1
|
Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem 2022; 65:10567-10587. [PMID: 35913426 PMCID: PMC9376960 DOI: 10.1021/acs.jmedchem.2c00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While ruthenium arene complexes have been widely investigated
for
their medicinal potential, studies on homologous compounds containing
a tridentate tris(1-pyrazolyl)methane ligand are almost absent in
the literature. Ruthenium(II) complex 1 was obtained
by a modified reported procedure; then, the reactions with a series
of organic molecules (L) in boiling alcohol afforded novel complexes 2–9 in 77–99% yields. Products 2–9 were fully structurally characterized. They are
appreciably soluble in water, where they undergo partial chloride/water
exchange. The antiproliferative activity was determined using a panel
of human cancer cell lines and a noncancerous one, evidencing promising
potency of 1, 7, and 8 and
significant selectivity toward cancer cells. The tested compounds
effectively accumulate in cancer cells, and mitochondria represent
a significant target of biological action. Most notably, data provide
convincing evidence that the mechanism of biological action is mediated
by the inhibiting of mitochondrial calcium intake.
Collapse
Affiliation(s)
- Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biochemistry, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Alberto Gobbo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Massimo Guelfi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biophysics, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
2
|
Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Gobbo A, Pereira SAP, Biancalana L, Zacchini S, Saraiva MLMFS, Dyson PJ, Marchetti F. Anticancer ruthenium( ii) tris(pyrazolyl)methane complexes with bioactive co-ligands. Dalton Trans 2022; 51:17050-17063. [DOI: 10.1039/d2dt03009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New anticancer RuII-tpm complexes are presented, including a synthetic strategy to tether bioactive molecules to the metallic scaffold.
Collapse
Affiliation(s)
- Alberto Gobbo
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Sarah A. P. Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
4
|
Udvardy A, Joó F, Kathó Á. Synthesis and catalytic applications of Ru(II)-phosphaurotropine complexes with the use of simple water-soluble Ru(II)-precursors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Swaminathan S, Haribabu J, Kalagatur NK, Nikhil M, Balakrishnan N, Bhuvanesh NSP, Kadirvelu K, Kolandaivel P, Karvembu R. Tunable Anticancer Activity of Furoylthiourea-Based Ru II -Arene Complexes and Their Mechanism of Action. Chemistry 2021; 27:7418-7433. [PMID: 33404126 DOI: 10.1002/chem.202004954] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Indexed: 11/08/2022]
Abstract
Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Naveen Kumar Kalagatur
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Maroli Nikhil
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | | | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | | | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| |
Collapse
|
6
|
Kladnik J, Kljun J, Burmeister H, Ott I, Romero-Canelón I, Turel I. Towards Identification of Essential Structural Elements of Organoruthenium(II)-Pyrithionato Complexes for Anticancer Activity. Chemistry 2019; 25:14169-14182. [PMID: 31461189 DOI: 10.1002/chem.201903109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Indexed: 12/25/2022]
Abstract
An organoruthenium(II) complex with pyrithione (2-mercaptopyridine N-oxide) 1 a has previously been identified by our group as a compound with promising anticancer potential without cytotoxicity towards non-cancerous cells. To expand the rather limited research on compounds of this type, an array of novel chlorido and 1,3,5-triaza-7-phosphaadamantane (pta) organoruthenium(II) complexes with methyl-substituted pyrithiones has been prepared. After thorough investigation of the aqueous stability of these complexes, their modes of action have been elucidated at the cellular level. Minor structural alterations in the ruthenium-pyrithionato compounds resulted in fine-tuning of their cytotoxicities. The best performing compounds, 1 b and 2 b, with a chlorido or pta ligand bound to ruthenium, respectively, and a methyl group at the 3-position of the pyrithione scaffold, have been further investigated. Both compounds trigger early apoptosis, induce the generation of reactive oxygen species and G1 arrest in A549 cancer cells, and show no strong interaction with DNA. However, only 1 b also inhibits thioredoxin reductase. Wound healing assays and mitochondrial function evaluation have revealed differences between these two compounds at the cellular level.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| |
Collapse
|
7
|
Sojka M, Fojtu M, Fialova J, Masarik M, Necas M, Marek R. Locked and Loaded: Ruthenium(II)-Capped Cucurbit[ n]uril-Based Rotaxanes with Antimetastatic Properties. Inorg Chem 2019; 58:10861-10870. [PMID: 31355636 DOI: 10.1021/acs.inorgchem.9b01203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report here the first coupling of Ru(II) units with cucurbit[6/7]uril-based pseudorotaxane ligands meant for biological application. The resulting ruthenium-capped rotaxanes were fully characterized, and a structure of one supramolecular system was determined by X-ray diffraction. Because the biological properties of Ru-based metallodrugs are tightly linked to the ligand-exchange processes, the effect of salt concentration on the hydrolysis of chlorides from the Ru(II) center was monitored by using 1H NMR spectroscopy. The biological activity of Ru(II)-based rotaxanes was evaluated for three selected mammalian breast cell lines, HBL-100, MCF-7, and MDA-MB-231. The antimetastatic activity of the assembled cationic Ru(II)-rotaxane systems, evaluated in migration assays against MCF-7 and MDA-MB-231 cell lines, is notably enhanced compared to that of RAPTA-C, a reference that was used. The indicated synergistic effect of combining Ru(II) with a pseudorotaxane unit opens a new direction in searching for anticancer supramolecular metallodrugs.
