1
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
2
|
Grāve K, Griese JJ, Berggren G, Bennett MD, Högbom M. The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. J Biol Inorg Chem 2020; 25:571-582. [PMID: 32296998 PMCID: PMC7239806 DOI: 10.1007/s00775-020-01782-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/22/2020] [Indexed: 01/30/2023]
Abstract
Abstract Correct protein metallation in the complex mixture of the cell is a prerequisite for metalloprotein function. While some metals, such as Cu, are commonly chaperoned, specificity towards metals earlier in the Irving–Williams series is achieved through other means, the determinants of which are poorly understood. The dimetal carboxylate family of proteins provides an intriguing example, as different proteins, while sharing a common fold and the same 4-carboxylate 2-histidine coordination sphere, are known to require either a Fe/Fe, Mn/Fe or Mn/Mn cofactor for function. We previously showed that the R2lox proteins from this family spontaneously assemble the heterodinuclear Mn/Fe cofactor. Here we show that the class Ib ribonucleotide reductase R2 protein from Bacillus anthracis spontaneously assembles a Mn/Mn cofactor in vitro, under both aerobic and anoxic conditions, when the metal-free protein is subjected to incubation with MnII and FeII in equal concentrations. This observation provides an example of a protein scaffold intrinsically predisposed to defy the Irving–Williams series and supports the assumption that the Mn/Mn cofactor is the biologically relevant cofactor in vivo. Substitution of a second coordination sphere residue changes the spontaneous metallation of the protein to predominantly form a heterodinuclear Mn/Fe cofactor under aerobic conditions and a Mn/Mn metal center under anoxic conditions. Together, the results describe the intrinsic metal specificity of class Ib RNR and provide insight into control mechanisms for protein metallation. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00775-020-01782-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristīne Grāve
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.,Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 75124, Uppsala, Sweden
| | - Gustav Berggren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Matthew D Bennett
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| |
Collapse
|
3
|
|
4
|
Mebs S, Srinivas V, Kositzki R, Griese JJ, Högbom M, Haumann M. Fate of oxygen species from O 2 activation at dimetal cofactors in an oxidase enzyme revealed by 57Fe nuclear resonance X-ray scattering and quantum chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148060. [PMID: 31394094 DOI: 10.1016/j.bbabio.2019.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Oxygen (O2) activation is a central challenge in chemistry and catalyzed at prototypic dimetal cofactors in biological enzymes with diverse functions. Analysis of intermediates is required to elucidate the reaction paths of reductive O2 cleavage. An oxidase protein from the bacterium Geobacillus kaustophilus, R2lox, was used for aerobic in-vitro reconstitution with only 57Fe(II) or Mn(II) plus 57Fe(II) ions to yield [FeFe] or [MnFe] cofactors under various oxygen and solvent isotopic conditions including 16/18O and H/D exchange. 57Fe-specific X-ray scattering techniques were employed to collect nuclear forward scattering (NFS) and nuclear resonance vibrational spectroscopy (NRVS) data of the R2lox proteins. NFS revealed Fe/Mn(III)Fe(III) cofactor states and Mössbauer quadrupole splitting energies. Quantum chemical calculations of NRVS spectra assigned molecular structures, vibrational modes, and protonation patterns of the cofactors, featuring a terminal water (H2O) bound at iron or manganese in site 1 and a metal-bridging hydroxide (μOH-) ligand. A procedure for quantitation and correlation of experimental and computational NRVS difference signals due to isotope labeling was developed. This approach revealed that the protons of the ligands as well as the terminal water at the R2lox cofactors exchange with the bulk solvent whereas 18O from 18O2 cleavage is incorporated in the hydroxide bridge. In R2lox, the two water molecules from four-electron O2 reduction are released in a two-step reaction to the solvent. These results establish combined NRVS and QM/MM for tracking of iron-based oxygen activation in biological and chemical catalysts and clarify the reductive O2 cleavage route in an enzyme.
