1
|
Gawargi FI, Mishra PK. Ironing out the details: ferroptosis and its relevance to diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 2023; 325:R665-R681. [PMID: 37746707 PMCID: PMC11178299 DOI: 10.1152/ajpregu.00117.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Ferroptosis is a newly identified myocardial cell death mechanism driven by iron-dependent lipid peroxidation. The presence of elevated intramyocardial lipid levels and excessive iron in patients with diabetes suggest a predominant role of ferroptosis in diabetic cardiomyopathy. As myocardial cell death is a precursor of heart failure, and intensive glycemic control cannot abate the increased risk of heart failure in patients with diabetes, targeting myocardial cell death via ferroptosis is a promising therapeutic avenue to prevent and/or treat diabetic cardiomyopathy. This review provides updated and comprehensive molecular mechanisms underpinning ferroptosis, clarifies several misconceptions about ferroptosis, emphasizes the importance of ferroptosis in diabetes-induced myocardial cell death, and offers valuable approaches to evaluate and target ferroptosis in the diabetic heart. Furthermore, basic concepts and ideas presented in this review, including glutathione peroxidase-4-independent and mitochondrial mechanisms of ferroptosis, are also important for investigating ferroptosis in other diabetic organs, as well as nondiabetic and metabolically compromised hearts.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
2
|
Andleeb S, Imtiaz-Ud-Din, Rauf MK, Azam SS, Haq IU, Tahir MN, Zaman N. Structural characterization and antileishmanial activity of newly synthesized organo-bismuth(V) carboxylates: experimental and molecular docking studies. J Biol Inorg Chem 2022; 27:175-187. [PMID: 34981207 DOI: 10.1007/s00775-021-01919-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
In a quest to discover new formulations for the treatment of various parasitic diseases, a series of heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR')2], where R=C6H5 for 1-4 and p-CH3C6H4 for 5-8, were synthesized, characterized and evaluated for their biological potential against L. tropica. All the synthesized complexes were fully characterized by elemental analysis, FT-IR, multinuclear (1H and 13C) NMR spectroscopy and X-ray crystallography. The crystal structures for [BiPh3(O2CC6H4(o-Br))2] (1), [BiPh3(O2CC2H2C6H4)2] (2), [BiPh3(O2CC6H4(m-NO2))2] (3) and [BiPh3(O2CC6H4(2-OH,3-CH3))2] (4) were determined and found to have a distorted pentagonal bipyramidal molecular geometry with seven coordinated bismuth center for 1-3 and for 4 distorted octahedral geometry, respectively. All the synthesized complexes demonstrated a moderate to significant activity against leishmania parasites. A broad analytical approach was followed to testify the stability for (1-8) in solid state as well as in solution and in leishmanial culture M199, ensuring them to be stable enough to exert a significant antileishmanial effect with promising results. Cytotoxicity profile suggests that tris(tolyl) derivatives show lower toxicity against isolated lymphocytes with higher antileishmanial potential. Molecular docking studies were carried out to reveal the binding modes for (1-8) targeting the active site of trypanothione reductase (TR) (PDB ID: 4APN) and Trypanothione Synthetase-Amidase structure (PDB ID 2vob).
Collapse
Affiliation(s)
- Sohaila Andleeb
- NUTECH School of Applied Sciences and Humanities, National University of Technology, Islamabad, 44000, Pakistan.
| | - Imtiaz-Ud-Din
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Khawar Rauf
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.,Department of Chemistry, Govt. Post-Graduate College Shakargarh, Shakargarh, 51800, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-I-Aam University, Islamabad, 45320, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | - Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics, Quaid-I-Aam University, Islamabad, 45320, Pakistan
| |
Collapse
|
3
|
Abstract
Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.