Collapse
Affiliation(s)
- Martin Sojka
- Department of Chemistry, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Michaela Fojtu
- CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,Department of Pathological Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,Department of Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Jindriska Fialova
- Department of Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Michal Masarik
- CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,Department of Pathological Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,Department of Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Marek Necas
- Department of Chemistry, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Radek Marek
- Department of Chemistry, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| |
Collapse
|
8
|
Influence of Functionalized η
6
‐Arene Rings on Ruthenium(II) Curcuminoids Complexes. ChemistrySelect 2018. [DOI: 10.1002/slct.201801201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Exploration of selected electronic characteristics of half-sandwich organoruthenium(II) β-diketonate complexes. J Mol Model 2018; 24:98. [DOI: 10.1007/s00894-018-3598-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
|
10
|
Burgoyne AR, Kaschula CH, Parker MI, Smith GS. Tripodal Half-Sandwich Rhodium and Iridium Complexes Containing Sulfonate and Pyridinyl Entities as Antitumor Agents. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andrew R. Burgoyne
- Department of Chemistry; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| | - Catherine H. Kaschula
- Department of Chemistry; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| | - M. Iqbal Parker
- Division of Medical Biochemistry and Structural Biology; Department of Integrative Biomedical Sciences and IDM; University of Cape Town; Observatory 7925 Cape Town South Africa
| | - Gregory S. Smith
- Department of Chemistry; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| |
Collapse
|
11
|
Matsheku AC, Chen MYH, Jordaan S, Prince S, Smith GS, Makhubela BC. Acridine-containing RuII
, OsII
, RhIII
and IrIII
Half-Sandwich Complexes: Synthesis, Structure and Antiproliferative Activity. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Asanda C. Matsheku
- Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Marian Y.-H. Chen
- Department of Chemistry; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| | - Sandra Jordaan
- Department of Human Biology, Division of Cell Biology; University of the Cape Town; Cape Town South Africa
| | - Sharon Prince
- Department of Human Biology, Division of Cell Biology; University of the Cape Town; Cape Town South Africa
| | - Gregory S. Smith
- Department of Chemistry; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| | | |
Collapse
|
12
|
Šebesta F, Burda JV. Side Reactions with an Equilibrium Constraint: Detailed Mechanism of the Substitution Reaction of Tetraplatin with dGMP as a Starting Step of the Platinum(IV) Reduction Process. J Phys Chem B 2017; 121:4400-4413. [PMID: 28394593 DOI: 10.1021/acs.jpcb.7b01427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two possible pathways of the substitution reaction within the reduction process of the PtIV(DACH)Cl4 by dGMP are compared: associative reaction course and autocatalytic Basolo-Pearson mechanisms. Since two forms: single-protonated and fully deprotonated phosphate group of dGMP are present in equilibrium at neutral and mildly acidic solutions, consideration of a side reactions scheme with acido-basic equilibrium-constraint is a very important model for obtaining reliable results. The examined complexes are optimized at the B3LYP-GD3BJ/6-31G(d) level with the COSMO implicit solvation model and Klamt's radii used for cavity construction. Energy characteristics and thermodynamics for all reaction branches are determined using the B3LYP-GD3BJ/6-311++G(2df,2pd)/IEF-PCM/scaled-UAKS level with Wertz's entropy corrections. Rate constants are estimated for each individual branch according to Eyring's transition state theory (TST), averaged according to equilibrium constraint and compared with available experimental data. The determined reaction barriers of the autocatalytic pathway fairly correspond with experimental values. Furthermore, autocatalytic reaction of tetraplatin and its two analogues complexes [PtIV(en)Cl4 and PtIV(NH3)2Cl4] are explored and compared with measured data in order to examined general reaction descriptors.