Collapse
Affiliation(s)
- Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, 10691 Stockholm, Sweden
| | - Ramona Kositzki
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Julia J Griese
- Department of Cell and Molecular Biology, Structural Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, 10691 Stockholm, Sweden
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Kutin Y, Kositzki R, Branca RMM, Srinivas V, Lundin D, Haumann M, Högbom M, Cox N, Griese JJ. Chemical flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J Biol Chem 2019; 294:18372-18386. [PMID: 31591267 DOI: 10.1074/jbc.ra119.010570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Indexed: 11/06/2022] Open
Abstract
A heterobimetallic Mn/Fe cofactor is present in the R2 subunit of class Ic ribonucleotide reductases (R2c) and in R2-like ligand-binding oxidases (R2lox). Although the protein-derived metal ligands are the same in both groups of proteins, the connectivity of the two metal ions and the chemistry each cofactor performs are different: in R2c, a one-electron oxidant, the Mn/Fe dimer is linked by two oxygen bridges (μ-oxo/μ-hydroxo), whereas in R2lox, a two-electron oxidant, it is linked by a single oxygen bridge (μ-hydroxo) and a fatty acid ligand. Here, we identified a second coordination sphere residue that directs the divergent reactivity of the protein scaffold. We found that the residue that directly precedes the N-terminal carboxylate metal ligand is conserved as a glycine within the R2lox group but not in R2c. Substitution of the glycine with leucine converted the resting-state R2lox cofactor to an R2c-like cofactor, a μ-oxo/μ-hydroxo-bridged MnIII/FeIII dimer. This species has recently been observed as an intermediate of the oxygen activation reaction in WT R2lox, indicating that it is physiologically relevant. Cofactor maturation in R2c and R2lox therefore follows the same pathway, with structural and functional divergence of the two cofactor forms following oxygen activation. We also show that the leucine-substituted variant no longer functions as a two-electron oxidant. Our results reveal that the residue preceding the N-terminal metal ligand directs the cofactor's reactivity toward one- or two-electron redox chemistry, presumably by setting the protonation state of the bridging oxygens and thereby perturbing the redox potential of the Mn ion.
Collapse
Affiliation(s)
- Yury Kutin
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Rui M M Branca
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Box 1031, SE-171 21 Solna, Sweden
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
6
|
Wei W, Siegbahn PEM, Liao R. Mechanism of the Dinuclear Iron Enzymep‐Aminobenzoate N‐oxygenase from Density Functional Calculations. ChemCatChem 2018. [DOI: 10.1002/cctc.201801072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Jie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius LaboratoryStockholm University Stockholm SE-10691 Sweden
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
7
|
Griese JJ, Branca RMM, Srinivas V, Högbom M. Ether cross-link formation in the R2-like ligand-binding oxidase. J Biol Inorg Chem 2018; 23:879-886. [PMID: 29946980 PMCID: PMC6060897 DOI: 10.1007/s00775-018-1583-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
Abstract
R2-like ligand-binding oxidases contain a dinuclear metal cofactor which can consist either of two iron ions or one manganese and one iron ion, but the heterodinuclear Mn/Fe cofactor is the preferred assembly in the presence of MnII and FeII in vitro. We have previously shown that both types of cofactor are capable of catalyzing formation of a tyrosine–valine ether cross-link in the protein scaffold. Here we demonstrate that Mn/Fe centers catalyze cross-link formation more efficiently than Fe/Fe centers, indicating that the heterodinuclear cofactor is the biologically relevant one. We further explore the chemical potential of the Mn/Fe cofactor by introducing mutations at the cross-linking valine residue. We find that cross-link formation is possible also to the tertiary beta-carbon in an isoleucine, but not to the secondary beta-carbon or tertiary gamma-carbon in a leucine, nor to the primary beta-carbon of an alanine. These results illustrate that the reactivity of the cofactor is highly specific and directed.
Collapse
Affiliation(s)
- Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden. .,Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden.