Collapse
|
4
|
Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli. J Bacteriol 2019; 201:JB.00382-19. [PMID: 31235512 DOI: 10.1128/jb.00382-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/15/2019] [Indexed: 01/15/2023] Open
Abstract
Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In recent years it has become obvious that the availability of iron plays an important role in the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the l-cysteine desulfurase IscS, which is a shared protein with a main role in the assembly of Fe-S clusters. In this report, we investigated the transcriptional regulation of the moaABCDE operon by focusing on its dependence on cellular iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, our data show that the regulation of the moaABCDE operon at the level of transcription is only marginally influenced by the availability of iron. Nevertheless, intracellular levels of Moco were decreased under iron-limiting conditions, likely based on an inactive MoaA protein in addition to lower levels of the l-cysteine desulfurase IscS, which simultaneously reduces the sulfur availability for Moco production.IMPORTANCE FNR is a very important transcriptional factor that represents the master switch for the expression of target genes in response to anaerobiosis. Among the FNR-regulated operons in Escherichia coli is the moaABCDE operon, involved in Moco biosynthesis. Molybdoenzymes have essential roles in eukaryotic and prokaryotic organisms. In bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. This work investigates the connection of iron availability to the biosynthesis of Moco and the production of active molybdoenzymes.
Collapse
|
5
|
LdIscU is a [2Fe-2S] scaffold protein which interacts with LdIscS and its expression is modulated by Fe-S proteins in Leishmania donovani. Int J Biol Macromol 2018; 116:1128-1145. [PMID: 29782976 DOI: 10.1016/j.ijbiomac.2018.05.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/20/2022]
Abstract
The pathogenicity of protozoan parasites is frequently attributed to their ability to circumvent the deleterious effects of ROS and Fe-S clusters are among their susceptible targets with paramount importance for parasite survival. The biogenesis of Fe-S clusters is orchestrated by ISC system; the sulfur donor IscS and scaffold protein IscU being its core components. However, among protozoan parasites including Leishmania, no information is available regarding biochemical aspect of IscU, its interaction partners and regulation. Here, we show that Leishmania donovani IscU homolog, LdIscU, readily assembles [2Fe-2S] clusters and, interestingly, follows Michaelis-Menten enzyme kinetics. It is localized in the mitochondria of the parasite and interacts with LdIscS to form a stable complex. Additionally, LdIscU and Fe-S proteins activity is significantly upregulated in resistant isolates and during stationary growth stage indicating an association between them. The differential expression of LdIscU modulated by Fe-S proteins demand suggests its potential role in parasite survival and drug resistance. Thus, our study provides novel insight into the Fe-S scaffold protein of a protozoan parasite.
Collapse
|
6
|
Abstract
The ClusPro server (https://cluspro.org) is a widely used tool for protein-protein docking. The server provides a simple home page for basic use, requiring only two files in Protein Data Bank (PDB) format. However, ClusPro also offers a number of advanced options to modify the search; these include the removal of unstructured protein regions, application of attraction or repulsion, accounting for pairwise distance restraints, construction of homo-multimers, consideration of small-angle X-ray scattering (SAXS) data, and location of heparin-binding sites. Six different energy functions can be used, depending on the type of protein. Docking with each energy parameter set results in ten models defined by centers of highly populated clusters of low-energy docked structures. This protocol describes the use of the various options, the construction of auxiliary restraints files, the selection of the energy parameters, and the analysis of the results. Although the server is heavily used, runs are generally completed in <4 h.
