1
|
Mastalarz H, Mastalarz A, Wietrzyk J, Milczarek M, Kochel A, Regiec A. Synthesis of Platinum(II) Complexes with Some 1-Methylnitropyrazoles and In Vitro Research on Their Cytotoxic Activity. Pharmaceuticals (Basel) 2020; 13:ph13120433. [PMID: 33260497 PMCID: PMC7768359 DOI: 10.3390/ph13120433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/01/2022] Open
Abstract
A series of eight novel platinum(II) complexes were synthesized by the reaction of the appropriate 1-methylnitropyrazole derivatives with K2PtCl4 and characterized by elemental analysis, ESI MS spectrometry, 1H NMR, 195Pt NMR, IR and far IR spectroscopy. Thermal isomerization of cis-dichloridobis(1-methyl-4-nitropyrazole)platinum(II) 1 to trans-dichloridobis(1-methyl-4-nitropyrazole)platinum(II) 2 has been presented, and the structure of the compound 2 has been confirmed by X-ray diffraction method. Cytotoxicity of the investigated compounds was examined in vitro on three human cancer cell lines (MCF-7 breast, ES-2 ovarian and A-549 lung adenocarcinomas) and their logP was measured using a shake-flask method. The trans complex 2 showed better antiproliferative activity than cisplatin for all the tested cancer cell lines. Additionally, trans-dichloridobis(1-methyl-5-nitropyrazole)platinum(II) 4 has featured a lower IC50 value than reference cisplatin against MCF-7 cell line. To gain additional information that may facilitate the explanation of the mode of action of tested compounds cellular platinum uptake, stability in L-glutathione solution, influence on cell cycle progression of HL-60 cells and ability to apoptosis induction were determined for compounds 1 and 2.
Collapse
Affiliation(s)
- Henryk Mastalarz
- Department of Organic Chemistry, Faculty of Pharmacy, Wrocław Medical University, 211A Borowska Street, 50-556 Wrocław, Poland;
- Correspondence: ; Tel.: +48-717840347; Fax: +48-717840341
| | - Agnieszka Mastalarz
- Faculty of Chemistry, The University of Wrocław, 14F Joliot-Curie Street, 50-383 Wrocław, Poland; (A.M.); (A.K.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland; (J.W.); (M.M.)
| | - Magdalena Milczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland; (J.W.); (M.M.)
| | - Andrzej Kochel
- Faculty of Chemistry, The University of Wrocław, 14F Joliot-Curie Street, 50-383 Wrocław, Poland; (A.M.); (A.K.)
| | - Andrzej Regiec
- Department of Organic Chemistry, Faculty of Pharmacy, Wrocław Medical University, 211A Borowska Street, 50-556 Wrocław, Poland;
| |
Collapse
|
2
|
The interactions of novel mononuclear platinum-based complexes with DNA. BMC Cancer 2018; 18:1284. [PMID: 30577821 PMCID: PMC6303901 DOI: 10.1186/s12885-018-5194-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
Background Cisplatin has been widely used for the treatment of cancer and its antitumour activity is attributed to its capacity to form DNA adducts, predominantly at guanine residues, which impede cellular processes such as DNA replication and transcription. However, there are associated toxicity and drug resistance issues which plague its use. This has prompted the development and screening of a range of chemotherapeutic drug analogues towards improved efficacy. The biological properties of three novel platinum-based compounds consisting of varying cis-configured ligand groups, as well as a commercially supplied compound, were characterised in this study to determine their potential as anticancer agents. Methods The linear amplification reaction was employed, in conjunction with capillary electrophoresis, to quantify the sequence specificity of DNA adducts induced by these compounds using a DNA template containing telomeric repeat sequences. Additionally, the DNA interstrand cross-linking and unwinding efficiency of these compounds were assessed through the application of denaturing and native agarose gel electrophoresis techniques, respectively. Their cytotoxicity was determined in HeLa cells using a colorimetric cell viability assay. Results All three novel platinum-based compounds were found to induce DNA adduct formation at the tandem telomeric repeat sequences. The sequence specificity profile at these sites was characterised and these were distinct from that of cisplatin. Two of these compounds with the enantiomeric 1,2-diaminocyclopentane ligand (SS and RR-DACP) were found to induce a greater degree of DNA unwinding than cisplatin, but exhibited marginally lower DNA cross-linking efficiencies. Furthermore, the RR-isomer was more cytotoxic in HeLa cells than cisplatin. Conclusions The biological characteristics of these compounds were assessed relative to cisplatin, and a variation in the sequence specificity and a greater capacity to induce DNA unwinding was observed. These compounds warrant further investigations towards developing more efficient chemotherapeutic drugs.