Collapse
Affiliation(s)
- Filip Šebesta
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University , Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Jaroslav V Burda
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University , Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| |
Collapse
|
13
|
Interactions between proteins and Ru compounds of medicinal interest: A structural perspective. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Vázquez M, Martínez M. Kinetico-mechanistic Studies on the Substitution Reactivity on the {Ru(II)(bpy)2} Core with Nucleosides and Nucleotides at Physiological pH. Inorg Chem 2016; 55:6731-8. [PMID: 27327488 DOI: 10.1021/acs.inorgchem.6b01003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetico-mechanistic study of the substitution reactions of the aquo ligands in cis-[Ru(bpy)2(H2O)2](2+) by different nucleotides and nucleosides has been conducted at pH close to the physiological value. The concentration dependence and thermal and pressure activation parameters have been measured to ascertain the activation via which reactions take place. Substitution processes are found associatively activated for nitrogen-bonded nucleosides or nucleotides, with outer-sphere hydrogen-bonded aggregates being determinant. For reactions leading to oxygen-bonded nucleotides, the process is clearly dissociatively activated. A selectively induced lability of the inert {Ru(II)(bpy)2} core is observed on the formation of nitrogen(amide)-bonded complexes at relatively low pH values, which might be relevant for the effective intercalation of designed, ruthenium(II)-bonded, aromatic rings.
Collapse
Affiliation(s)
- Marta Vázquez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
15
|
Murray BS, Babak MV, Hartinger CG, Dyson PJ. The development of RAPTA compounds for the treatment of tumors. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.014] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Hildebrandt J, Görls H, Häfner N, Ferraro G, Dürst M, Runnebaum IB, Weigand W, Merlino A. Unusual mode of protein binding by a cytotoxic π-arene ruthenium(ii) piano-stool compound containing an O,S-chelating ligand. Dalton Trans 2016; 45:12283-7. [DOI: 10.1039/c6dt02380k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new π-arene Ru(ii) piano-stool compound, showing significant cytotoxic activityin vitro, was synthesized. The X-ray structure of this compound and that of its complex with RNase A were determined.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Department of Inorganic and Analytical Chemistry
- University of Jena
- Germany
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry
- University of Jena
- Germany
| | - Norman Häfner
- Department of Gynecology
- Jena University Hospital - Friedrich-Schiller-University Jena
- Germany
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Italy
| | - Matthias Dürst
- Department of Gynecology
- Jena University Hospital - Friedrich-Schiller-University Jena
- Germany
| | - Ingo B. Runnebaum
- Department of Gynecology
- Jena University Hospital - Friedrich-Schiller-University Jena
- Germany
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry
- University of Jena
- Germany
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Italy
- Institute of Biostructures and Bioimages
- Naples
| |
Collapse
|
17
|
Adeniyi AA, Ajibade PA. Development of ruthenium-based complexes as anticancer agents: toward a rational design of alternative receptor targets. REV INORG CHEM 2016. [DOI: 10.1515/revic-2015-0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractIn the search for novel anticancer agents, the development of metal-based complexes that could serve as alternatives to cisplatin and its derivatives has received considerable attention in recent years. This becomes necessary because, at present, cisplatin and its derivatives are the only coordination complexes being used as anticancer agents in spite of inherent serious side effects and their limitation against metastasized platinum-resistant cancer cells. Although many metal ions have been considered as possible alternatives to cisplatin, the most promising are ruthenium (Ru) complexes and two Ru compounds, KP1019 and NAMI-A, which are currently in phase II clinical trials. The major obstacle against the rational design of these compounds is the fact that their mode of action in relation to their therapeutic activities and selectivity is not fully understood. There is an urgent need to develop novel metal-based anticancer agents, especially Ru-based compounds, with known mechanism of actions, probable targets, and pharmacodynamic activity. In this paper, we review the current efforts in developing metal-based anticancer agents based on promising Ru complexes and the development of compounds targeting receptors and then examine the future prospects.