Collapse
|
7
|
Yang J, Tan G, Zhang T, White RH, Lu J, Ding H. Deletion of the Proposed Iron Chaperones IscA/SufA Results in Accumulation of a Red Intermediate Cysteine Desulfurase IscS in Escherichia coli. J Biol Chem 2015; 290:14226-34. [PMID: 25907559 DOI: 10.1074/jbc.m115.654269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, sulfur in iron-sulfur clusters is primarily derived from L-cysteine via the cysteine desulfurase IscS. However, the iron donor for iron-sulfur cluster assembly remains elusive. Previous studies have shown that, among the iron-sulfur cluster assembly proteins in E. coli, IscA has a unique and strong iron-binding activity and that the iron-bound IscA can efficiently provide iron for iron-sulfur cluster assembly in proteins in vitro, indicating that IscA may act as an iron chaperone for iron-sulfur cluster biogenesis. Here we report that deletion of IscA and its paralog SufA in E. coli cells results in the accumulation of a red-colored cysteine desulfurase IscS under aerobic growth conditions. Depletion of intracellular iron using a membrane-permeable iron chelator, 2,2'-dipyridyl, also leads to the accumulation of red IscS in wild-type E. coli cells, suggesting that the deletion of IscA/SufA may be emulated by depletion of intracellular iron. Purified red IscS has an absorption peak at 528 nm in addition to the peak at 395 nm of pyridoxal 5'-phosphate. When red IscS is oxidized by hydrogen peroxide, the peak at 528 nm is shifted to 510 nm, which is similar to that of alanine-quinonoid intermediate in cysteine desulfurases. Indeed, red IscS can also be produced in vitro by incubating wild-type IscS with excess L-alanine and sulfide. The results led us to propose that deletion of IscA/SufA may disrupt the iron delivery for iron-sulfur cluster biogenesis, therefore impeding sulfur delivery by IscS, and result in the accumulation of red IscS in E. coli cells.
Collapse
Affiliation(s)
- Jing Yang
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Guoqiang Tan
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ting Zhang
- the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Robert H White
- the Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, and
| | - Jianxin Lu
- the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huangen Ding
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803,
| |
Collapse
|
8
|
Dai Z, Tonelli M, Markley JL. Metamorphic protein IscU changes conformation by cis-trans isomerizations of two peptidyl-prolyl peptide bonds. Biochemistry 2012; 51:9595-602. [PMID: 23110687 DOI: 10.1021/bi301413y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
IscU from Escherichia coli, the scaffold protein for iron-sulfur cluster biosynthesis and transfer, populates two conformational states with similar free energies and with lifetimes on the order of 1 s that interconvert in an apparent two-state reaction. One state (S) is structured, and the other (D) is largely disordered; however, both play essential functional roles. We report here nuclear magnetic resonance studies demonstrating that all four prolyl residues of apo-IscU (P14, P35, P100, and P101) are trans in the S state but that two absolutely conserved residues (P14 and P101) become cis in the D state. The peptidyl-prolyl peptide bond configurations were determined by analyzing assigned chemical shifts and were confirmed by measurements of nuclear Overhauser effects. We conclude that the S ⇄ D interconversion involves concerted trans-cis isomerization of the N13-P14 and P100-P101 peptide bonds. Although the D state is largely disordered, we show that it contains an ordered domain that accounts for the stabilization of two high-energy cis peptide bonds. Thus, IscU may be classified as a metamorphic protein.
Collapse
Affiliation(s)
- Ziqi Dai
- Graduate Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
9
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
10
|
Qi W, Cowan JA. Structural, Mechanistic and Coordination Chemistry of Relevance to the Biosynthesis of Iron-Sulfur and Related Iron Cofactors. Coord Chem Rev 2011; 255:688-699. [PMID: 21499539 DOI: 10.1016/j.ccr.2010.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iron-sulfur clusters are an important class of protein-bound prosthetic center that find wide utility in nature. Roles include electron transfer, enzyme catalysis, protein structure stabilization, and regulation of gene expression as transcriptional and translational sensors. In eukaryotes their biosynthesis requires a complex molecular machinery that is located within the mitochondrion, while bacteria exhibit up to three independent cluster assembly pathways. All of these paths share common themes. This review summarizes some key structural and functional properties of three central proteins dedicated to the Fe-S cluster assembly process: namely, the sulfide donor (cysteine desulfurase); iron donor (frataxin), and the iron-sulfur cluster scaffold protein (IscU/ISU).
Collapse
Affiliation(s)
- Wenbin Qi
- Ohio State Biochemistry Program, The Ohio State University
| | | |
Collapse
|
11
|
Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 2010; 24:1-16. [DOI: 10.1002/jmr.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|