Collapse
|
3
|
Hrabina O, Kasparkova J, Suchankova T, Novohradsky V, Guo Z, Brabec V. Unique structural properties of DNA interstrand cross-links formed by a new antitumor dinuclear Pt(ii) complex. Metallomics 2017; 9:494-500. [DOI: 10.1039/c7mt00052a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Li W, Jiang M, Cao Y, Yan L, Qi R, Li Y, Jing X. Turning Ineffective Transplatin into a Highly Potent Anticancer Drug via a Prodrug Strategy for Drug Delivery and Inhibiting Cisplatin Drug Resistance. Bioconjug Chem 2016; 27:1802-6. [DOI: 10.1021/acs.bioconjchem.6b00302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenliang Li
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Mo Jiang
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Yue Cao
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Lesan Yan
- Department
of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104-6321, United States
| | - Ruogu Qi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yuxin Li
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Xiabin Jing
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
5
|
Johnson BW, Murray V, Temple MD. Characterisation of the DNA sequence specificity, cellular toxicity and cross-linking properties of novel bispyridine-based dinuclear platinum complexes. BMC Cancer 2016; 16:333. [PMID: 27225032 PMCID: PMC4880875 DOI: 10.1186/s12885-016-2368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background The anti-tumour activity of cisplatin is thought to be a result of its capacity to form DNA adducts which prevent cellular processes such as DNA replication and transcription. These DNA adducts can effectively induce cancer cell death, however, there are a range of clinical side effects and drug resistance issues associated with its use. In this study, the biological properties of three novel dinuclear platinum-based compounds (that contain alkane bridging linkers of eight, ten and twelve carbon atoms in length) were characterised to assess their potential as anticancer agents. Methods The properties of these compounds were determined using a DNA template containing seven tandem telomeric repeat sequences. A linear amplification reaction was used in combination with capillary electrophoresis to quantify the sequence specificity of DNA adducts formed by these compounds at base pair resolution. The DNA cross-linking ability of these compounds was assessed using denaturing agarose gel electrophoresis and cytotoxicity was determined in HeLa cells using a colorimetric cell viability assay. Results The dinuclear compounds were found to preferentially form DNA adducts at guanine bases and they exhibited different damage intensity profiles at the telomeric repeat sequences compared to that of cisplatin. The dinuclear compounds were found to exhibit a low level of cytotoxicity relative to cisplatin and their cytotoxicity increased as the linker length increased. Conversely, the interstrand cross-linking efficiency of the dinuclear compounds increased as the linker length decreased and the compound with the shortest alkane linker was six-fold more effective than cisplatin. Conclusions Since the bifunctional compounds exhibit variation in sequence specificity of adduct formation and a greater ability to cross-link DNA relative to cisplatin they warrant further investigation towards the goal of developing new cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Ben W Johnson
- School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mark D Temple
- School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
6
|
Novakova O, Liskova B, Vystrcilova J, Suchankova T, Vrana O, Starha P, Travnicek Z, Brabec V. Conformation and recognition of DNA damaged by antitumor cis-dichlorido platinum(II) complex of CDK inhibitor bohemine. Eur J Med Chem 2014; 78:54-64. [PMID: 24675180 DOI: 10.1016/j.ejmech.2014.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/20/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
A substitution of the ammine ligands of cisplatin, cis-[Pt(NH3)2Cl2], for cyclin dependent kinase (CDK) inhibitor bohemine (boh), [2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine], results in a compound, cis-[Pt(boh)2Cl2] (C1), with the unique anticancer profile which may be associated with some features of the damaged DNA and/or its cellular processing (Travnicek Z et al. (2003) J Inorg Biochem94, 307-316; Liskova B (2012) Chem Res Toxicol25, 500-509). A combination of biochemical and molecular biology techniques was used to establish mechanistic differences between cisplatin and C1 with respect to the DNA damage they produce and their interactions with critical DNA-binding proteins, DNA-processing enzymes and glutathione. The results show that replacement of the NH3 groups in cisplatin by bohemine modulates some aspects of the mechanism of action of C1. More specifically, the results of the present work are consistent with the thesis that, in comparison with cisplatin, effects of other factors, such as: (i) slower rate of initial binding of C1 to DNA; (ii) the lower efficiency of C1 to form bifunctional adducts; (iii) the reduced bend of longitudinal DNA axis induced by the major 1,2-GG intrastrand cross-link of C1; (iv) the reduced affinity of HMG domain proteins to the major adduct of C1; (v) the enhanced efficiency of the DNA adducts of C1 to block DNA polymerization and to inhibit transcription activity of human RNA pol II and RNA transcription; (vi) slower rate of the reaction of C1 with glutathione, may partially contribute to the unique activity of C1.
Collapse
Affiliation(s)
- Olga Novakova
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Barbora Liskova
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Jana Vystrcilova
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Tereza Suchankova
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Oldrich Vrana
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Pavel Starha
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Zdenek Travnicek
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic.
| |
Collapse
|
7
|
Zhao Y, Woods JA, Farrer NJ, Robinson KS, Pracharova J, Kasparkova J, Novakova O, Li H, Salassa L, Pizarro AM, Clarkson GJ, Song L, Brabec V, Sadler PJ. Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts. Chemistry 2013; 19:9578-91. [PMID: 23733242 PMCID: PMC4280898 DOI: 10.1002/chem.201300374] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Indexed: 01/09/2023]
Abstract
Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side-effects. Photoactivatable Pt(IV) prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X-ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans-[Pt(N3)2(OH)2(MA)(Py)] (1; MA=methylamine, Py=pyridine) and trans,trans,trans-[Pt(N3)2(OH)2(MA)(Tz)] (2; Tz=thiazole), and interpret their photophysical properties by TD-DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1p and 1q. Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin-resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf-thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono- and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross-links, with evidence for DNA strand cross-linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin-type lesions. The photo-induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the Pt(II) compounds trans-[PtCl2(MA)(Py)] (5) and trans-[PtCl2(MA)(Tz)] (6). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1, whereas the dark reactions of 5 and 6 with DNA were comparatively slow. Complexes 1 and 2 can therefore give rapid potent photocytotoxicity and novel DNA lesions in cancer cells, with no activity in the absence of irradiation.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology, University of DundeeNinewells Hospital and Medical School, Dundee, DD1 9SY (UK)
| | - Nicola J Farrer
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Kim S Robinson
- Photobiology Unit, Department of Dermatology, University of DundeeNinewells Hospital and Medical School, Dundee, DD1 9SY (UK)
| | - Jitka Pracharova
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Jana Kasparkova
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Huilin Li
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Luca Salassa
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Ana M Pizarro
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Guy J Clarkson
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Lijiang Song
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| | - Viktor Brabec
- Faculty of Science, Palacky University, 17Listopadu 12, 77146 Olomouc (Czech Republic)
| | - Peter J Sadler
- Department of Chemistry, University of WarwickCoventry, CV4 7AL (UK)
| |
Collapse
|
8
|
Frybortova M, Novakova O, Stepankova J, Novohradsky V, Gibson D, Kasparkova J, Brabec V. Activation of trans geometry in bifunctional mononuclear platinum complexes by a non-bulky methylamine ligand. J Inorg Biochem 2013; 126:46-54. [PMID: 23770803 DOI: 10.1016/j.jinorgbio.2013.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
In order to shed light on the mechanism that underlies activity of bifunctional mononuclear Pt(II) analogs of transplatin we examined in the present work a DNA binding mode of the analog of transplatin, namely trans-[Pt(CH3NH2)2Cl2], in which NH3 groups were replaced only by a small, non-bulky methylamine ligand. This choice was made because we were interested to reveal the role of the bulkiness of the amines used to substitute NH3 in transplatin to produce antitumor-active Pt(II) drug. The results indicate that trans-[Pt(CH3NH2)2Cl2] forms a markedly higher amount of more distorting intrastrand cross-links than transplatin which forms in DNA preferentially less distorting and persisting monofunctional adducts. Also importantly, the accumulation of trans-[Pt(CH3NH2)2Cl2] in tumor cells was considerably greater than that of transplatin and cisplatin. In addition, the results of the present work demonstrate that the replacement of ammine groups by the non-bulky methylamine ligand in the molecule of ineffective transplatin results in a radical enhancement of its activity in tumor cell lines including cisplatin-resistant tumor cells. Thus, activation of the trans geometry in bifunctional mononuclear Pt(II) complexes can be also accomplished by replacement of ammine groups in transplatin by non-bulky methylamine ligands so that it is not limited only to the replacement by relatively bulky and stereochemically more demanding amino ligands.
