1
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
2
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
3
|
Esquerra RM, Bibi BM, Tipgunlakant P, Birukou I, Soman J, Olson JS, Kliger DS, Goldbeck RA. Role of Heme Pocket Water in Allosteric Regulation of Ligand Reactivity in Human Hemoglobin. Biochemistry 2016; 55:4005-17. [PMID: 27355904 PMCID: PMC4978812 DOI: 10.1021/acs.biochem.6b00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water molecules can enter the heme pockets of unliganded myoglobins and hemoglobins, hydrogen bond with the distal histidine, and introduce steric barriers to ligand binding. The spectrokinetics of photodissociated CO complexes of human hemoglobin and its isolated α and β chains were analyzed for the effect of heme hydration on ligand rebinding. A strong coupling was observed between heme hydration and quaternary state. This coupling may contribute significantly to the 20-60-fold difference between the R- and T-state bimolecular CO binding rate constants and thus to the modulation of ligand reactivity that is the hallmark of hemoglobin allostery. Heme hydration proceeded over the course of several kinetic phases in the tetramer, including the R to T quaternary transition. An initial 150 ns hydration phase increased the R-state distal pocket water occupancy, nw(R), to a level similar to that of the isolated α (∼60%) and β (∼10%) chains, resulting in a modest barrier to ligand binding. A subsequent phase, concurrent with the first step of the R → T transition, further increased the level of heme hydration, increasing the barrier. The final phase, concurrent with the final step of the allosteric transition, brought the water occupancy of the T-state tetramer, nw(T), even higher and close to full occupancy in both the α and β subunits (∼90%). This hydration level could present an even larger barrier to ligand binding and contribute significantly to the lower iron reactivity of the T state toward CO.
Collapse
Affiliation(s)
- Raymond M. Esquerra
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | - Bushra M. Bibi
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | - Pooncharas Tipgunlakant
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | - Ivan Birukou
- Department of Biochemistry and Cell Biology and W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005, United States
| | - Jayashree Soman
- Department of Biochemistry and Cell Biology and W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005, United States
| | - John S. Olson
- Department of Biochemistry and Cell Biology and W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005, United States
| | - David S. Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Robert A. Goldbeck
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
4
|
Shadrina MS, Peslherbe GH, English AM. Quaternary-Linked Changes in Structure and Dynamics That Modulate O2 Migration within Hemoglobin’s Gas Diffusion Tunnels. Biochemistry 2015; 54:5268-78. [DOI: 10.1021/acs.biochem.5b00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria S. Shadrina
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Gilles H. Peslherbe
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Ann M. English
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
5
|
Jones EM, Monza E, Balakrishnan G, Blouin GC, Mak PJ, Zhu Q, Kincaid JR, Guallar V, Spiro TG. Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study. J Am Chem Soc 2014; 136:10325-39. [PMID: 24991732 PMCID: PMC4353013 DOI: 10.1021/ja503328a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 12/05/2022]
Abstract
The use of hybrid hemoglobin (Hb), with mesoheme substituted for protoheme, allows separate monitoring of the α or β hemes along the allosteric pathway. Using resonance Raman (rR) spectroscopy in silica gel, which greatly slows protein motions, we have observed that the Fe-histidine stretching frequency, νFeHis, which is a monitor of heme reactivity, evolves between frequencies characteristic of the R and T states, for both α or β chains, prior to the quaternary R-T and T-R shifts. Computation of νFeHis, using QM/MM and the conformational search program PELE, produced remarkable agreement with experiment. Analysis of the PELE structures showed that the νFeHis shifts resulted from heme distortion and, in the α chain, Fe-His bond tilting. These results support the tertiary two-state model of ligand binding (Henry et al., Biophys. Chem. 2002, 98, 149). Experimentally, the νFeHis evolution is faster for β than for α chains, and pump-probe rR spectroscopy in solution reveals an inflection in the νFeHis time course at 3 μs for β but not for α hemes, an interval previously shown to be the first step in the R-T transition. In the α chain νFeHis dropped sharply at 20 μs, the final step in the R-T transition. The time courses are fully consistent with recent computational mapping of the R-T transition via conjugate peak refinement by Karplus and co-workers (Fischer et al., Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 5608). The effector molecule IHP was found to lower νFeHis selectively for α chains within the R state, and a binding site in the α1α2 cleft is suggested.