| | - Rui M M Branca
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, 171 21, Solna, Sweden
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Rozman Grinberg I, Lundin D, Hasan M, Crona M, Jonna VR, Loderer C, Sahlin M, Markova N, Borovok I, Berggren G, Hofer A, Logan DT, Sjöberg BM. Novel ATP-cone-driven allosteric regulation of ribonucleotide reductase via the radical-generating subunit. eLife 2018; 7:31529. [PMID: 29388911 PMCID: PMC5794259 DOI: 10.7554/elife.31529] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/23/2017] [Indexed: 12/27/2022] Open
Abstract
Ribonucleotide reductases (RNRs) are key enzymes in DNA metabolism, with allosteric mechanisms controlling substrate specificity and overall activity. In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, we discovered ATP-cones in the radical-generating subunit. The ATP-cone in the Leeuwenhoekiella blandensis radical-generating subunit regulates activity via quaternary structure induced by binding of nucleotides. ATP induces enzymatically competent dimers, whereas dATP induces non-productive tetramers, resulting in different holoenzymes. The tetramer forms by interactions between ATP-cones, shown by a 2.45 Å crystal structure. We also present evidence for an MnIIIMnIV metal center. In summary, lack of an ATP-cone domain in the catalytic subunit was compensated by transfer of the domain to the radical-generating subunit. To our knowledge, this represents the first observation of transfer of an allosteric domain between components of the same enzyme complex. When a cell copies its DNA, it uses four different building blocks called deoxyribonucleotides (dNTPs). These consist of one of the four ‘bases’ (A, T, C and G), which pair up to link the two strands of DNA in the double helix, bound to a sugar and a phosphate group. If the cell contains too little or too much of one of these building blocks, an incorrect base may be inserted into the DNA. This results in a mutation, which in bacteria can cause death, and in animals may lead to cancer. The enzyme that fabricates and carefully controls the amount of each dNTP building block inside a cell is called ribonucleotide reductase. Once there are enough building blocks in a cell the enzyme is turned off. A part of the enzyme called the ATP-cone acts as an on/off switch to control this activity. The ribonucleotide reductase consists of a large component and a small component. Until now, studies of the ATP-cone have found it only in the large component of the enzyme. However, when looking through a public database of sequence data, Rozman Grinberg et al. noticed that ribonucleotide reductases in some bacteria have their ATP-cone joined to the small component. Does this ATP-cone also control the amounts of dNTP building blocks inside cells and, if so, how? Rozman Grinberg et al. studied one such ATP-cone in a ribonucleotide reductase from a bacterium (named Leeuwenhoekiella blandensis) found in the Mediterranean Sea. This revealed that when the amount of dNTP building blocks reaches a certain limit, the ATP-cone turns off the enzyme. Examining the three-dimensional structure of the enzyme using a technique called X-ray crystallography revealed that when turned off, the enzyme’s small components are glued together in pairs. This prevents them from working. Rozman Grinberg et al. also discovered that this enzyme contains a new type of metal center with two manganese ions suggesting that a new reaction mechanism may operate in this class of ribonucleotide reductase. These findings support a theory that biological on/off switches can evolve rapidly. In addition to its evolutionary and biomedical interest, understanding how the ATP-cone works might help to improve the enzymes used in industrial processes.
Collapse
Affiliation(s)
- Inna Rozman Grinberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mahmudul Hasan
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | | | - Christoph Loderer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Margareta Sahlin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Gustav Berggren
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Derek T Logan
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Kositzki R, Mebs S, Marx J, Griese JJ, Schuth N, Högbom M, Schünemann V, Haumann M. Protonation State of MnFe and FeFe Cofactors in a Ligand-Binding Oxidase Revealed by X-ray Absorption, Emission, and Vibrational Spectroscopy and QM/MM Calculations. Inorg Chem 2016; 55:9869-9885. [PMID: 27610479 DOI: 10.1021/acs.inorgchem.6b01752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzymes with a dimetal-carboxylate cofactor catalyze reactions among the top challenges in chemistry such as methane and dioxygen (O2) activation. Recently described proteins bind a manganese-iron cofactor (MnFe) instead of the classical diiron cofactor (FeFe). Determination of atomic-level differences of homo- versus hetero-bimetallic cofactors is crucial to understand their diverse redox reactions. We studied a ligand-binding oxidase from the bacterium Geobacillus kaustophilus (R2lox) loaded with a FeFe or MnFe cofactor, which catalyzes O2 reduction and an unusual tyrosine-valine ether cross-link formation, as revealed by X-ray crystallography. Advanced X-ray absorption, emission, and vibrational spectroscopy methods and quantum chemical and molecular mechanics calculations provided relative Mn/Fe contents, X-ray photoreduction kinetics, metal-ligand bond lengths, metal-metal distances, metal oxidation states, spin configurations, valence-level degeneracy, molecular orbital composition, nuclear quadrupole splitting energies, and vibrational normal modes for both cofactors. A protonation state with an axial water (H2O) ligand at Mn or Fe in binding site 1 and a metal-bridging hydroxo group (μOH) in a hydrogen-bonded network is assigned. Our comprehensive picture of the molecular, electronic, and dynamic properties of the cofactors highlights reorientation of the unique axis along the Mn-OH2 bond for the Mn1(III) Jahn-Teller ion but along the Fe-μOH bond for the octahedral Fe1(III). This likely corresponds to a more positive redox potential of the Mn(III)Fe(III) cofactor and higher proton affinity of its μOH group. Refined model structures for the Mn(III)Fe(III) and Fe(III)Fe(III) cofactors are presented. Implications of our findings for the site-specific metalation of R2lox and performance of the O2 reduction and cross-link formation reactions are discussed.