Collapse
Affiliation(s)
- Michaela Frybortova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
9
|
Sgarbossa P, Sbovata SM, Bertani R, Mozzon M, Benetollo F, Marzano C, Gandin V, Michelin RA. Novel imino thioether complexes of platinum(II): synthesis, structural investigation, and biological activity. Inorg Chem 2013; 52:5729-41. [PMID: 23647564 DOI: 10.1021/ic3024452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reactions of the nitrile complexes cis- and trans-[PtCl2(NCR)2] (R = Me, Et, CH2Ph, Ph) with an excess of ethanethiol, EtSH, in the presence of a catalytic amount of n-BuLi in tetrahydrofuran (THF), afforded in good yield the bis-imino thioether derivatives cis-[PtCl2{E-N(H)═C(SEt)R}2] (R = Me (1), Et (2), CH2Ph (3), Ph (4)) and trans-[PtCl2{E-N(H)═C(SEt)R}2] (R = Me (5), Et (6), CH2Ph (7), Ph (8)). The imino thioether ligands assumed the E configuration corresponding to a cis addition of the thiol to the nitrile triple bond. The spectroscopic properties of these complexes have been reported along with the molecular structures of 1, 2, and 7 as established by X-ray crystallography which indicated that these compounds exhibit square-planar coordination geometry around the platinum center. Four N-H···Cl intermolecular contacts (N-H···Cl ca. 2.5-2.7 Å) between each chlorine atom and the N-H proton of the imino thioether ligand gave rise to "dimers" Pt2Cl4L4 (L = imino thioether) formed by two PtCl2L2 units. The cytotoxic properties of these new platinum(II) complexes were evaluated against various human cancer cell lines. Among all derivatives, trans-[PtCl2{E-N(H)═C(SEt)CH2Ph}2] showed the greatest in vitro cytotoxic activity being able to decrease cancer cell viability roughly 3-fold more effectively than cisplatin.
Collapse
Affiliation(s)
- Paolo Sgarbossa
- Department of Industrial Engineering, University of Padua, Via F. Marzolo, 9, 35131 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Olivova R, Stepankova J, Muchova T, Novohradsky V, Novakova O, Vrana O, Kasparkova J, Brabec V. Mechanistic insights into toxic effects of a benzotriazolate-bridged dinuclear platinum(II) compound in tumor cells. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hochreuther S, van Eldik R. Reactivity of a cytostatic active N,N-donor-containing dinuclear Pt(II) complex with biological relevant nucleophiles. Inorg Chem 2012; 51:3025-38. [PMID: 22356171 DOI: 10.1021/ic202351r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A dinuclear platinum(II) complex that was recently investigated in our group was tested for its cytostatic activity and found to be active against HeLa S3 cells. The complex consists of a bidentate N,N-donor chelating ligand system in which the two platinum centers are connected by an aliphatic chain of 10 methylene groups. The complex [Pt(2)(N(1),N(10)-bis(2-pyridylmethyl)-1,10-decanediamine)(OH(2))(4)](4+) (10NNpy) is of further special interest, since only little is known about the substitution behavior of such dinuclear platinum complexes that contain a bidentate coordination sphere. The complex was investigated using different biologically relevant nucleophiles, such as thiourea (tu), L-methionine (L-Met), glutathione (GSH), and guanine-5'-monophosphate (5'-GMP), at two different pH values (2 and 7.4). The substitution of coordinated water by these nucleophiles was studied under pseudo-first-order conditions as a function of nucleophile concentration, temperature, and pressure, using stopped-flow techniques and UV-vis spectroscopy. The reactivity of 10NNpy with the selected nucleophiles was found to be tu ≫ 5'-GMP > L-Met > GSH at pH 2 and GSH > tu > L-Met at pH 7.4. The results for the dinuclear 10NNpy complex were compared to those for the corresponding mononuclear reference complex [Pt(aminomethylpyridine)(OH(2))(2)](2+), Pt(amp), studied before in our group, by which the effect of the addition of an aliphatic chain, an increase in the overall charge, and a shift in the pK(a) values of the coordinated water ligands could be investigated. The reactivity order for Pt(amp) was found to be tu > GSH > L-Met at pH 7.4.
