X, Sheng X, Liu Y, Liu C. Theoretical study on the degradation of ADP-ribose polymer catalyzed by poly(ADP-ribose) glycohydrolase. J Mol Graph Model 2013;42:26-31. [PMID: 23524370 DOI: 10.1016/j.jmgm.2013.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
21
Yang L, Liao RZ, Ding WJ, Liu K, Yu JG, Liu RZ. Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
22
Comba P, Martin B, Muruganantham A, Straub J. Structure, Bonding, and Catecholase Mechanism of Copper Bispidine Complexes. Inorg Chem 2012;51:9214-25. [DOI: 10.1021/ic3004917] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Guha A, Chattopadhyay T, Paul ND, Mukherjee M, Goswami S, Mondal TK, Zangrando E, Das D. Radical Pathway in Catecholase Activity with Zinc-Based Model Complexes of Compartmental Ligands. Inorg Chem 2012;51:8750-9. [DOI: 10.1021/ic300400v] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
24
Martínez A, Membrillo I, Ugalde-Saldívar VM, Gasque L. Dinuclear Copper Complexes with Imidazole Derivative Ligands: A Theoretical Study Related to Catechol Oxidase Activity. J Phys Chem B 2012;116:8038-44. [DOI: 10.1021/jp300444m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
25
Silavi R, Divsalar A, Saboury AA. A short review on the structure-function relationship of artificial catecholase/tyrosinase and nuclease activities of Cu-complexes. J Biomol Struct Dyn 2012;30:752-72. [PMID: 22731989 DOI: 10.1080/07391102.2012.689704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
26
Ramadan AEMM, Ibrahim MM, El-Mehasseb IM. New mononuclear copper(I) and copper(II) complexes containing N4 donors; crystal structure and catechol oxidase biomimetic catalytic activity. J COORD CHEM 2012. [DOI: 10.1080/00958972.2012.690513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
27
Mendoza-Quijano MR, Ferrer-Sueta G, Flores-Álamo M, Aliaga-Alcalde N, Gómez-Vidales V, Ugalde-Saldívar VM, Gasque L. Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal centers. Dalton Trans 2012;41:4985-97. [DOI: 10.1039/c2dt12155g] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Siegbahn PEM. The Effect of Backbone Constraints: The Case of Water Oxidation by the Oxygen-Evolving Complex in PSII. Chemphyschem 2011;12:3274-80. [DOI: 10.1002/cphc.201100475] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Indexed: 11/06/2022]
29
Functional mimics of catechol oxidase by mononuclear copper complexes of sterically demanding [NNO] ligands. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.01.081] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
30
Siegbahn PEM, Borowski T. Comparison of QM-only and QM/MM models for the mechanism of tyrosinase. Faraday Discuss 2011;148:109-17; discussion 207-28. [DOI: 10.1039/c004378h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Catechol oxidase activity of dinuclear copper(II) complexes of Robson type macrocyclic ligands: Syntheses, X-ray crystal structure, spectroscopic characterization of the adducts and kinetic studies. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcata.2009.05.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
32
Banu KS, Chattopadhyay T, Banerjee A, Bhattacharya S, Suresh E, Nethaji M, Zangrando E, Das D. Catechol Oxidase Activity of a Series of New Dinuclear Copper(II) Complexes with 3,5-DTBC and TCC as Substrates: Syntheses, X-ray Crystal Structures, Spectroscopic Characterization of the Adducts and Kinetic Studies. Inorg Chem 2008;47:7083-93. [DOI: 10.1021/ic701332w] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
33
Comba P, Kerscher M, Schiek W. Bispidine Coordination Chemistry. PROGRESS IN INORGANIC CHEMISTRY 2008. [DOI: 10.1002/9780470144428.ch9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
34
Nicholls P. The oxygenase-peroxidase theory of Bach and Chodat and its modern equivalents: change and permanence in scientific thinking as shown by our understanding of the roles of water, peroxide, and oxygen in the functioning of redox enzymes. BIOCHEMISTRY (MOSCOW) 2008;72:1039-46. [PMID: 18021062 DOI: 10.1134/s0006297907100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
35
Güell M, Siegbahn PEM. Theoretical study of the catalytic mechanism of catechol oxidase. J Biol Inorg Chem 2007;12:1251-64. [PMID: 17891425 DOI: 10.1007/s00775-007-0293-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
36
Ackermann J, Buchler S, Meyer F. Structure–activity correlations in highly preorganized dicopper catechol oxidase model systems. CR CHIM 2007. [DOI: 10.1016/j.crci.2006.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
37
van der Vlugt JI, Meyer F. Homogeneous Copper-Catalyzed Oxidations. TOP ORGANOMETAL CHEM 2007. [DOI: 10.1007/3418_2006_060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
38
Granata A, Monzani E, Bubacco L, Casella L. Mechanistic Insight into the Activity of Tyrosinase from Variable-Temperature Studies in an Aqueous/Organic Solvent. Chemistry 2006;12:2504-14. [PMID: 16342125 DOI: 10.1002/chem.200501097] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
39
Koval IA, Gamez P, Belle C, Selmeczi K, Reedijk J. Synthetic models of the active site of catechol oxidase: mechanistic studies. Chem Soc Rev 2006;35:814-40. [PMID: 16936929 DOI: 10.1039/b516250p] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Suzuki H, Furusho Y, Higashi T, Ohnishi Y, Horinouchi S. A Novel o-Aminophenol Oxidase Responsible for Formation of the Phenoxazinone Chromophore of Grixazone. J Biol Chem 2006;281:824-33. [PMID: 16282322 DOI: 10.1074/jbc.m505806200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
41
Beddie C, Webster CE, Hall MB. Urea decomposition facilitated by a urease model complex: a theoretical investigation. Dalton Trans 2005:3542-51. [PMID: 16234936 DOI: 10.1039/b505210f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA