1
|
Casini A, Pöthig A. Metals in Cancer Research: Beyond Platinum Metallodrugs. ACS CENTRAL SCIENCE 2024; 10:242-250. [PMID: 38435529 PMCID: PMC10906246 DOI: 10.1021/acscentsci.3c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 03/05/2024]
Abstract
The discovery of the medicinal properties of platinum complexes has fueled the design and synthesis of new anticancer metallodrugs endowed with unique modes of action (MoA). Among the various families of experimental antiproliferative agents, organometallics have emerged as ideal platforms to control the compounds' reactivity and stability in a physiological environment. This is advantageous to efficiently deliver novel prodrug activation strategies, as well as to design metallodrugs acting only via noncovalent interactions with their pharmacological targets. Noteworthy, another justification for the advance of organometallic compounds for therapy stems from their ability to catalyze bioorthogonal reactions in cancer cells. When not yet ideal as drug leads, such compounds can be used as selective chemical tools that benefit from the advantages of catalytic amplification to either label the target of interest (e.g., proteins) or boost the output of biochemical signals. Examples of metallodrugs for the so-called "catalysis in cells" are considered in this Outlook together with other organometallic drug candidates. The selected case studies are discussed in the frame of more general challenges in the field of medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Angela Casini
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstraße 4, D-85748 Garching b. München, Germany
| | - Alexander Pöthig
- Catalysis
Research Center & Department of Chemistry, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, D-85748 Garching b. München, Germany
| |
Collapse
|
2
|
Gao F, Liu G, Chen A, Hu Y, Wang H, Pan J, Feng J, Zhang H, Wang Y, Min Y, Gao C, Xiong Y. Artificial photosynthetic cells with biotic-abiotic hybrid energy modules for customized CO 2 conversion. Nat Commun 2023; 14:6783. [PMID: 37880265 PMCID: PMC10600252 DOI: 10.1038/s41467-023-42591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
Programmable artificial photosynthetic cell is the ultimate goal for mimicking natural photosynthesis, offering tunable product selectivity via reductase selection toward device integration. However, this concept is limited by the capacity of regenerating the multiple cofactors that hold the key to various reductases. Here, we report the design of artificial photosynthetic cells using biotic-abiotic thylakoid-CdTe as hybrid energy modules. The rational integration of thylakoid with CdTe quantum dots substantially enhances the regeneration of bioactive NADPH, NADH and ATP cofactors without external supplements by promoting proton-coupled electron transfer. Particularly, this approach turns thylakoid highly active for NADH regeneration, providing a more versatile platform for programming artificial photosynthetic cells. Such artificial photosynthetic cells can be programmed by coupling with diverse reductases, such as formate dehydrogenase and remodeled nitrogenase for highly selective production of formate or methane, respectively. This work opens an avenue for customizing artificial photosynthetic cells toward multifarious demands for CO2 conversion.
Collapse
Affiliation(s)
- Feng Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Guangyu Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Aobo Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yangguang Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Huihui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jiangyuan Pan
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jinglei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Hongwei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yujie Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yuanzeng Min
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Chao Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., 230031, Hefei, Anhui, China.
- Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, 241002, Wuhu, Anhui, China.
| |
Collapse
|
3
|
Bachosz K, Zdarta J, Bilal M, Meyer AS, Jesionowski T. Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161630. [PMID: 36657682 DOI: 10.1016/j.scitotenv.2023.161630] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
4
|
Hou Z, Vanecek AS, Tepe JJ, Odom AL. Synthesis, structure, properties, and cytotoxicity of a (quinoline)RuCp + complex. Dalton Trans 2023; 52:721-730. [PMID: 36562335 DOI: 10.1039/d2dt03484k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A rare example of a structurally characterized metal quinoline complex was prepared using a non-covalent quinoline-based proteasome inhibitor (Quin1), and a related complex bearing an inactive quinoline ligand (Quin2) was also synthesized. The quinolines are prepared by a one-pot procedure involving titanium-catalyzed alkyne iminoamination and are bound to ruthenium by reaction with CpRu(NCMe)3+ PF6- in CH2Cl2. The arene of the quinoline is η6-bonded to the ruthenium metal center. The kinetics of quinoline displacement were investigated, and reactivity with deuterated solvents follows the order acetonitrile > DMSO > water. Quinolines with more methyl groups on the arene are more kinetically stable, and RuCp(Quin1)+ PF6- (1), which has two methyl groups on the arene, is stable for days in DMSO. In contrast, a very similar complex (2) made with Quin2 having no methyl groups on the arene was readily displaced by DMSO. Both 1 and 2 are stable in 9 : 1 water/DMSO for days with no measurable displacement of the quinoline. The cytotoxicity of the quinolines, their CpRu+-complexes, and CpRu(DMSO)3+ PF6- was investigated towards two multiple myeloma cell lines: MC/CAR and RPMI 8226. To determine whether the activity of the complexes was related to the nature of the quinoline ligands, two structurally similar quinoline ligands with vastly different biological properties were investigated. Quin1 is a cytotoxic proteasome inhibitor, whereas Quin2 is not a proteasome inhibitor and showed no discernable cytotoxicity. The ruthenium complexes showed poor cellular proteasome inhibition. However, both 1 and 2 showed good cytotoxicity towards RPMI 8226 and MC/CAR, with 1 being slightly more cytotoxic. For example, 1 has a CC50 = 2 μM in RPMI 8226, and 2 has a CC50 = 5 μM for the same cell line. In contrast, CpRu(DMSO)3+ PF6- was quite active towards MC/CAR with CC50 = 2.8 μM but showed no discernible cytotoxicity toward RPMI 8226. The mechanism of action responsible for the observed cytotoxicity is not known, but the new Ru(Cp)(Quin)+ PF6- complexes do not cross-link DNA as found for platinum-based drugs. It is concluded that the Ru(Cp)(Quin)+ PF6- complexes remain intact in the cellular assays and constitute a new class of cytotoxic metal complexes.
Collapse
Affiliation(s)
- Zhilin Hou
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| | - Allison S Vanecek
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| | - Jetze J Tepe
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| | - Aaron L Odom
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
6
|
Komarnicka UK, Kozieł S, Skórska-Stania A, Kyzioł A, Tisato F. Synthesis, physicochemical characterization and antiproliferative activity of phosphino Ru(II) and Ir(III) complexes. Dalton Trans 2022; 51:8605-8617. [PMID: 35615959 DOI: 10.1039/d2dt01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present the synthesis of new complexes based on ruthenium(II) (Ru(η6-p-cymene)Cl2PPh2CH2OH (RuPOH) and Ru(η6-p-cymene)Cl2P(p-OCH3Ph)2CH2OH (RuMPOH)) and iridium(III) (Ir(η5-Cp*)Cl2P(p-OCH3Ph)2CH2OH (IrMPOH) and Ir(η5-Cp*)Cl2PPh2CH2OH (IrPOH)) containing phosphine ligands with/without methoxy motifs on phenyl rings (P(p-OCH3Ph)2CH2OH (MPOH) and PPh2CH2OH (POH)). The complexes were characterized by mass spectrometry, NMR spectroscopy (1D: 1H, 13C{1H}, and 31P{1H} and 2D: HMQC, HMBC, and COSY NMR) and elemental analysis. All the complexes were structurally identified by single-crystal X-ray diffraction analysis. The Ru(II) and Ir(III) complexes have a typical piano-stool geometry with an η6-coordinated arene (RuII complexes) or η5-coordinated (IrIII compounds) and three additional sites of ligation occupied by two chloride ligands and the phosphine ligand. Oxidation of NADH to NAD+ with high efficiency was catalyzed by complexes containing P(p-OCH3Ph)2CH2OH (IrMPOH and RuMPOH). The catalytic property might have important future applications in biological and medical fields like production of reactive oxygen species (ROS). Furthermore, the redox activity of the complexes was confirmed by cyclic voltamperometry. Biochemical assays demonstrated the ability of Ir(III) and Ru(II) complexes to induce significant cytotoxicity in various cancer cell lines. Furthermore, we found that RuPOH and RuMPOH selectively inhibit the proliferation of skin cancer cells (WM266-4; IC50, after 24 h: av. 48.3 μM; after 72 h: av. 10.2 μM) while Ir(III) complexes were found to be moderate against prostate cancer cells (DU145).
Collapse
Affiliation(s)
- Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | | | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | | |
Collapse
|
7
|
Chen F, Romero-Canelón I, Habtemariam A, Song JI, Banerjee S, Clarkson GJ, Song L, Prokes I, Sadler PJ. Effect of cysteine thiols on the catalytic and anticancer activity of Ru(II) sulfonyl-ethylenediamine complexes. Dalton Trans 2022; 51:4447-4457. [PMID: 35226015 DOI: 10.1039/d1dt03856g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized a series of novel substituted sulfonyl ethylenediamine (en) RuII arene complexes 1-8 of [(η6-arene)Ru(R1-SO2-EnBz)X], where the arene is benzene, HO(CH2)2O-phenyl or biphenyl (biph), X = Cl or I, and R1 is phenyl, 4-Me-phenyl, 4-NO2-phenyl or dansyl. The 'piano-stool' structure of complex 3, [(η6-biph)Ru(4-Me-phenyl-SO2-EnBz)I], was confirmed by X-ray crystallography. The values of their aqua adducts were determined to be high (9.1 to 9.7). Complexes 1-8 have antiproliferative activity against human A2780 ovarian, and A549 lung cancer cells with IC50 values ranging from 4.1 to >50 μM, although, remarkably, complex 7 [(η6-biph)Ru(phenyl-SO2-EnBz)Cl] was inactive towards A2780 cells, but as potent as the clinical drug cisplatin towards A549 cells. All these complexes also showed catalytic activity in transfer hydrogenation (TH) of NAD+ to NADH with sodium formate as hydride donor, with TOFs in the range of 2.5-9.7 h-1. The complexes reacted rapidly with the thiols glutathione (GSH) and N-acetyl-L-cysteine (NAC), forming dinuclear bridged complexes [(η6-biph)2Ru2(GS)3]2- or [(η6-biph)2Ru2(NAC-H)3]2-, with the liberation of the diamine ligand which was detected by LC-MS. In addition, the switching on of fluorescence for complex 8 in aqueous solution confirmed release of the chelated DsEnBz ligand in reactions with these thiols. Reactions with GSH hampered the catalytic TH of NAD+ to NADH due to the decomposition of the complexes. Co-administration to cells of complex 2 [(η6-biph)Ru(4-Me-phenyl-SO2-EnBz)Cl] with L-buthionine sulfoximine (L-BSO), an inhibitor of GSH synthesis, partially restored the anticancer activity towards A2780 ovarian cancer cells. Complex 2 caused a concentration-dependent G1 phase cell cycle arrest, and induced a significant level of reactive oxygen species (ROS) in A2780 human ovarian cancer cells. The amount of induced ROS decreased with increase in GSH concentration, perhaps due to the formation of the dinuclear Ru-SG complex.
Collapse
Affiliation(s)
- Feng Chen
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. .,School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. .,School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Ji-Inn Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Samya Banerjee
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. .,Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Ivan Prokes
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
8
|
Infante-Tadeo S, Rodríguez-Fanjul V, Habtemariam A, Pizarro AM. Osmium(ii) tethered half-sandwich complexes: pH-dependent aqueous speciation and transfer hydrogenation in cells. Chem Sci 2021; 12:9287-9297. [PMID: 34349898 PMCID: PMC8278929 DOI: 10.1039/d1sc01939b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/04/2023] Open
Abstract
Aquation is often acknowledged as a necessary step for metallodrug activity inside the cell. Hemilabile ligands can be used for reversible metallodrug activation. We report a new family of osmium(ii) arene complexes of formula [Os(η6-C6H5(CH2)3OH)(XY)Cl]+/0 (1-13) bearing the hemilabile η6-bound arene 3-phenylpropanol, where XY is a neutral N,N or an anionic N,O- bidentate chelating ligand. Os-Cl bond cleavage in water leads to the formation of the hydroxido/aqua adduct, Os-OH(H). In spite of being considered inert, the hydroxido adduct unexpectedly triggers rapid tether ring formation by attachment of the pendant alcohol-oxygen to the osmium centre, resulting in the alkoxy tethered complex [Os(η6-arene-O-κ1)(XY)] n+. Complexes 1C-13C of formula [Os(η6:κ1-C6H5(CH2)3OH/O)(XY)]+ are fully characterised, including the X-ray structure of cation 3C. Tether-ring formation is reversible and pH dependent. Osmium complexes bearing picolinate N,O-chelates (9-12) catalyse the hydrogenation of pyruvate to lactate. Intracellular lactate production upon co-incubation of complex 11 (XY = 4-Me-picolinate) with formate has been quantified inside MDA-MB-231 and MCF7 breast cancer cells. The tether Os-arene complexes presented here can be exploited for the intracellular conversion of metabolites that are essential in the intricate metabolism of the cancer cell.
Collapse
Affiliation(s)
| | | | - Abraha Habtemariam
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Ana M Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
9
|
Melis DR, Barnett CB, Wiesner L, Nordlander E, Smith GS. Quinoline-triazole half-sandwich iridium(III) complexes: synthesis, antiplasmodial activity and preliminary transfer hydrogenation studies. Dalton Trans 2021; 49:11543-11555. [PMID: 32697227 DOI: 10.1039/d0dt01935f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iridium(iii) half-sandwich complexes containing 7-chloroquinoline-1,2,3-triazole hybrid ligands were synthesised and their inhibitory activities evaluated against the Plasmodium falciparum malaria parasite. Supporting computational analysis revealed that metal coordination to the quinoline nitrogen occurs first, forming a kinetic product that, upon heating over time, forms a more stable cyclometallated thermodynamic product. Single crystal X-ray diffraction confirmed the proposed molecular structures of both isolated kinetic and thermodynamic products. Complexation with iridium significantly enhances the in vitro activity of selected ligands against the chloroquine-sensitive (NF54) Plasmodium falciparum strain, with selected complexes being over one hundred times more active than their respective ligands. No cross-resistance was observed in the chloroquine-resistant (K1) strain. No cytotoxicity was observed for selected complexes tested against the mammalian Chinese Hamster Ovarian (CHO) cell line. In addition, speed-of-action assays and β-haematin inhibition studies were performed. Through preliminary qualitative and quantitative cell-free experiments, it was found that the two most active neutral, cyclometallated complexes can act as transfer hydrogenation catalysts, by reducing β-nicotinamide adenine dinucleotide (NAD+) to NADH in the presence of a hydrogen source, sodium formate.
Collapse
Affiliation(s)
- Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Christopher B Barnett
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
10
|
Schnierle M, Leimkühler M, Ringenberg MR. [(η 6- p-Cymene)[3-(pyrid-2-yl)-1,2,4,5-tetrazine]chlororuthenium(II)] +, Redox Noninnocence and Dienophile Addition to Coordinated Tetrazine. Inorg Chem 2021; 60:6367-6374. [PMID: 33856810 DOI: 10.1021/acs.inorgchem.1c00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bidentate ligand 3-(pyrid-2-yl)-1,2,4,5-tetrazine (TzPy) coordinated in the complex [CyRuCl(TzPy)]PF6 ([1]+; Cy = η6-p-cymene) shows noninnocent behavior and can be modified through the addition of dienophiles, vinylferrocene (ViFc) or ethynylferrocene (EthFc). The kinetics and transition-state thermodynamic analysis of the reaction of [1]+ + ViFc found ΔG⧧(298 K) = 67 kJ mol-1, while that of [1]+ + EthFc was ΔG⧧(298 K) = 83 kJ mol-1. The room temperature second-order rate of [1]+ + EthFc, k2 = 1.51(4) × 10-2 M-1 s-1, was 3 orders of magnitude faster than that of EthFc + TzPy, k2 = 1.05(15) × 10-4 M-1 s-1. The [1H2Fc]+ complex was converted to [1Fc]+ by oxidation with oxygen and 3,5-di-tert-butyl-o-quinone, and the molecular structure of [1Fc]+ was determined by single-crystal X-ray diffraction. The title complex [1]+ showed a quasi-reversible reduction in the cyclic voltammogram, and the electrochemical reduction mechanism was determined by UV-vis spectroelectrochemistry (SEC) experiments, as well as supported by density functional theory (DFT) calculations. The dihydropyridazine [1H2Fc]+ and pyridazine [1Fc]+ states of the ligand showed ligand noninnocence similar to that of the parent tetrazine but at a cathodically shifted potential. The dihydropyridazine [1H2Fc]+ showed a mixture of several products; however, upon oxidation, only a single product, [1Fc]+, was formed from the endo addition of the dienophile to [1]+. The electrochemical mechanism of [1Fc]+ was also studied by cyclic voltammetry and UV-vis SEC experiments, as well as supported by DFT calculations.
Collapse
Affiliation(s)
- Marc Schnierle
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marie Leimkühler
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mark R Ringenberg
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Banerjee S, Sadler PJ. Transfer hydrogenation catalysis in cells. RSC Chem Biol 2021; 2:12-29. [PMID: 34458774 PMCID: PMC8341873 DOI: 10.1039/d0cb00150c] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogenation reactions in biology are usually carried out by enzymes with nicotinamide adenine dinucleotide (NAD(P)H) or flavin mononucleotide (FAMH2)/flavinadenine dinucleotide (FADH2) as cofactors and hydride sources. Industrial scale chemical transfer hydrogenation uses small molecules such as formic acid or alcohols (e.g. propanol) as hydride sources and transition metal complexes as catalysts. We focus here on organometallic half-sandwich RuII and OsII η6-arene complexes and RhIII and IrIII η5-Cp x complexes which catalyse hydrogenation of biomolecules such as pyruvate and quinones in aqueous media, and generate biologically important species such as H2 and H2O2. Organometallic catalysts can achieve enantioselectivity, and moreover can be active in living cells, which is surprising on account of the variety of poisons present. Such catalysts can induce reductive stress using formate as hydride source or oxidative stress by accepting hydride from NAD(P)H. In some cases, photocatalytic redox reactions can be induced by light absorption at metal or flavin centres. These artificial transformations can interfere in biochemical pathways in unusual ways, and are the basis for the design of metallodrugs with novel mechanisms of action.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry, University of Warwick, Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
12
|
Gold compounds for catalysis and metal-mediated transformations in biological systems. Curr Opin Chem Biol 2020; 55:103-110. [DOI: 10.1016/j.cbpa.2019.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/20/2019] [Accepted: 12/29/2019] [Indexed: 01/15/2023]
|
13
|
Nováková Lachmanová Š, Pospíšil L, Šebera J, Talbi B, Salmain M, Hromadová M. Electrochemical characterization of the artificial metalloenzyme papain-[(η6-arene)Ru(1,10-phenanthroline)Cl]+. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Saba T, Burnett JW, Li J, Wang X, Anderson JA, Kechagiopoulos PN, Wang X. Assessing the environmental performance of NADH regeneration methods: A cleaner process using recyclable Pt/Fe3O4 and hydrogen. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Soldevila-Barreda JJ, Metzler-Nolte N. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chem Rev 2019; 119:829-869. [PMID: 30618246 DOI: 10.1021/acs.chemrev.8b00493] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platinum-containing drugs (e.g., cisplatin) are among the most frequently used chemotherapeutic agents. Their tremendous success has spurred research and development of other metal-based drugs, with notable achievements. Generally, the vast majority of metal-based drug candidates in clinical and developmental stages are stoichiometric agents, i.e., each metal complex reacts only once with their biological target. Additionally, many of these metal complexes are involved in side reactions, which not only reduce the effective amount of the drug but may also cause toxicity. On a separate note, transition metal complexes and nanoparticles have a well-established history of being potent catalysts for selective molecular transformations, with examples such as the Mo- and Ru-based catalysts for metathesis reactions (Nobel Prize in 2005) or palladium catalysts for C-C bond forming reactions such as Heck, Negishi, or Suzuki reactions (Nobel Prize in 2010). Also, notably, no direct biological equivalent of these transformations exists in a biological environment such as bacteria or mammalian cells. It is, therefore, only logical that recent interest has focused on developing transition-metal based catalytic systems that are capable of performing transformations inside cells, with the aim of inducing medicinally relevant cellular changes. Because unlike in stoichiometric reactions, a catalytically active compound may turn over many substrate molecules, only very small amounts of such a catalytic metallodrug are required to achieve a desired pharmacologic effect, and therefore, toxicity and side reactions are reduced. Furthermore, performing catalytic reactions in biological systems also opens the door for new methodologies to study the behavior of biomolecules in their natural state, e.g., via in situ labeling or by increasing/depleting their concentration at will. There is, of course, an art to the choice of catalysts and reactions which have to be compatible with biological conditions, namely an aqueous, oxygen-containing environment. In this review, we aim to describe new developments that bring together the far-distant worlds of transition-metal based catalysis and metal-based drugs, in what is termed "catalytic metallodrugs". Here we will focus on transformations that have been performed on small biomolecules (such as shifting equilibria like in the NAD+/NADH or GSH/GSSG couples), on non-natural molecules such as dyes for imaging purposes, or on biomacromolecules such as proteins. Neither reactions involving release (e.g., CO) or transformation of small molecules (e.g., 1O2 production), degradation of biomolecules such as proteins, RNA or DNA nor light-induced medicinal chemistry (e.g., photodynamic therapy) are covered, even if metal complexes are centrally involved in those. In each section, we describe the (inorganic) chemistry involved, as well as selected examples of biological applications in the hope that this snapshot of a new but quickly developing field will indeed inspire novel research and unprecedented interactions across disciplinary boundaries.
Collapse
Affiliation(s)
- Joan Josep Soldevila-Barreda
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| |
Collapse
|
16
|
Malenov DP, Zarić SD. Stacking interactions between ruthenium p-cymene complexes: combined crystallographic and density functional study. CrystEngComm 2019. [DOI: 10.1039/c9ce01290g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stacking interactions between ruthenium p-cymene complexes are significantly strengthened by additional simultaneous C–H/π interactions of aromatic rings and their substituents.
Collapse
Affiliation(s)
| | - Snežana D. Zarić
- Faculty of Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
- Department of Chemistry
| |
Collapse
|
17
|
Chen F, Soldevila-Barreda JJ, Romero-Canelón I, Coverdale JPC, Song JI, Clarkson GJ, Kasparkova J, Habtemariam A, Brabec V, Wolny JA, Schünemann V, Sadler PJ. Effect of sulfonamidoethylenediamine substituents in Ru II arene anticancer catalysts on transfer hydrogenation of coenzyme NAD + by formate. Dalton Trans 2018; 47:7178-7189. [PMID: 29651471 DOI: 10.1039/c8dt00438b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of neutral pseudo-octahedral RuII sulfonamidoethylenediamine complexes [(η6-p-cym)Ru(N,N')Cl] where N,N' is N-(2-(R1,R2-amino)ethyl)-4-toluenesulfonamide (TsEn(R1,R2)) R1,R2 = Me,H (1); Me,Me (2); Et,H (3); benzyl,H (Bz, 4); 4-fluorobenzyl,H (4-F-Bz, 5) or naphthalen-2-ylmethyl,H (Naph, 6), were synthesised and characterised including the X-ray crystal structure of 3. These complexes catalyse the reduction of NAD+ regioselectively to 1,4-NADH by using formate as the hydride source. The catalytic efficiency depends markedly on the steric and electronic effects of the N-substitutent, with turnover frequencies (TOFs) increasing in the order: 1 < 2 < 3, 6 < 4, 5, achieving a TOF of 7.7 h-1 for 4 with a 95% yield of 1,4-NADH. The reduction rate was highest between pH* (deuterated solvent) 6 and 7.5 and improved with an increase in formate concentration (TOF of 18.8 h-1, 140 mM formate). The calculations suggested initial substitution of an aqua ligand by formate, followed by hydride transfer to RuII and then to NAD+, and indicated specific interactions between the aqua complex and both NAD+ and NADH, the former allowing a preorganisation involving interaction between the aqua ligand, formate anion and the pyridine ring of NAD+. The complexes exhibited antiproliferative activity towards A2780 human ovarian cancer cells with IC50 values ranging from 1 to 31 μM, the most potent complex, [(η6-p-cym)Ru(TsEn(Bz,H))Cl] (4, IC50 = 1.0 ± 0.1 μM), having a potency similar to the anticancer drug cisplatin. Co-administration with sodium formate (2 mM), increased the potency of all complexes towards A2780 cells by 20-36%, with the greatest effect seen for complex 6.
Collapse
Affiliation(s)
- Feng Chen
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Haghdoost MM, Guard J, Golbaghi G, Castonguay A. Anticancer Activity and Catalytic Potential of Ruthenium(II)-Arene Complexes with N,O-Donor Ligands. Inorg Chem 2018; 57:7558-7567. [PMID: 29888595 DOI: 10.1021/acs.inorgchem.8b00346] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The special ability of organometallic complexes to catalyze various transformations might offer new effective mechanisms for the treatment of cancer. Studies that report both the biological properties and the ability of metallic complexes to promote therapeutically relevant catalytic reactions are limited. Herein, we report the anticancer activity and catalytic potential of some ruthenium(II)-arene complexes bearing bidentate Schiff base ligands (2a and 2b) and their reduced analogues (5a and 5b, respectively). In comparison to their Schiff base counterparts 2a and 2b, we demonstrate that amine complexes 5a and 5b display (i) a higher in vitro antiproliferative activity on different human cancer cell lines, (ii) a lower rate of hydrolysis, and (iii) an improved initial catalytic rate for the reduction of NAD+ to NADH. In contrast to their imine analogues 2a and 2b, we also show that amine complexes 5a and 5b induce the generation of intracellular reactive oxygen species (ROS) in MCF-7 breast cancer cells. Our results highlight the impact that a simple ligand modification such as the reduction of an imine moiety can have on both the catalytic and biological activities of metal complexes. Moreover, the ruthenium complexes reported here display some antiproliferative activity against T47D breast cancer cells, known for their cis-platin resistance.
Collapse
Affiliation(s)
- Mohammad Mehdi Haghdoost
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Juliette Guard
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Golara Golbaghi
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Annie Castonguay
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| |
Collapse
|
19
|
Martínez-Peña F, Infante-Tadeo S, Habtemariam A, Pizarro AM. Reversible pH-Responsive Behavior of Ruthenium(II) Arene Complexes with Tethered Carboxylate. Inorg Chem 2018; 57:5657-5668. [PMID: 29688005 DOI: 10.1021/acs.inorgchem.8b00625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Five complexes of formula [Ru(η6-C6H5CH2COOH)(XY)Cl]Cl/Na (XY = ethylenediamine (1), o-phenylenediamine (2), phenanthroline (3), and oxalato (4)) and [Ru(η6:κ1-C6H5CH2COO)(tmen)]Cl (tmen = N, N, N', N'-tetramethylethylenediamine, 5C) have been synthesized and fully characterized. Five new X-ray crystal structures ([Ru(η6-C6H5CH2COOH)(μ-Cl)Cl]2, 1, 3, 4, and 5C·PF6) have been determined, which are the first examples of ruthenium(II) structures with phenylacetic acid as arene ligand. Furthermore, 5C·PF6 is the first example of a five-membered tether ring with a Ru(η6:κ1-arene:O) bond. The tether ring in these complexes opens in acidic pH (<5) and closes reversibly in aqueous solution. The chlorido open-form undergoes aquation, and the aqua adduct can be observed (prior to ring closure) by NMR. The speciation has an attractive complexity in the pH range 0-12, showing interconversion of the three species (chlorido, aqua, and closed tether), dependent on the proton concentration and the nature of the XY chelating ligand. The closed tether version of 3, complex 3C, with σ-donor/π-acceptor phenanthroline as chelating ligand, opens up more readily (pH 4), while the tether ring in complex 5C hardly opens even at pH as low as 1. We have determined the p Ka of the pendant carboxylic group and that of the aqua adduct (ca. 3 and ca. 7, respectively), which can be finely tuned by the appropriate choice of XY. Complexes 1 and 2, which predominate in their inactive (closed-tether) form in intracellular conditions, show some cytotoxic activity (IC50 130 and 117 μM, respectively) in A2780 ovarian cancer cells. Complex 1 catalyzes the reduction through transfer hydrogenation of pyruvate to lactate and NAD+ to NADH in the presence of formate as H-source. Co-incubation with sodium formate decreases the IC50 value of 1 in A2780 cancer cells significantly.
Collapse
Affiliation(s)
| | - Sonia Infante-Tadeo
- IMDEA Nanociencia, Faraday 9 , Ciudad Universitaria de Cantoblanco , Madrid 28049 , Spain
| | - Abraha Habtemariam
- IMDEA Nanociencia, Faraday 9 , Ciudad Universitaria de Cantoblanco , Madrid 28049 , Spain
| | - Ana M Pizarro
- IMDEA Nanociencia, Faraday 9 , Ciudad Universitaria de Cantoblanco , Madrid 28049 , Spain
| |
Collapse
|
20
|
Chen F, Romero-Canelón I, Soldevila-Barreda JJ, Song JI, Coverdale JPC, Clarkson GJ, Kasparkova J, Habtemariam A, Wills M, Brabec V, Sadler PJ. Transfer Hydrogenation and Antiproliferative Activity of Tethered Half-Sandwich Organoruthenium Catalysts. Organometallics 2018; 37:1555-1566. [PMID: 29887657 PMCID: PMC5989272 DOI: 10.1021/acs.organomet.8b00132] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/14/2022]
Abstract
![]()
We report the synthesis
and characterization of four neutral organometallic
tethered complexes, [Ru(η6-Ph(CH2)3-ethylenediamine-N-R)Cl], where R = methanesulfonyl
(Ms, 1), toluenesulfonyl (Ts, 2), 4-trifluoromethylbenzenesulfonyl
(Tf, 3), and 4-nitrobenzenesulfonyl (Nb, 4), including their X-ray crystal structures. These complexes exhibit
moderate antiproliferative activity toward human ovarian, lung, hepatocellular,
and breast cancer cell lines. Complex 2 in particular
exhibits a low cross-resistance with cisplatin. The complexes show
potent catalytic activity in the transfer hydrogenation of NAD+ to NADH with formate as hydride donor in aqueous solution
(310 K, pH 7). Substituents on the chelated ligand decreased the turnover
frequency in the order Nb > Tf > Ts > Ms. An enhancement
of antiproliferative
activity (up to 22%) was observed on coadministration with nontoxic
concentrations of sodium formate (0.5–2 mM). Complex 2 binds to nucleobase guanine (9-EtG), but DNA appears not
to be the target, as little binding to calf thymus DNA or bacterial
plasmid DNA was observed. In addition, complex 2 reacts
rapidly with glutathione (GSH), which might hamper transfer hydrogenation
reactions in cells. Complex 2 induced a dose-dependent
G1 cell cycle arrest after 24 h exposure in A2780 human
ovarian cancer cells while promoting an increase in reactive oxygen
species (ROS), which is likely to contribute to its antiproliferative
activity.
Collapse
Affiliation(s)
- Feng Chen
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.,School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Ji-Inn Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - James P C Coverdale
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Martin Wills
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
21
|
Bähr S, Oestreich M. A Neutral RuII
Hydride Complex for the Regio- and Chemoselective Reduction of N
-Silylpyridinium Ions. Chemistry 2018; 24:5613-5622. [DOI: 10.1002/chem.201705899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Susanne Bähr
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
22
|
|
23
|
|
24
|
Yang L, Bose S, Ngo AH, Do LH. Innocent But Deadly: Nontoxic Organoiridium Catalysts Promote Selective Cancer Cell Death. ChemMedChem 2017; 12:292-299. [PMID: 28052592 DOI: 10.1002/cmdc.201600638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/02/2017] [Indexed: 12/25/2022]
Abstract
We demonstrate that nontoxic organoiridum complexes can selectively chemosensitize cancer cells toward platinum antiproliferative agents. Treatment of human cancer cells (breast, colon, eye/retina, head/neck, lung, ovary, and blood) with the iridium chemosensitizers led to lowering of the 50 % growth inhibition concentration (IC50 ) of the Pt drug carboplatin by up to ∼30-50 %. Interestingly, non-cancer cells were mostly resistant to the chemosensitizing effects of the iridium complexes. Cell culture studies indicate that cancer cells that were administered with Ir show significantly higher reactive oxygen species concentrations as well as NAD+ /NADH ratios (oxidized vs. reduced nicotinamide adenine dinucleotide) than Ir-treated non-cancer cells. These biochemical changes are consistent with a catalytic transfer hydrogenation cycle involving the formation of iridium-hydride species from the reaction of the iridium catalysts with NADH and subsequent oxidation in air to generate hydrogen peroxide.
Collapse
Affiliation(s)
- Lu Yang
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX, 77004, USA
| | - Sohini Bose
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX, 77004, USA
| | - Anh H Ngo
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX, 77004, USA
| | - Loi H Do
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX, 77004, USA
| |
Collapse
|
25
|
Wiedner ES, Chambers MB, Pitman CL, Bullock RM, Miller AJM, Appel AM. Thermodynamic Hydricity of Transition Metal Hydrides. Chem Rev 2016; 116:8655-92. [PMID: 27483171 DOI: 10.1021/acs.chemrev.6b00168] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.
Collapse
Affiliation(s)
- Eric S Wiedner
- Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Matthew B Chambers
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Catherine L Pitman
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - R Morris Bullock
- Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Aaron M Appel
- Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
26
|
Kim SH, Chung GY, Kim SH, Vinothkumar G, Yoon SH, Jung KD. Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Suenobu T, Shibata S, Fukuzumi S. Catalytic Formation of Hydrogen Peroxide from Coenzyme NADH and Dioxygen with a Water-Soluble Iridium Complex and a Ubiquinone Coenzyme Analogue. Inorg Chem 2016; 55:7747-54. [PMID: 27403568 DOI: 10.1021/acs.inorgchem.6b01220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A ubiquinone coenzyme analogue (Q0: 2,3-dimethoxy-5-methyl-1,4-benzoquinone) was reduced by coenzyme NADH to yield the corresponding reduced form of Q0 (Q0H2) in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex (1: [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H2O)]2SO4) in water at ambient temperature as observed in the respiratory chain complex I (Complex I). In the catalytic cycle, the reduction of 1 by NADH produces the corresponding iridium hydride complex that in turn reduces Q0 to produce Q0H2. Q0H2 reduced dioxygen to yield hydrogen peroxide (H2O2) under slightly basic conditions. Catalytic generation of H2O2 was made possible in the reaction of O2 with NADH as the functional expression of NADH oxidase in white blood cells utilizing the redox cycle of Q0 as well as 1 for the first time in a nonenzymatic homogeneous reaction system.
Collapse
Affiliation(s)
- Tomoyoshi Suenobu
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology , Suita, Osaka 565-0871, Japan
| | - Satoshi Shibata
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology , Suita, Osaka 565-0871, Japan
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology , Suita, Osaka 565-0871, Japan.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea.,Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency , Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
28
|
Fu Y, Sanchez-Cano C, Soni R, Romero-Canelon I, Hearn JM, Liu Z, Wills M, Sadler PJ. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Trans 2016; 45:8367-8378. [PMID: 27109147 DOI: 10.1039/c6dt01242f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The rapidly growing area of catalytic ruthenium chemistry has provided new complexes with potential as organometallic anticancer agents with novel mechanisms of action. Here we report the anticancer activity of four neutral organometallic Ru(II) arene N-tosyl-1,2-diphenylethane-1,2-diamine (TsDPEN) tethered transfer hydrogenation catalysts. The enantiomers (R,R)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8) and (S,S)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8a) exhibited higher potency than cisplatin against A2780 human ovarian cancer cells. When the N-methyl was replaced by N-H, i.e. to give (R,R)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7) and (S,S)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7a), respectively, anticancer activity decreased >5-fold. Their antiproliferative activity appears to be linked to their ability to accumulate in cells, and their mechanism of action might involve inhibition of tubulin polymerisation. This appears to be the first report of the potent anticancer activity of tethered Ru(II) arene complexes, and the structure-activity relationship suggests that the N-methyl substituents are important for potency. In the National Cancer Institute 60-cancer-cell-line screen, complexes 8 and 8a exhibited higher activity than cisplatin towards a broad range of cancer cell lines. Intriguingly, in contrast to their potent anticancer properties, complexes 8/8a are poor catalysts for asymmetric transfer hydrogenation, whereas complexes 7/7a are effective asymmetric hydrogenation catalysts.
Collapse
Affiliation(s)
- Ying Fu
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Okamoto Y, Köhler V, Paul CE, Hollmann F, Ward TR. Efficient In Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00258] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yasunori Okamoto
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Caroline E. Paul
- Department
of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL Delft, The Netherlands
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL Delft, The Netherlands
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
30
|
Okamoto Y, Köhler V, Ward TR. An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades. J Am Chem Soc 2016; 138:5781-4. [PMID: 27100673 DOI: 10.1021/jacs.6b02470] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enzymes typically depend on either NAD(P)H or FADH2 as hydride source for reduction purposes. In contrast, organometallic catalysts most often rely on isopropanol or formate to generate the reactive hydride moiety. Here we show that incorporation of a Cp*Ir cofactor possessing a biotin moiety and 4,7-dihydroxy-1,10-phenanthroline into streptavidin yields an NAD(P)H-dependent artificial transfer hydrogenase (ATHase). This ATHase (0.1 mol%) catalyzes imine reduction with 1 mM NADPH (2 mol%), which can be concurrently regenerated by a glucose dehydrogenase (GDH) using only 1.2 equiv of glucose. A four-enzyme cascade consisting of the ATHase, the GDH, a monoamine oxidase, and a catalase leads to the production of enantiopure amines.
Collapse
Affiliation(s)
- Yasunori Okamoto
- Department of Chemistry, University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
31
|
Wang X, Yiu HHP. Heterogeneous Catalysis Mediated Cofactor NADH Regeneration for Enzymatic Reduction. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02820] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaodong Wang
- Chemical Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Humphrey H. P. Yiu
- Chemical Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| |
Collapse
|
32
|
Rojas S, Carmona FJ, Maldonado CR, Horcajada P, Hidalgo T, Serre C, Navarro JAR, Barea E. Nanoscaled Zinc Pyrazolate Metal–Organic Frameworks as Drug-Delivery Systems. Inorg Chem 2016; 55:2650-63. [DOI: 10.1021/acs.inorgchem.6b00045] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Rojas
- Department
of Inorganic Chemistry, University of Granada. Avenida Fuentenueva S/N, 18071 Granada, Spain
| | - Francisco J. Carmona
- Department
of Inorganic Chemistry, University of Granada. Avenida Fuentenueva S/N, 18071 Granada, Spain
| | - Carmen R. Maldonado
- Department
of Inorganic Chemistry, University of Granada. Avenida Fuentenueva S/N, 18071 Granada, Spain
| | - Patricia Horcajada
- Institut Lavoisier, CNRS, UMR 8180, Université de Versailles St. Quentin en Yvelines, 45 Avenue
des Etats-Unis, 78035 Versailles Cedex, France
| | - Tania Hidalgo
- Institut Lavoisier, CNRS, UMR 8180, Université de Versailles St. Quentin en Yvelines, 45 Avenue
des Etats-Unis, 78035 Versailles Cedex, France
| | - Christian Serre
- Institut Lavoisier, CNRS, UMR 8180, Université de Versailles St. Quentin en Yvelines, 45 Avenue
des Etats-Unis, 78035 Versailles Cedex, France
| | - Jorge A. R. Navarro
- Department
of Inorganic Chemistry, University of Granada. Avenida Fuentenueva S/N, 18071 Granada, Spain
| | - Elisa Barea
- Department
of Inorganic Chemistry, University of Granada. Avenida Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
33
|
Adeniyi AA, Ajibade PA. Development of ruthenium-based complexes as anticancer agents: toward a rational design of alternative receptor targets. REV INORG CHEM 2016. [DOI: 10.1515/revic-2015-0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractIn the search for novel anticancer agents, the development of metal-based complexes that could serve as alternatives to cisplatin and its derivatives has received considerable attention in recent years. This becomes necessary because, at present, cisplatin and its derivatives are the only coordination complexes being used as anticancer agents in spite of inherent serious side effects and their limitation against metastasized platinum-resistant cancer cells. Although many metal ions have been considered as possible alternatives to cisplatin, the most promising are ruthenium (Ru) complexes and two Ru compounds, KP1019 and NAMI-A, which are currently in phase II clinical trials. The major obstacle against the rational design of these compounds is the fact that their mode of action in relation to their therapeutic activities and selectivity is not fully understood. There is an urgent need to develop novel metal-based anticancer agents, especially Ru-based compounds, with known mechanism of actions, probable targets, and pharmacodynamic activity. In this paper, we review the current efforts in developing metal-based anticancer agents based on promising Ru complexes and the development of compounds targeting receptors and then examine the future prospects.
Collapse
|
34
|
Koga K, Matsubara Y, Kosaka T, Koike K, Morimoto T, Ishitani O. Hydride Reduction of NAD(P)+ Model Compounds with a Ru(II)–Hydrido Complex. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kichitaro Koga
- Department of Chemistry,
Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1-NE-1, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuo Matsubara
- Department
of Material and Life Chemistry, Kanagawa University, Rokkakubashi
3-27-1, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Tatsumi Kosaka
- Graduate School of
Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Kazuhide Koike
- National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba 305-8569, Japan
| | - Tatsuki Morimoto
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1401-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Osamu Ishitani
- Department of Chemistry,
Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1-NE-1, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
35
|
Oyama D, Hamada T, Ukawa N, Mochizuki R, Takase T. Isolation and Structural Characterization of a Metallacyclic Compound by Selective Protection of a Single CO Ligand in a Ruthenium Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dai Oyama
- Cluster of Science and Engineering, Fukushima University
| | - Takashi Hamada
- Cluster of Science and Engineering, Fukushima University
| | - Narumi Ukawa
- Cluster of Science and Engineering, Fukushima University
| | | | - Tsugiko Takase
- Institute of Environmental Radioactivity, Fukushima University
| |
Collapse
|
36
|
Soldevila-Barreda JJ, Habtemariam A, Romero-Canelón I, Sadler PJ. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity. J Inorg Biochem 2015; 153:322-333. [PMID: 26601938 DOI: 10.1016/j.jinorgbio.2015.10.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022]
Abstract
Organometallic complexes have the potential to behave as catalytic drugs. We investigate here Rh(III) complexes of general formula [(Cp(x))Rh(N,N')(Cl)], where N,N' is ethylenediamine (en), 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), and Cp(x) is pentamethylcyclopentadienyl (Cp*), 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl (Cp(xPh)) or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (Cp(xPhPh)). These complexes can reduce NAD(+) to NADH using formate as a hydride source under biologically-relevant conditions. The catalytic activity decreased in the order of N,N-chelated ligand bpy > phen > en with Cp* as the η(5)-donor. The en complexes (1-3) became more active with extension to the Cp(X) ring, whereas the activity of the phen (7-9) and bpy (4-6) compounds decreased. [Cp*Rh(bpy)Cl](+) (4) showed the highest catalytic activity, with a TOF of 37.4±2h(-1). Fast hydrolysis of the chlorido complexes 1-10 was observed by (1)H NMR (<10min at 310K). The pKa* values for the aqua adducts were determined to be ca. 8-10. Complexes 1-9 also catalysed the reduction of pyruvate to lactate using formate as the hydride donor. The efficiency of the transfer hydrogenation reactions was highly dependent on the nature of the chelating ligand and the Cp(x) ring. Competition reactions between NAD(+) and pyruvate for reduction by formate catalysed by 4 showed a preference for reduction of NAD(+). The antiproliferative activity of complex 3 towards A2780 human ovarian cancer cells increased by up to 50% when administered in combination with non-toxic doses of formate, suggesting that transfer hydrogenation can induce reductive stress in cancer cells.
Collapse
Affiliation(s)
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
37
|
Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat Commun 2015; 6:6582. [PMID: 25791197 PMCID: PMC4383003 DOI: 10.1038/ncomms7582] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD(+) to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells.
Collapse
|
38
|
Approaches to the design of catalytic metallodrugs. Curr Opin Chem Biol 2015; 25:172-83. [PMID: 25765750 DOI: 10.1016/j.cbpa.2015.01.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 01/10/2023]
Abstract
Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in chemical systems. However, small catalysts do not have a large protein ligand to provide substrate selectivity and minimize catalyst poisoning. Despite the challenges that the lack of a protein ligand might pose, some success in the use of metal catalysts for biochemical transformations has been reported. Here, we present a brief overview of such reports, especially involving catalytic reactions in cells. Examples include C-C bond formation, deprotection and functional group modification, degradation of biomolecules, and redox modulation. We discuss four classes of catalytic redox modulators: photosensitizers, superoxide dismutase mimics, thiol oxidants, and transfer hydrogenation catalysts. Catalytic metallodrugs offer the prospect of low-dose therapy and a challenging new design strategy for future exploration.