Collapse
Affiliation(s)
- Ramona Kositzki
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Stefan Mebs
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Jennifer Marx
- Fachbereich Physik, Technische Universität Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden
| | - Nils Schuth
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden.,Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Volker Schünemann
- Fachbereich Physik, Technische Universität Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
10
|
Mono- and binuclear non-heme iron chemistry from a theoretical perspective. J Biol Inorg Chem 2016; 21:619-44. [DOI: 10.1007/s00775-016-1357-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
11
|
Kutin Y, Srinivas V, Fritz M, Kositzki R, Shafaat HS, Birrell J, Bill E, Haumann M, Lubitz W, Högbom M, Griese JJ, Cox N. Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins. J Inorg Biochem 2016; 162:164-177. [PMID: 27138102 DOI: 10.1016/j.jinorgbio.2016.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 01/22/2023]
Abstract
A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of class Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is unclear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of MnII and FeII. Using EPR and Mössbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess MnII promotes heterobimetallic cofactor assembly. In the absence of FeII, R2c cooperatively binds MnII at both metal sites, whereas R2lox does not readily bind MnII at either site. Heterometallic cofactor assembly is favored at substoichiometric FeII concentrations in R2lox. FeII and MnII likely bind to the protein in a stepwise fashion, with FeII binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of MnII by FeII at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular MnII/FeII concentrations in the host organisms from which they were isolated.
Collapse
Affiliation(s)
- Yuri Kutin
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Matthieu Fritz
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Hannah S Shafaat
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - James Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Chemistry, Stanford University, Stanford, CA 94305, United States.
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
12
|
Griese JJ, Kositzki R, Schrapers P, Branca RMM, Nordström A, Lehtiö J, Haumann M, Högbom M. Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor. J Biol Chem 2015; 290:25254-72. [PMID: 26324712 PMCID: PMC4646176 DOI: 10.1074/jbc.m115.675223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn(II) and Fe(II) in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189-17194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability.
Collapse
Affiliation(s)
- Julia J Griese
- From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Kositzki
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Peer Schrapers
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Rui M M Branca
- the Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden, and
| | - Anders Nordström
- the Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Janne Lehtiö
- the Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden, and
| | - Michael Haumann
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Martin Högbom
- From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden,
| |
Collapse
|
13
|
Liao RZ, Siegbahn PEM. Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB. Chem Sci 2015; 6:2754-2764. [PMID: 28706665 PMCID: PMC5489048 DOI: 10.1039/c5sc00313j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
DFT calculations are used to elucidate the reaction mechanism and selectivity of BoxB catalyzed benzoyl-CoA epoxidation.
Benzoyl-CoA epoxidase is a dinuclear iron enzyme that catalyzes the epoxidation reaction of the aromatic ring of benzoyl-CoA with chemo-, regio- and stereo-selectivity. It has been suggested that this enzyme may also catalyze the deoxygenation reaction of epoxide, suggesting a unique bifunctionality among the diiron enzymes. We report a density functional theory study of this enzyme aimed at elucidating its mechanism and the various selectivities. The epoxidation is suggested to start with the binding of the O2 molecule to the diferrous center to generate a diferric peroxide complex, followed by concerted O–O bond cleavage and epoxide formation. Two different pathways have been located, leading to (2S,3R)-epoxy and (2R,3S)-epoxy products, with barriers of 17.6 and 20.4 kcal mol–1, respectively. The barrier difference is 2.8 kcal mol–1, corresponding to a diastereomeric excess of about 99 : 1. Further isomerization from epoxide to phenol is found to have quite a high barrier, which cannot compete with the product release step. After product release into solution, fast epoxide–oxepin isomerization and racemization can take place easily, leading to a racemic mixture of (2S,3R) and (2R,3S) products. The deoxygenation of epoxide to regenerate benzoyl-CoA by a diferrous form of the enzyme proceeds via a stepwise mechanism. The C2–O bond cleavage happens first, coupled with one electron transfer from one iron center to the substrate, to form a radical intermediate, which is followed by the second C3–O bond cleavage. The first step is rate-limiting with a barrier of only 10.8 kcal mol–1. Further experimental studies are encouraged to verify our results.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System , Ministry of Education , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China .