Collapse
Affiliation(s)
- Stephanie Hochreuther
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | | |
Collapse
|
12
|
Methimazole complexes of platinum(II): Synthesis, characterization and redox behavior. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Jelić R, Marković S, Petrović B. Equilibrium studies on complex formation reactions of dichlorido[(R,R)-trans-1,2-diaminocyclohexane]platinum(II) complex with ligands of biological significance. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0553-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Tamasi G, Casolaro M, Magnani A, Sega A, Chiasserini L, Messori L, Gabbiani C, Valiahdi SM, Jakupec MA, Keppler BK, Hursthouse MB, Cini R. New platinum-oxicam complexes as anti-cancer drugs. Synthesis, characterization, release studies from smart hydrogels, evaluation of reactivity with selected proteins and cytotoxic activity in vitro. J Inorg Biochem 2010; 104:799-814. [PMID: 20447694 DOI: 10.1016/j.jinorgbio.2010.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
The reaction of aqueous cis-[Pt(NH(3))(2)(H(2)O)(2)](NO(3))(2) with Na(+)HMEL(-) (H(2)MEL, meloxicam, 4-hydroxy-2-methyl-N-(5-methyl-1,3-thiazol-2-yl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide), and Na(+)HISO(-) (H(2)ISO, isoxicam, 4-hydroxy-2-methyl-N-(5-methylisoxazol-3-yl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide) at pH 7 produced micro-crystalline cis-[Pt(NH(3))(2)(N(1')-HMEL)(2)], 5 and cis-[Pt(NH(3))(2)(N(1')-HISO)(2)], 6. The X-ray diffraction structure of 5 shows two HMEL(-) anions donating through the thiazole nitrogen atoms and adopting a head-to-tail (HT) conformation. The (1)H NMR spectrum for 5 from DMSO-d(6) shows inertness of the complex up to at least 24h. Delivery studies for 5 and 6 from vinyl hydrogel based on L-phenylalanine (pH 6.5, 25 degrees C) show that concentrations of complexes ranging between 2.5 and 5 microM can be reached after a day. Compounds 5 and 6 show strong anti-proliferative effects on CH1 cells (ovarian carcinoma, human) in vitro, IC(50) values being 0.60 and 0.37 microM, respectively (0.16 microM for reference, cis-diamminodichloridoplatinum(II), cisplatin). ESI-MS measurements clearly documented that both 5 and 6 form adducts with the three model proteins ubiquitin (UBI), cytochrome c (CYT C) and superoxide dismutase (SOD), the HISO(-) complex being significantly more effective than the HMEL(-) one. Density functional methods help in finding rationale for the easiest dissociation of Pt-H(2)ISO/HISO bonds when compared to the Pt-N(1)(')-H(2)MEL/N(1)(')-HMEL linkages.
Collapse
Affiliation(s)
- Gabriella Tamasi
- Department of Chemistry, Università di Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Georgiades SN, Vilar R. Interaction of metal complexes with nucleic acids. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b918406f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Reedijk J. Platinum Anticancer Coordination Compounds: Study of DNA Binding Inspires New Drug Design. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900054] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jan Reedijk
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|