1
|
Ruth JC, Spormann AM. Enzyme Electrochemistry for Industrial Energy Applications—A Perspective on Future Areas of Focus. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John C. Ruth
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alfred M. Spormann
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Edwardes Moore E, Andrei V, Zacarias S, Pereira IA, Reisner E. Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting. ACS ENERGY LETTERS 2020; 5:232-237. [PMID: 32010793 PMCID: PMC6986817 DOI: 10.1021/acsenergylett.9b02437] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
Lead halide perovskite solar cells are notoriously moisture-sensitive, but recent encapsulation strategies have demonstrated their potential application as photoelectrodes in aqueous solution. However, perovskite photoelectrodes rely on precious metal co-catalysts, and their combination with biological materials remains elusive in integrated devices. Here, we interface [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough, a highly active enzyme for H2 generation, with a triple cation mixed halide perovskite. The perovskite-hydrogenase photoelectrode produces a photocurrent of -5 mA cm-2 at 0 V vs RHE during AM1.5G irradiation, is stable for 12 h and the hydrogenase exhibits a turnover number of 1.9 × 106. The positive onset potential of +0.8 V vs RHE allows its combination with a BiVO4 water oxidation photoanode to give a self-sustaining, bias-free photoelectrochemical tandem system for overall water splitting (solar-to-hydrogen efficiency of 1.1%). This work demonstrates the compatibility of immersed perovskite elements with biological catalysts to produce hybrid photoelectrodes with benchmark performance, which establishes their utility in semiartificial photosynthesis.
Collapse
Affiliation(s)
- Esther Edwardes Moore
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Virgil Andrei
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Sónia Zacarias
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal
| | - Inês A.
C. Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- E-mail:
| |
Collapse
|
3
|
Fukuzumi S, Lee Y, Nam W. Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Graduate School of Science and Engineering Meijo University, Nagoya Aichi 468-8502 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
4
|
Ruff A, Szczesny J, Zacarias S, Pereira IA, Plumeré N, Schuhmann W. Protection and Reactivation of the [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Hildenborough under Oxidative Conditions. ACS ENERGY LETTERS 2017; 2:964-968. [PMID: 32226822 PMCID: PMC7098691 DOI: 10.1021/acsenergylett.7b00167] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/03/2017] [Indexed: 06/02/2023]
Abstract
We report on the fabrication of bioanodes for H2 oxidation based on [NiFeSe] hydrogenase. The enzyme was electrically wired by means of a specifically designed low-potential viologen-modified polymer, which delivers benchmark H2 oxidizing currents even under deactivating conditions owing to efficient protection against O2 combined with a viologen-induced reactivation of the O2 inhibited enzyme. Moreover, the viologen-modified polymer allows for electrochemical co-deposition of polymer and biocatalyst and, by this, for control of the film thickness. Protection and reactivation of the enzyme was demonstrated in thick and thin reaction layers.
Collapse
Affiliation(s)
- Adrian Ruff
- Analytical
Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Julian Szczesny
- Analytical
Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Sónia Zacarias
- Instituto
de Tecnologia Quimica e Biologica Antonio Xavier, Universidade Nova de Lisboa, 278o-157 Oeiras, Portugal
| | - Inês A.
C. Pereira
- Instituto
de Tecnologia Quimica e Biologica Antonio Xavier, Universidade Nova de Lisboa, 278o-157 Oeiras, Portugal
| | - Nicolas Plumeré
- Center
for Electrochemical Sciences (CES) - Molecular Nanostructures, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical
Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| |
Collapse
|
5
|
Großkopf T, Zenobi S, Alston M, Folkes L, Swarbreck D, Soyer OS. A stable genetic polymorphism underpinning microbial syntrophy. THE ISME JOURNAL 2016; 10:2844-2853. [PMID: 27258948 PMCID: PMC5042321 DOI: 10.1038/ismej.2016.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities.
Collapse
Affiliation(s)
- Tobias Großkopf
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Simone Zenobi
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Mark Alston
- The Genome Analysis Centre, Norwich Research Park, Norwich, UK
| | - Leighton Folkes
- The Genome Analysis Centre, Norwich Research Park, Norwich, UK
| | - David Swarbreck
- The Genome Analysis Centre, Norwich Research Park, Norwich, UK
| | - Orkun S Soyer
- School of Life Sciences, The University of Warwick, Coventry, UK
| |
Collapse
|
6
|
Greene BL, Vansuch GE, Wu CH, Adams MWW, Dyer RB. Glutamate Gated Proton-Coupled Electron Transfer Activity of a [NiFe]-Hydrogenase. J Am Chem Soc 2016; 138:13013-13021. [DOI: 10.1021/jacs.6b07789] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brandon L. Greene
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Gregory E. Vansuch
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W. W. Adams
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Alves JI, Alves MM, Plugge CM, Stams AJM, Sousa DZ. Comparative Analysis of Carbon Monoxide Tolerance among Thermoanaerobacter Species. Front Microbiol 2016; 7:1330. [PMID: 27621723 PMCID: PMC5002420 DOI: 10.3389/fmicb.2016.01330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
An anaerobic thermophilic strain (strain PCO) was isolated from a syngas-converting enrichment culture. Syngas components cannot be used by strain PCO, but the new strain is very tolerant to carbon monoxide (pCO = 1.7 × 10(5) Pa, 100% CO). 16S rRNA gene analysis and DNA-DNA hybridization revealed that strain PCO is a strain of Thermoanaerobacter thermohydrosulfuricus. The physiology of strain PCO and other Thermoanaerobacter species was compared, focusing on their tolerance to carbon monoxide. T. thermohydrosulfuricus, T. brockii subsp. finnii, T. pseudethanolicus, and T. wiegelii were exposed to increased CO concentrations in the headspace, while growth, glucose consumption and product formation were monitored. Remarkably, glucose conversion rates by Thermoanaerobacter species were not affected by CO. All the tested strains fermented glucose to mainly lactate, ethanol, acetate, and hydrogen, but final product concentrations differed. In the presence of CO, ethanol production was generally less affected, but H2 production decreased with increasing CO partial pressure. This study highlights the CO resistance of Thermoanaerobacter species.
Collapse
Affiliation(s)
- Joana I Alves
- Centre of Biological Engineering, University of MinhoBraga, Portugal; Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho Braga, Portugal
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Alfons J M Stams
- Centre of Biological Engineering, University of MinhoBraga, Portugal; Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Diana Z Sousa
- Centre of Biological Engineering, University of MinhoBraga, Portugal; Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
8
|
Abstract
The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of the active site upon the introduction of selenium. We have utilized the exceptional properties of the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum in a number of photocatalytic H2 production schemes, which are benchmark systems in terms of single site activity, tolerance toward O2, and in vitro water splitting with biological molecules. Each system comprises a light-harvesting component, which allows for light-driven electron transfer to the hydrogenase in order for it to catalyze H2 production. A system with [NiFeSe]-hydrogenase on a dye-sensitized TiO2 nanoparticle gives an enzyme-semiconductor hybrid for visible light-driven generation of H2 with an enzyme-based turnover frequency of 50 s(-1). A stable and inexpensive polymeric carbon nitride as a photosensitizer in combination with the [NiFeSe]-hydrogenase shows good activity for more than 2 days. Light-driven H2 evolution with the enzyme and an organic dye under high O2 levels demonstrates the excellent robustness and feasibility of water splitting with a hydrogenase-based scheme. This has led, most recently, to the development of a light-driven full water splitting system with a [NiFeSe]-hydrogenase wired to the water oxidation enzyme photosystem II in a photoelectrochemical cell. In contrast to the other systems, this photoelectrochemical system does not rely on a sacrificial electron donor and allowed us to establish the long sought after light-driven water splitting with an isolated hydrogenase.
Collapse
Affiliation(s)
- Claire Wombwell
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Christine A. Caputo
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
9
|
Vedha SA, Velmurugan G, Jagadeesan R, Venuvanalingam P. Insights from the computational studies on the oxidized as-isolated state of [NiFeSe] hydrogenase from D. vulgaris Hildenborough. Phys Chem Chem Phys 2015. [PMID: 26205195 DOI: 10.1039/c5cp03071d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A density functional theory study of the active site structure and features of the oxygen tolerant [NiFeSe] Hase in the oxidized as-isolated state of the enzyme D. vulgaris Hildenborough (DvH) is reported here. The three conformers reported to be present in the X-ray structure (PDB ID: ) have been studied. The novel bidentate interchalcogen ligand (S-Se) in Conf-I of the [NiFeSe] Hase reported for the first time in hydrogenases (Hase) is found to be of donor-acceptor type with an uneven η(2) L → M σ-bond. The symmetry mismatch at the sp orbital of Se and at the dz(2) orbital of Ni has been identified to be the reason for the inability of Conf-II to convert to Conf-I. NBO analysis shows that the sulfinate ligand peculiar to the state stabilizes the active site through n →π* interactions. The results reveal that the isolated oxidized state of the [NiFeSe] Hase is significantly different from the well-known [NiFe] Hase.
Collapse
Affiliation(s)
- Swaminathan Angeline Vedha
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| | | | | | | |
Collapse
|
10
|
Abstract
A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe(‘S2Se2’)(CO)3] (H2‘S2Se2’=1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni(‘S2Se2’)] with [Fe(CO)3bda] (bda=benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe(‘S2Se2’)(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe(‘S2Se2’)(CO)3] with the previously reported thiolate analogue [NiFe(‘S4’)(CO)3] (H2‘S4’=H2xbsms=1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe(‘S2Se2’)(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe(‘S2Se2’)(CO)3] and [NiFe(‘S4’)(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution.
Collapse
Affiliation(s)
- Claire Wombwell
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK) E-mail: Homepage: http://www-reisner.ch.cam.ac.uk/
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK) E-mail: Homepage: http://www-reisner.ch.cam.ac.uk/
| |
Collapse
|
11
|
Gutiérrez-Sanz Ó, Tapia C, Marques MC, Zacarias S, Vélez M, Pereira IAC, De Lacey AL. Induction of a Proton Gradient across a Gold-Supported Biomimetic Membrane by Electroenzymatic H2Oxidation. Angew Chem Int Ed Engl 2015; 54:2684-7. [DOI: 10.1002/anie.201411182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 01/22/2023]
|
12
|
Gutiérrez-Sanz Ó, Tapia C, Marques MC, Zacarias S, Vélez M, Pereira IAC, De Lacey AL. Induction of a Proton Gradient across a Gold-Supported Biomimetic Membrane by Electroenzymatic H2Oxidation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Wombwell C, Reisner E. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases. Dalton Trans 2014; 43:4483-93. [DOI: 10.1039/c3dt52967c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of structural models of the Ni centre in [NiFeSe] hydrogenases display reactivity relevant to the enzyme.
Collapse
Affiliation(s)
- Claire Wombwell
- Christian Doppler Laboratory for Sustainable SynGas Chemistry
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| |
Collapse
|
14
|
Gutiérrez-Sanz O, Marques MC, Baltazar CSA, Fernández VM, Soares CM, Pereira IAC, De Lacey AL. Influence of the protein structure surrounding the active site on the catalytic activity of [NiFeSe] hydrogenases. J Biol Inorg Chem 2013; 18:419-27. [PMID: 23468234 DOI: 10.1007/s00775-013-0986-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
A combined experimental and theoretical study of the catalytic activity of a [NiFeSe] hydrogenase has been performed by H/D exchange mass spectrometry and molecular dynamics simulations. Hydrogenases are enzymes that catalyze the heterolytic cleavage or production of H2. The [NiFeSe] hydrogenases belong to a subgroup of the [NiFe] enzymes in which a selenocysteine is a ligand of the nickel atom in the active site instead of cysteine. The aim of this research is to determine how much the specific catalytic properties of this hydrogenase are influenced by the replacement of a sulfur by selenium in the coordination of the bimetallic active site versus the changes in the protein structure surrounding the active site. The pH dependence of the D2/H(+) exchange activity and the high isotope effect observed in the Michaelis constant for the dihydrogen substrate and in the single exchange/double exchange ratio suggest that a "cage effect" due to the protein structure surrounding the active site is modulating the enzymatic catalysis. This "cage effect" is supported by molecular dynamics simulations of the diffusion of H2 and D2 from the outside to the inside of the protein, which show different accumulation of these substrates in a cavity next to the active site.