| | - Per E M Siegbahn
- Department of Organic Chemistry , Arrhenius Laboratory , Stockholm University , SE-10691 Stockholm , Sweden .
| |
Collapse
|
14
|
Shafaat HS, Griese JJ, Pantazis DA, Roos K, Andersson CS, Popović-Bijelić A, Gräslund A, Siegbahn PEM, Neese F, Lubitz W, Högbom M, Cox N. Electronic structural flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J Am Chem Soc 2014; 136:13399-409. [PMID: 25153930 DOI: 10.1021/ja507435t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The electronic structure of the Mn/Fe cofactor identified in a new class of oxidases (R2lox) described by Andersson and Högbom [Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5633] is reported. The R2lox protein is homologous to the small subunit of class Ic ribonucleotide reductase (R2c) but has a completely different in vivo function. Using multifrequency EPR and related pulse techniques, it is shown that the cofactor of R2lox represents an antiferromagnetically coupled Mn(III)/Fe(III) dimer linked by a μ-hydroxo/bis-μ-carboxylato bridging network. The Mn(III) ion is coordinated by a single water ligand. The R2lox cofactor is photoactive, converting into a second form (R2loxPhoto) upon visible illumination at cryogenic temperatures (77 K) that completely decays upon warming. This second, unstable form of the cofactor more closely resembles the Mn(III)/Fe(III) cofactor seen in R2c. It is shown that the two forms of the R2lox cofactor differ primarily in terms of the local site geometry and electronic state of the Mn(III) ion, as best evidenced by a reorientation of its unique (55)Mn hyperfine axis. Analysis of the metal hyperfine tensors in combination with density functional theory (DFT) calculations suggests that this change is triggered by deprotonation of the μ-hydroxo bridge. These results have important consequences for the mixed-metal R2c cofactor and the divergent chemistry R2lox and R2c perform.
Collapse
Affiliation(s)
- Hannah S Shafaat
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, Mülheim an der Ruhr D-45470, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Griese JJ, Srinivas V, Högbom M. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. J Biol Inorg Chem 2014; 19:759-74. [PMID: 24771036 PMCID: PMC4118035 DOI: 10.1007/s00775-014-1140-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 11/23/2022]
Abstract
The ferritin superfamily contains several protein groups that share a common fold and metal coordinating ligands. The different groups utilize different dinuclear cofactors to perform a diverse set of reactions. Several groups use an oxygen-activating di-iron cluster, while others use di-manganese or heterodinuclear Mn/Fe cofactors. Given the similar primary ligand preferences of Mn and Fe as well as the similarities between the binding sites, the basis for metal specificity in these systems remains enigmatic. Recent data for the heterodinuclear cluster show that the protein scaffold per se is capable of discriminating between Mn and Fe and can assemble the Mn/Fe center in the absence of any potential assembly machineries or metal chaperones. Here we review the current understanding of the assembly of the heterodinuclear cofactor in the two different protein groups in which it has been identified, ribonucleotide reductase R2c proteins and R2-like ligand-binding oxidases. Interestingly, although the two groups form the same metal cluster they appear to employ partly different mechanisms to assemble it. In addition, it seems that both the thermodynamics of metal binding and the kinetics of oxygen activation play a role in achieving metal specificity.