Collapse
Affiliation(s)
- Eric M. Jones
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Emanuele Monza
- Joint
BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, c/Jordi Girona 29, 08034 Barcelona, Spain
| | - Gurusamy Balakrishnan
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - George C. Blouin
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Piotr J. Mak
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Qianhong Zhu
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - James R. Kincaid
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Victor Guallar
- Joint
BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, c/Jordi Girona 29, 08034 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Thomas G. Spiro
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
6
|
Yoo BK, Lamarre I, Martin JL, Negrerie M. Quaternary structure controls ligand dynamics in soluble guanylate cyclase. J Biol Chem 2012; 287:6851-9. [PMID: 22223482 PMCID: PMC3307277 DOI: 10.1074/jbc.m111.299297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/03/2012] [Indexed: 11/06/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β(1)(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β(1)(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β(1)(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1) for sGC and 0.83 ± 0.1 × 10(6) M(-1) · S(-1) for β(1)(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β(1)(191-619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe(2+)-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Isabelle Lamarre
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Louis Martin
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Michel Negrerie
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
7
|
Jones EM, Balakrishnan G, Spiro TG. Heme reactivity is uncoupled from quaternary structure in gel-encapsulated hemoglobin: a resonance Raman spectroscopic study. J Am Chem Soc 2012; 134:3461-71. [PMID: 22263778 PMCID: PMC3307588 DOI: 10.1021/ja210126j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Encapsulation of hemoglobin (Hb) in silica gel preserves structure and function but greatly slows protein motion, thereby providing access to intermediates along the allosteric pathway that are inaccessible in solution. Resonance Raman (RR) spectroscopy with visible and ultraviolet laser excitation provides probes of heme reactivity and of key tertiary and quaternary contacts. These probes were monitored in gels after deoxygenation of oxyHb and after CO binding to deoxyHb, which initiate conformational change in the R-T and T-R directions, respectively. The spectra establish that quaternary structure change in the gel takes a week or more but that the evolution of heme reactivity, as monitored by the Fe-histidine stretching vibration, ν(FeHis), is completed within two days, and is therefore uncoupled from the quaternary structure. Within each quaternary structure, the evolving ν(FeHis) frequencies span the full range of values between those previously associated with the high- and low-affinity end states, R and T. This result supports the tertiary two-state (TTS) model, in which the Hb subunits can adopt high- and low-affinity tertiary structures, r and t, within each quaternary state. The spectra also reveal different tertiary pathways, involving the breaking and reformation of E and F interhelical contacts in the R-T direction but not the T-R direction. In the latter, tertiary motions are restricted by the T quaternary contacts.
Collapse
Affiliation(s)
- Eric M. Jones
- Department of Chemistry, University of Washington, Box 351700, Seattle Washington 98195-1700 USA
| | - Gurusamy Balakrishnan
- Department of Chemistry, University of Washington, Box 351700, Seattle Washington 98195-1700 USA
| | - Thomas G. Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle Washington 98195-1700 USA
| |
Collapse
|
8
|
Nagatomo S, Nagai M, Kitagawa T. A New Way To Understand Quaternary Structure Changes of Hemoglobin upon Ligand Binding On the Basis of UV-Resonance Raman Evaluation of Intersubunit Interactions. J Am Chem Soc 2011; 133:10101-10. [DOI: 10.1021/ja111370f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
9
|
Wang H, Shen S, Wang L, Zheng X. Investigation of Excited State Structural Dynamics of Bis(2-thienyl)ketone in the Condensed Phase Using Raman, IR, and UV−visible Spectroscopy Aided by Density Functional Theory Calculation. J Phys Chem B 2010; 114:16847-53. [DOI: 10.1021/jp109182h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huigang Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China, and Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shaosong Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China, and Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Libo Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China, and Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuming Zheng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China, and Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
10
|
Esquerra RM, López-Peña I, Tipgunlakant P, Birukou I, Nguyen RL, Soman J, Olson JS, Kliger DS, Goldbeck RA. Kinetic spectroscopy of heme hydration and ligand binding in myoglobin and isolated hemoglobin chains: an optical window into heme pocket water dynamics. Phys Chem Chem Phys 2010; 12:10270-8. [PMID: 20668762 DOI: 10.1039/c003606b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The entry of a water molecule into the distal heme pocket of pentacoordinate heme proteins such as myoglobin and the alpha,beta chains of hemoglobin can be detected by time-resolved spectroscopy in the heme visible bands after photolysis of the CO complex. Reviewing the evidence from spectrokinetic studies of Mb variants, we find that this optical method measures the occupancy of non(heme)coordinated water in the distal pocket, n(w), with high fidelity. This evidence further suggests that perturbation of the kinetic barrier presented by distal pocket water is often the dominant mechanism by which active site mutations affect the bimolecular rate constant for CO binding. Water entry into the heme pockets of isolated hemoglobin subunits was detected by optical methods. Internal hydration is higher in the native alpha chains than in the beta chains, in agreement with previous crystallographic results for the subunits within Hb tetramers. The kinetic parameters obtained from modeling of the water entry and ligand rebinding in Mb mutants and native Hb chains are consistent with an inverse dependence of the bimolecular association rate constant on the water occupancy factor. This correlation suggests that water and ligand mutually exclude one another from the distal pockets of both types of hemoglobin chains and myoglobin.
Collapse
Affiliation(s)
- Raymond M Esquerra
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Thomas G Spiro
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|