Collapse
|
18
|
Šebesta F, Burda JV. Reduction Process of Tetraplatin in the Presence of Deoxyguanosine Monophosphate (dGMP): A Computational DFT Study. Chemistry 2015; 22:1037-47. [PMID: 26663432 DOI: 10.1002/chem.201503555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/15/2015] [Indexed: 01/01/2023]
Abstract
The reduction mechanism of [Pt(IV) (dach)Cl4 ] (dach=diaminocyclohexyl) in the presence of dGMP was studied. The first step is substitution of a chloro ligand by dGMP, followed by nucleophilic attack of a phosphate or sugar oxygen atom to the C8-position of guanine. Subsequent reduction forms the [Pt(II) (dach)Cl2 ] complex. The whole process is completed by a hydrolysis. Two different pathways for the substitution reaction were examined: a direct associative and a Basolo-Pearson autocatalytic mechanism. All the explored structures were optimized at the B3LYP-D3/6-31G(d) level and by using the COSMO solvation model with Klamt's radii. Single-point energetics was determined at the B3LYP-GD3BJ/6-311++G(2df,2pd)/PCM/scaled-UAKS level. Activation barriers were used for an estimation of the rate constants and these were compared with experimental values. It was found that the rate-determining step is the nucleophilic attack with a slightly faster performance in the 3'-dGMP branch than in the case of 5'-dGMP with activation barriers of 21.1 and 20.4 kcal mol(-1) (experimental: 23.8 and 23.2 kcal mol(-1) ). The reduction reaction is connected with an electron flow from guanine. The product of the reduction reaction is a chelate structure, which dissociates within the last reaction step, that is, a hydrolysis reaction. The whole redox process (substitution, reduction, and hydrolysis) is exergonic by 34 and 28 kcal mol(-1) for 5'-dGMP and 3'-dGMP, respectively.
Collapse
Affiliation(s)
- Filip Šebesta
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Jaroslav V Burda
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic.
| |
Collapse
|
19
|
Higher generation cationic N , N -ruthenium(II)-ethylene-glycol-derived metallodendrimers: Synthesis, characterization and cytotoxicity. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Seršen S, Kljun J, Kryeziu K, Panchuk R, Alte B, Körner W, Heffeter P, Berger W, Turel I. Structure-Related Mode-of-Action Differences of Anticancer Organoruthenium Complexes with β-Diketonates. J Med Chem 2015; 58:3984-96. [PMID: 25856666 DOI: 10.1021/acs.jmedchem.5b00288] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A series of organoruthenium(II) chlorido complexes with fluorinated O,O-ligands [(η(6)-p-cymene)Ru(F3C-acac-Ar)Cl] (1a-6a) and their respective 1,3,5-triaza-7-phosphaadamantane (pta) derivatives [(η(6)-p-cymene)Ru(F3C-acac-Ar)pta]PF6 (1b-6b) were synthesized and fully characterized in both solution and solid state. All complexes were inactive against nonmalignant keratinocytes but displayed variable activity against cancer cell models (ovarian, osteosarcoma). Compounds with a ligand containing the 4-chlorophenyl substituent (6a and 6b) exhibited the strongest anticancer effects. Despite a marginally lower cellular Ru accumulation compared to the chlorido complexes, pta analogues showed higher activity especially in the osteosarcoma model. Reduction of glutathione levels by buthionine sulfoximine (BSO) significantly enhanced the activity of all compounds with the most pronounced effects being observed for the pta series resulting in IC50 values down to the nanomolar range. While all chlorido complexes potently induce reactive oxygen species, DNA damage, and apoptosis, the respective pta compounds widely lacked ROS production but blocked cell cycle progression in G0/G1 phase.