Collapse
|
39
|
Singh SK, Pandey DS. Multifaceted half-sandwich arene–ruthenium complexes: interactions with biomolecules, photoactivation, and multinuclearity approach. RSC Adv 2014. [DOI: 10.1039/c3ra44131h] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
40
|
McSkimming A, Colbran SB. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction. Chem Soc Rev 2013; 42:5439-88. [PMID: 23507957 DOI: 10.1039/c3cs35466k] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In biological reduction processes the dihydronicotinamides NAD(P)H often transfer hydride to an unsaturated substrate bound within an enzyme active site. In many cases, metal ions in the active site bind, polarize and thereby activate the substrate to direct attack by hydride from NAD(P)H cofactor. This review looks more widely at the metal coordination chemistry of organic donors of hydride ion--organo-hydrides--such as dihydronicotinamides, other dihydropyridines including Hantzsch's ester and dihydroacridine derivatives, those derived from five-membered heterocycles including the benzimidazolines and benzoxazolines, and all-aliphatic hydride donors such as hexadiene and hexadienyl anion derivatives. The hydride donor properties--hydricities--of organo-hydrides and how these are affected by metal ions are discussed. The coordination chemistry of organo-hydrides is critically surveyed and the use of metal-organo-hydride systems in electrochemically-, photochemically- and chemically-driven reductions of unsaturated organic and inorganic (e.g. carbon dioxide) substrates is highlighted. The sustainable electrocatalytic, photochemical or chemical regeneration of organo-hydrides such as NAD(P)H, including for driving enzyme-catalysed reactions, is summarised and opportunities for development are indicated. Finally, new prospects are identified for metal-organo-hydride systems as catalysts for organic transformations involving 'hydride-borrowing' and for sustainable multi-electron reductions of unsaturated organic and inorganic substrates directly driven by electricity or light or by renewable reductants such as formate/formic acid.
Collapse
Affiliation(s)
- Alex McSkimming
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
41
|
|
42
|
Soldevila-Barreda JJ, Bruijnincx PCA, Habtemariam A, Clarkson GJ, Deeth RJ, Sadler PJ. Improved Catalytic Activity of Ruthenium–Arene Complexes in the Reduction of NAD+. Organometallics 2012. [DOI: 10.1021/om3006307] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Pieter C. A. Bruijnincx
- Debye Institute of Nanomaterials Science, Inorganic Chemistry & Catalysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4
7AL, U.K
| | - Guy J. Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4
7AL, U.K
| | - Robert J. Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4
7AL, U.K
| | - Peter J. Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4
7AL, U.K
| |
Collapse
|
43
|
Betanzos-Lara S, Liu Z, Habtemariam A, Pizarro AM, Qamar B, Sadler PJ. Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor. Angew Chem Int Ed Engl 2012; 51:3897-900. [PMID: 22415924 DOI: 10.1002/anie.201108175] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/02/2012] [Indexed: 12/24/2022]
Abstract
Artificial enzymes: half-sandwich arene ruthenium(II) and cyclopentadienyl iridium(III) complexes containing N,N-chelated ligands can use NADH as a source of hydride for the reduction of ketones. Moreover, cyclopentadienyl phenanthroline iridium(III) derivatives at micromolar concentrations are robust catalysts for the production of H(2) from NADH in water and can raise the NAD(+)/NADH ratio in cancer cells.
Collapse
|
44
|
Betanzos-Lara S, Liu Z, Habtemariam A, Pizarro AM, Qamar B, Sadler PJ. Organometallic Ruthenium and Iridium Transfer-Hydrogenation Catalysts Using Coenzyme NADH as a Cofactor. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108175] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Fu Y, Romero MJ, Habtemariam A, Snowden ME, Song L, Clarkson GJ, Qamar B, Pizarro AM, Unwin PR, Sadler PJ. The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(ii) arene anticancer complexes. Chem Sci 2012. [DOI: 10.1039/c2sc20220d] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
46
|
Noffke AL, Habtemariam A, Pizarro AM, Sadler PJ. Designing organometallic compounds for catalysis and therapy. Chem Commun (Camb) 2012; 48:5219-46. [DOI: 10.1039/c2cc30678f] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Maenaka Y, Suenobu T, Fukuzumi S. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature. J Am Chem Soc 2011; 134:367-74. [PMID: 22122737 DOI: 10.1021/ja207785f] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regioselective hydrogenation of the oxidized form of β-nicotinamide adenine dinucleotide (NAD(+)) to the reduced form (NADH) with hydrogen (H(2)) has successfully been achieved in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2) SO(4) [1](2)·SO(4) under an atmospheric pressure of H(2) at room temperature in weakly basic water. The structure of the corresponding benzoate complex Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))(H(2)O) 2 has been revealed by X-ray single-crystal structure analysis. The corresponding iridium hydride complex formed under an atmospheric pressure of H(2) undergoes the 1,4-selective hydrogenation of NAD(+) to form 1,4-NADH. On the other hand, in weakly acidic water the complex 1 was found to catalyze the hydrogen evolution from NADH to produce NAD(+) without photoirradiation at room temperature. NAD(+) exhibited an inhibitory behavior in both catalytic hydrogenation of NAD(+) with H(2) and H(2) evolution from NADH due to the binding of NAD(+) to the catalyst. The overall catalytic mechanism of interconversion between NADH and NAD(+) accompanied by generation and consumption of H(2) was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates.
Collapse
Affiliation(s)
- Yuta Maenaka
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
48
|
Haquette P, Talbi B, Barilleau L, Madern N, Fosse C, Salmain M. Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration. Org Biomol Chem 2011; 9:5720-7. [PMID: 21695322 DOI: 10.1039/c1ob05482a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organometallic complexes of the general formula [(η(6)-arene)Ru(N⁁N)Cl](+) and [(η(5)-Cp*)Rh(N⁁N)Cl](+) where N⁁N is a 2,2'-dipyridylamine (DPA) derivative carrying a thiol-targeted maleimide group, 2,2'-bispyridyl (bpy), 1,10-phenanthroline (phen) or ethylenediamine (en) and arene is benzene, 2-chloro-N-[2-(phenyl)ethyl]acetamide or p-cymene were identified as catalysts for the stereoselective reduction of the enzyme cofactors NAD(P)(+) into NAD(P)H with formate as a hydride donor. A thorough comparison of their effectiveness towards NAD(+) (expressed as TOF) revealed that the Rh(III) complexes were much more potent catalysts than the Ru(II) complexes. Within the Ru(II) complex series, both the N⁁N and arene ligands forming the coordination sphere had a noticeable influence on the activity of the complexes. Covalent anchoring of the maleimide-functionalized Ru(II) and Rh(III) complexes to the cysteine endoproteinase papain yielded hybrid metalloproteins, some of them displaying formate dehydrogenase activity with potentially interesting kinetic parameters.
Collapse
Affiliation(s)
- Pierre Haquette
- Chimie ParisTech, Laboratoire Charles Friedel, Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Quartapelle Procopio E, Rojas S, Padial NM, Galli S, Masciocchi N, Linares F, Miguel D, Oltra JE, Navarro JAR, Barea E. Study of the incorporation and release of the non-conventional half-sandwich ruthenium(ii) metallodrug RAPTA-C on a robust MOF. Chem Commun (Camb) 2011; 47:11751-3. [DOI: 10.1039/c1cc14594k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Hollmann F, Arends I, Buehler K. Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods. ChemCatChem 2010. [DOI: 10.1002/cctc.201000069] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|