Collapse
Affiliation(s)
- Julia J. Griese
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Vivek Srinivas
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| | - Martin Högbom
- Arrhenius Laboratories for Natural Sciences A4, Department of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
16
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein. Proc Natl Acad Sci U S A 2013; 110:17189-94. [PMID: 24101498 DOI: 10.1073/pnas.1304368110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although metallocofactors are ubiquitous in enzyme catalysis, how metal binding specificity arises remains poorly understood, especially in the case of metals with similar primary ligand preferences such as manganese and iron. The biochemical selection of manganese over iron presents a particularly intricate problem because manganese is generally present in cells at a lower concentration than iron, while also having a lower predicted complex stability according to the Irving-Williams series (Mn(II) < Fe(II) < Ni(II) < Co(II) < Cu(II) > Zn(II)). Here we show that a heterodinuclear Mn/Fe cofactor with the same primary protein ligands in both metal sites self-assembles from Mn(II) and Fe(II) in vitro, thus diverging from the Irving-Williams series without requiring auxiliary factors such as metallochaperones. Crystallographic, spectroscopic, and computational data demonstrate that one of the two metal sites preferentially binds Fe(II) over Mn(II) as expected, whereas the other site is nonspecific, binding equal amounts of both metals in the absence of oxygen. Oxygen exposure results in further accumulation of the Mn/Fe cofactor, indicating that cofactor assembly is at least a two-step process governed by both the intrinsic metal specificity of the protein scaffold and additional effects exerted during oxygen binding or activation. We further show that the mixed-metal cofactor catalyzes a two-electron oxidation of the protein scaffold, yielding a tyrosine-valine ether cross-link. Theoretical modeling of the reaction by density functional theory suggests a multistep mechanism including a valyl radical intermediate.
Collapse
|
18
|
Wörsdörfer B, Conner DA, Yokoyama K, Livada J, Seyedsayamdost M, Jiang W, Silakov A, Stubbe J, Bollinger JM, Krebs C. Function of the diiron cluster of Escherichia coli class Ia ribonucleotide reductase in proton-coupled electron transfer. J Am Chem Soc 2013; 135:8585-93. [PMID: 23676140 PMCID: PMC3869997 DOI: 10.1021/ja401342s] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The class Ia ribonucleotide reductase (RNR) from Escherichia coli employs a free-radical mechanism, which involves bidirectional translocation of a radical equivalent or "hole" over a distance of ~35 Å from the stable diferric/tyrosyl-radical (Y122(•)) cofactor in the β subunit to cysteine 439 (C439) in the active site of the α subunit. This long-range, intersubunit electron transfer occurs by a multistep "hopping" mechanism via formation of transient amino acid radicals along a specific pathway and is thought to be conformationally gated and coupled to local proton transfers. Whereas constituent amino acids of the hopping pathway have been identified, details of the proton-transfer steps and conformational gating within the β sununit have remained obscure; specific proton couples have been proposed, but no direct evidence has been provided. In the key first step, the reduction of Y122(•) by the first residue in the hopping pathway, a water ligand to Fe1 of the diferric cluster was suggested to donate a proton to yield the neutral Y122. Here we show that forward radical translocation is associated with perturbation of the Mössbauer spectrum of the diferric cluster, especially the quadrupole doublet associated with Fe1. Density functional theory (DFT) calculations verify the consistency of the experimentally observed perturbation with that expected for deprotonation of the Fe1-coordinated water ligand. The results thus provide the first evidence that the diiron cluster of this prototypical class Ia RNR functions not only in its well-known role as generator of the enzyme's essential Y122(•), but also directly in catalysis.