Collapse
Affiliation(s)
- Sara Seršen
- †Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Jakob Kljun
- †Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Kushtrim Kryeziu
- ‡Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Rostyslav Panchuk
- §Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine
| | - Beatrix Alte
- ‡Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Wilfried Körner
- ∥Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Petra Heffeter
- ‡Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Walter Berger
- ‡Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Iztok Turel
- †Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Nazarov AA, Hartinger CG, Dyson PJ. Opening the lid on piano-stool complexes: An account of ruthenium(II)–arene complexes with medicinal applications. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.09.016] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Adeniyi AA, Ajibade PA. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:426-436. [PMID: 23867645 DOI: 10.1016/j.saa.2013.06.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/13/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
The mechanism of activation of metal-based anticancer agents was reported to be through hydrolysis. In this study, computational method was used to gain insight to the correlation between the chemistry of the hydrolysis and the anticancer activities of selected Ru(II)-based complexes. Interestingly, we observed that the mechanism of activation by hydrolysis and their consequential anticancer activities is associated with favourable thermodynamic changes, higher hyperpolarizability (β), lower band-gap and higher first-order net current. The Fermi contact (FC) and spin dipole (SD) are found to be the two most significant Ramsey terms that determine the spin-spin couplings (J(HZ)) of most of the existing bonds in the complexes. Many of the computed properties give insights into the change in the chemistry of the complexes due to hydrolysis. Besides strong correlations of the computed properties to the anticancer activities of the complexes, using the quantum theory of atoms in a molecule (QTAIM) to analyse the spectroscopic properties shows a stronger correlation between the spectroscopic properties of Ru atom to the reported anticancer activities than the sum over of the spectroscopic properties of all atoms in the complexes.
Collapse
Affiliation(s)
- Adebayo A Adeniyi
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | | |
Collapse
|
23
|
An insight into the anticancer activities of Ru(II)-based metallocompounds using docking methods. Molecules 2013; 18:10829-56. [PMID: 24008244 PMCID: PMC6269807 DOI: 10.3390/molecules180910829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II) complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.
Collapse
|
24
|
Adeniyi AA, Ajibade PA. Computational properties of η6-toluene and η6-trifluorotoluene half-sandwich Ru(II) anticancer complexes. J Biomol Struct Dyn 2013; 32:1351-65. [DOI: 10.1080/07391102.2013.819299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Adeniyi AA, Ajibade PA. Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru(II)-based complexes as anticancer agents. Molecules 2013; 18:3760-78. [PMID: 23529035 PMCID: PMC6270031 DOI: 10.3390/molecules18043760] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/07/2013] [Accepted: 03/18/2013] [Indexed: 01/10/2023] Open
Abstract
In cancer chemotherapy, metal-based complexes have been recognized as the most promising means of inhibiting cancer growth due to the successful application of cis-platin and its derivatives above many of the existing organic anticancer agents. The limitations in their rational design can be traced to the complexity of the mechanism of their operations, lack of proper knowledge of their targets and lack of force fields in docking packages to appropriately define the metal centre of the organometallic complexes. In this paper, some of the promising anticancer complexes of Ru(II) such as the rapta-based complexes formulated as [Ru(η6-p-cymene)L2(pta)] and those with unusual ligands are considered. CatB and kinases which have been experimentally confirmed as possible targets of the complexes are also predicted by the three methods as one of the most targeted receptors while TopII and HDAC7 are predicted by two and one of the methods as best targets. The interesting features of the binding of the complexes show that some of the complexes preferentially target specific macromolecules than the others, which is an indication of their specificity and possibility of their therapeutic combination without severe side effects that may come from competition for the same target. Also, introduction of unusual ligands is found to significantly improve the activities of most of the complexes studied. Strong correlations are observed for the predicted binding sites and the orientation of the complexes within the binding site by the three methods of docking. However there are disparities in the ranking of the complexes by the three method of docking, especially that of Glide.