Collapse
Affiliation(s)
- Oscar Gutiérrez-Sanz
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Lojou E. Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
McIntosh CL, Germer F, Schulz R, Appel J, Jones AK. The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production. J Am Chem Soc 2011; 133:11308-19. [PMID: 21675712 DOI: 10.1021/ja203376y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein film electrochemistry (PFE) was utilized to characterize the catalytic activity and oxidative inactivation of a bidirectional [NiFe]-hydrogenase (HoxEFUYH) from the cyanobacterium Synechocystis sp. PCC 6803. PFE provides precise control of the redox potential of the adsorbed enzyme so that its activity can be monitored under changing experimental conditions as current. The properties of HoxEFUYH are different from those of both the standard uptake and the "oxygen-tolerant" [NiFe]-hydrogenases. First, HoxEFUYH is biased toward proton reduction as opposed to hydrogen oxidation. Second, despite being expressed under aerobic conditions in vivo, HoxEFUYH is clearly not oxygen-tolerant. Aerobic inactivation of catalytic hydrogen oxidation by HoxEFUYH is total and nearly instantaneous, producing two inactive states. However, unlike the Ni-A and Ni-B inactive states of standard [NiFe]-hydrogenases, both of these states are quickly (<90 s) reactivated by removal of oxygen and exposure to reducing conditions. Third, proton reduction continues at 25-50% of the maximal rate in the presence of 1% oxygen. Whereas most previously characterized [NiFe]-hydrogenases seem to be preferential hydrogen oxidizing catalysts, the cyanobacterial enzyme works effectively in both directions. This unusual catalytic bias as well as the ability to be quickly reactivated may be essential to fulfilling the physiological role in cyanobacteria, organisms expected to experience swings in cellular reduction potential as they switch between aerobic conditions in the light and dark anaerobic conditions. Our results suggest that the uptake [NiFe]-hydrogenases alone are not representative of the catalytic diversity of [NiFe]-hydrogenases, and the bidirectional heteromultimeric enzymes may serve as valuable models to understand the diverse mechanisms of tuning the reactivity of the hydrogen activating site.
Collapse
Affiliation(s)
- Chelsea L McIntosh
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | |
Collapse
|
17
|
Gutiérrez-Sánchez C, Olea D, Marques M, Fernández VM, Pereira IAC, Vélez M, De Lacey AL. Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6449-6457. [PMID: 21491850 DOI: 10.1021/la200141t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The interaction of redox enzymes with electrodes is of great interest for studying the catalytic mechanisms of redox enzymes and for bioelectronic applications. Efficient electron transport between the biocatalysts and the electrodes has achieved more success with soluble enzymes than with membrane enzymes because of the higher structural complexity and instability of the latter proteins. In this work, we report a strategy for immobilizing a membrane-bound enzyme onto gold electrodes with a controlled orientation in its fully active conformation. The immobilized redox enzyme is the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough, which catalyzes H(2)-oxidation reversibly and is associated with the cytoplasmic membrane by a lipidic tail. Gold surfaces modified with this enzyme and phospholipids have been studied by atomic force microscopy (AFM) and electrochemical methods. The combined study indicates that by a two-step immobilization procedure the hydrogenase can be inserted via its lipidic tail onto a phospholipidic bilayer formed over the gold surface, allowing only mediated electron transfer between the enzyme and electrode. However, a one-step immobilization procedure favors the formation of a hydrogenase monolayer over the gold surface with its lipidic tail inserted into a phospholipid bilayer formed on top of the hydrogenase molecules. This latter method has allowed for the first time efficient electron transfer between a membrane-bound enzyme in its native conformation and an electrode.
Collapse
|
18
|
Baltazar CSA, Marques MC, Soares CM, DeLacey AM, Pereira IAC, Matias PM. Nickel–Iron–Selenium Hydrogenases – An Overview. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001127] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carla S. A. Baltazar
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Marta C. Marques
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Cláudio M. Soares
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Antonio M. DeLacey
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain, Fax: +34‐915854760
| | - Inês A. C. Pereira
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
| | - Pedro M. Matias
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| |
Collapse
|