Collapse
Affiliation(s)
- Bigna Wörsdörfer
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Denise A. Conner
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kenichi Yokoyama
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jovan Livada
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Wei Jiang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Roos K, Siegbahn PEM. Activation of Dimanganese Class Ib Ribonucleotide Reductase by Hydrogen Peroxide: Mechanistic Insights from Density Functional Theory. Inorg Chem 2013; 52:4173-84. [DOI: 10.1021/ic3008427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Katarina Roos
- Department of Physics, Stockholm University, SE-106 91 Stockholm,
Sweden
| | - Per E. M. Siegbahn
- Department of Physics, Stockholm University, SE-106 91 Stockholm,
Sweden
| |
Collapse
|
20
|
Cotruvo JA, Stich TA, Britt RD, Stubbe J. Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate. J Am Chem Soc 2013; 135:4027-39. [PMID: 23402532 DOI: 10.1021/ja312457t] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y(•)) generated by oxidation of a reduced dinuclear metal cluster. The Fe(III)2-Y(•) cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from Fe(II)2-NrdB, O2, and a reducing equivalent. By contrast, the structurally homologous class Ib enzymes require a Mn(III)2-Y(•) cofactor in their NrdF subunit. Mn(II)2-NrdF does not react with O2, but it binds the reduced form of a conserved flavodoxin-like protein, NrdIhq, which, in the presence of O2, reacts to form the Mn(III)2-Y(•) cofactor. Here we investigate the mechanism of assembly of the Mn(III)2-Y(•) cofactor in Bacillus subtilis NrdF. Cluster assembly from Mn(II)2-NrdF, NrdI(hq), and O2 has been studied by stopped flow absorption and rapid freeze quench EPR spectroscopies. The results support a mechanism in which NrdI(hq) reduces O2 to O2(•-) (40-48 s(-1), 0.6 mM O2), the O2(•-) channels to and reacts with Mn(II)2-NrdF to form a Mn(III)Mn(IV) intermediate (2.2 ± 0.4 s(-1)), and the Mn(III)Mn(IV) species oxidizes tyrosine to Y(•) (0.08-0.15 s(-1)). Controlled production of O2(•-) by NrdIhq during class Ib RNR cofactor assembly both circumvents the unreactivity of the Mn(II)2 cluster with O2 and satisfies the requirement for an "extra" reducing equivalent in Y(•) generation.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
21
|
Sigfridsson KGV, Chernev P, Leidel N, Popović-Bijelić A, Gräslund A, Haumann M. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase. J Biol Chem 2013; 288:9648-9661. [PMID: 23400774 DOI: 10.1074/jbc.m112.438796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.
Collapse
Affiliation(s)
| | - Petko Chernev
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany
| | - Nils Leidel
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany
| | - Ana Popović-Bijelić
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Michael Haumann
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany.
| |
Collapse
|
22
|
Leidel N, Popović-Bijelić A, Havelius KGV, Chernev P, Voevodskaya N, Gräslund A, Haumann M. High-valent [MnFe] and [FeFe] cofactors in ribonucleotide reductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:430-44. [PMID: 22222354 DOI: 10.1016/j.bbabio.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNRs) are essential for DNA synthesis in most organisms. In class-Ic RNR from Chlamydia trachomatis (Ct), a MnFe cofactor in subunit R2 forms the site required for enzyme activity, instead of an FeFe cofactor plus a redox-active tyrosine in class-Ia RNRs, for example in mouse (Mus musculus, Mm). For R2 proteins from Ct and Mm, either grown in the presence of, or reconstituted with Mn and Fe ions, structural and electronic properties of higher valence MnFe and FeFe sites were determined by X-ray absorption spectroscopy and complementary techniques, in combination with bond-valence-sum and density functional theory calculations. At least ten different cofactor species could be tentatively distinguished. In Ct R2, two different Mn(IV)Fe(III) site configurations were assigned either L(4)Mn(IV)(μO)(2)Fe(III)L(4) (metal-metal distance of ~2.75Å, L = ligand) prevailing in metal-grown R2, or L(4)Mn(IV)(μO)(μOH)Fe(III)L(4) (~2.90Å) dominating in metal-reconstituted R2. Specific spectroscopic features were attributed to an Fe(IV)Fe(III) site (~2.55Å) with a L(4)Fe(IV)(μO)(2)Fe(III)L(3) core structure. Several Mn,Fe(III)Fe(III) (~2.9-3.1Å) and Mn,Fe(III)Fe(II) species (~3.3-3.4Å) likely showed 5-coordinated Mn(III) or Fe(III). Rapid X-ray photoreduction of iron and shorter metal-metal distances in the high-valent states suggested radiation-induced modifications in most crystal structures of R2. The actual configuration of the MnFe and FeFe cofactors seems to depend on assembly sequences, bound metal type, valence state, and previous catalytic activity involving subunit R1. In Ct R2, the protonation of a bridging oxide in the Mn(IV)(μO)(μOH)Fe(III) core may be important for preventing premature site reduction and initiation of the radical chemistry in R1.
Collapse
Affiliation(s)
- Nils Leidel
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Roos K, Siegbahn PEM. A comparison of two-electron chemistry performed by the manganese and iron heterodimer and homodimers. J Biol Inorg Chem 2011; 17:363-73. [DOI: 10.1007/s00775-011-0858-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|