Collapse
Affiliation(s)
| | - Peter A. Ajibade
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +27-0-40-602-2055, Fax: +27-0-86-518-1225
| |
Collapse
|
26
|
Insights into the Intramolecular Properties of η6-Arene-Ru-Based Anticancer Complexes Using Quantum Calculations. J CHEM-NY 2013. [DOI: 10.1155/2013/892052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The factors that determine the stability and the effects of noncovalent interaction on theη6-arene ruthenium anticancer complexes are determined using DFT method. The intramolecular and intra-atomic properties were computed for two models of these half-sandwich ruthenium anticancer complexes and their respective hydrated forms. The results showed that the stability of these complexes depends largely on the network of hydrogen bonds (HB), strong nature of charge transfer, polarizability, and electrostatic energies that exist within the complexes. The hydrogen bonds strength was found to be related to the reported anticancer activities and the activation of the complexes by hydration. The metal–ligand bonds were found to be closed shell systems that are characterised by high positive Laplacian values of electron density. Two of the complexes are found to be predominantly characterised by LMCT while the other two are predominately characterised by MLCT.
Collapse
|
27
|
Inhibitory activities and possible anticancer targets of Ru(II)-based complexes using computational docking method. J Mol Graph Model 2012; 38:60-9. [DOI: 10.1016/j.jmgm.2012.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/04/2012] [Accepted: 08/06/2012] [Indexed: 11/18/2022]
|
28
|
Mitra R, Das S, Shinde S, Sinha S, Somasundaram K, Samuelson AG. Anticancer Activity of Hydrogen-Bond-Stabilized Half-Sandwich RuIIComplexes with Heterocycles. Chemistry 2012; 18:12278-91. [DOI: 10.1002/chem.201200938] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Indexed: 12/24/2022]
|
29
|
Fu Q, Zhou L, Li J. Binding of anticancer drug Ru(η 6 -C6H5(CH2)2OH)Cl2(DAPTA) to DNA purine bases and amino acid residues: a theoretical study. Struct Chem 2012. [DOI: 10.1007/s11224-012-0003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Fragmentation methods on the balance: unambiguous top–down mass spectrometric characterization of oxaliplatin–ubiquitin binding sites. Anal Bioanal Chem 2011; 402:2655-62. [DOI: 10.1007/s00216-011-5523-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
|
31
|
Barragán F, López-Senín P, Salassa L, Betanzos-Lara S, Habtemariam A, Moreno V, Sadler PJ, Marchán V. Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium(II) complex. J Am Chem Soc 2011; 133:14098-108. [PMID: 21797210 DOI: 10.1021/ja205235m] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A photoactivated ruthenium(II) arene complex has been conjugated to two receptor-binding peptides, a dicarba analogue of octreotide and the Arg-Gly-Asp (RGD) tripeptide. These peptides can act as "tumor-targeting devices" since their receptors are overexpressed on the membranes of tumor cells. Both ruthenium-peptide conjugates are stable in aqueous solution in the dark, but upon irradiation with visible light, the pyridyl-derivatized peptides were selectively photodissociated from the ruthenium complex, as inferred by UV-vis and NMR spectroscopy. Importantly, the reactive aqua species generated from the conjugates, [(η(6)-p-cym)Ru(bpm)(H(2)O)](2+), reacted with the model DNA nucleobase 9-ethylguanine as well as with guanines of two DNA sequences, (5')dCATGGCT and (5')dAGCCATG. Interestingly, when irradiation was performed in the presence of the oligonucleotides, a new ruthenium adduct involving both guanines was formed as a consequence of the photodriven loss of p-cymene from the two monofunctional adducts. The release of the arene ligand and the formation of a ruthenated product with a multidentate binding mode might have important implications for the biological activity of such photoactivated ruthenium(II) arene complexes. Finally, photoreactions with the peptide-oligonucleotide hybrid, Phac-His-Gly-Met-linker-p(5')dCATGGCT, also led to arene release and to guanine adducts, including a GG chelate. The lack of interaction with the peptide fragment confirms the preference of such organometallic ruthenium(II) complexes for guanine over other potential biological ligands, such as histidine or methionine amino acids.
Collapse
Affiliation(s)
- Flavia Barragán
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kennedy DC, Patrick BO, James BR. Cationic ruthenium(III) maltolato–imidazole complexes — Synthesis, characterization, and antiproliferatory activity*Adapted from the Ph.D. thesis of D.C. Kennedy (see the References section). CAN J CHEM 2011. [DOI: 10.1139/v11-074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cationic RuIII complexes, trans-[Ru(ma)2(L)2]CF3SO3, where Hma = maltol = 3-hydroxy-2-methyl-4-pyrone; L = imidazole (Im) (complex 2), 1(N)-methylimidazole (N-MeIm) (3), 2-methylimidazole (2-MeIm) (4), and 4-methylimidazole (4-MeIm) (5), were synthesized via the known L = EtOH (complex 1a), and characterized by elemental analysis, 1H NMR and IR spectroscopies, mass spectrometry, cyclic voltammetry, and (for 3 and 4) by X-ray crystallography. The trans-[Ru(ma)2(H2O)2]CF3SO3 complex (1b) was inadvertently isolated and characterized crystallographically, and the monomaltolato species [Ru(ma)(N-MeIm)4][CF3SO3]2 (6) was also isolated and characterized. In vitro antiproliferatory activity of complexes 2−6 against human breast cancer cells (MDA-MB-435S) was tested using an MTT assay: 4 and 5 exhibit the lowest IC50 values, ~5 and ~15 µmol/L, respectively, whereas cisplatin exhibits an IC50 value of ~35 µmol/L against this cell line.
Collapse
Affiliation(s)
- David C. Kennedy
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian O. Patrick
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian R. James
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
33
|
Balcerzak M. Methods for the Determination of Platinum Group Elements in Environmental and Biological Materials: A Review. Crit Rev Anal Chem 2011. [DOI: 10.1080/10408347.2011.588922] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kandioller W, Kurzwernhart A, Hanif M, Meier SM, Henke H, Keppler BK, Hartinger CG. Pyrone derivatives and metals: From natural products to metal-based drugs. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2010.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Adding diversity to ruthenium(II)–arene anticancer (RAPTA) compounds via click chemistry: The influence of hydrophobic chains. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2010.09.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
From hydrolytically labile to hydrolytically stable RuII–arene anticancer complexes with carbohydrate-derived co-ligands. J Inorg Biochem 2011; 105:224-31. [DOI: 10.1016/j.jinorgbio.2010.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/30/2010] [Accepted: 10/06/2010] [Indexed: 11/19/2022]
|
37
|
Chval Z, Futera Z, Burda JV. Comparison of hydration reactions for “piano-stool” RAPTA-B and [Ru(η6− arene)(en)Cl]+ complexes: Density functional theory computational study. J Chem Phys 2011; 134:024520. [DOI: 10.1063/1.3515534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
38
|
Suntharalingam K, Vilar R. Interaction of metal complexes with nucleic acids. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1ic90027g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Hanif M, Henke H, Meier SM, Martic S, Labib M, Kandioller W, Jakupec MA, Arion VB, Kraatz HB, Keppler BK, Hartinger CG. Is the reactivity of M(II)-arene complexes of 3-hydroxy-2(1H)-pyridones to biomolecules the anticancer activity determining parameter? Inorg Chem 2010; 49:7953-63. [PMID: 20704358 DOI: 10.1021/ic1009785] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxypyr(id)ones are versatile ligands for the synthesis of organometallic anticancer agents, equipping them with fine-tunable pharmacological properties. Herein, we report on the preparation, mode of action, and in vitro anticancer activity of Ru(II)- and Os(II)-arene complexes with alkoxycarbonylmethyl-3-hydroxy-2-pyridone ligands. The hydrolysis and binding to amino acids proceed quickly, as characterized by NMR spectroscopy and ESI mass spectrometry. However, the reaction with amino acids causes cleavage of the pyridone ligands from the metal center because the amino acids act as multidentate ligands. A similar behavior was also observed during the reactions with the model proteins ubiquitin and cytochrome c, yielding mainly [protein + M(eta(6)-p-cymene)] adducts (M = Ru, Os). Notably the ligand cleavage of the Os derivative was significantly slower than of its Ru analogue, which could explain its higher activity in in vitro anticancer assays. Furthermore, the reaction of the compounds to 5'-GMP was characterized and coordination to the N7 of the guanine moiety was demonstrated by (1)H NMR spectroscopy and X-ray diffraction analysis. CDK2/Cyclin A protein kinase inhibition studies revealed potent activity of the Ru and Os complexes.
Collapse
Affiliation(s)
- Muhammad Hanif
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|