1
|
Najdian A, Beiki D, Abbasi M, Gholamrezanezhad A, Ahmadzadehfar H, Amani AM, Ardestani MS, Assadi M. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24:127. [PMID: 39304961 DOI: 10.1186/s40644-024-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Multimodal imaging unfolds as an innovative approach that synergistically employs a spectrum of imaging techniques either simultaneously or sequentially. The integration of computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (OI) results in a comprehensive and complementary understanding of complex biological processes. This innovative approach combines the strengths of each method and overcoming their individual limitations. By harmoniously blending data from these modalities, it significantly improves the accuracy of cancer diagnosis and aids in treatment decision-making processes. Nanoparticles possess a high potential for facile functionalization with radioactive isotopes and a wide array of contrast agents. This strategic modification serves to augment signal amplification, significantly enhance image sensitivity, and elevate contrast indices. Such tailored nanoparticles constructs exhibit a promising avenue for advancing imaging modalities in both preclinical and clinical setting. Furthermore, nanoparticles function as a unified nanoplatform for the co-localization of imaging agents and therapeutic payloads, thereby optimizing the efficiency of cancer management strategies. Consequently, radiolabeled nanoparticles exhibit substantial potential in driving forward the realms of multimodal imaging and theranostic applications. This review discusses the potential applications of molecular imaging in cancer diagnosis, the utilization of nanotechnology-based radiolabeled materials in multimodal imaging and theranostic applications, as well as recent advancements in this field. It also highlights challenges including cytotoxicity and regulatory compliance, essential considerations for effective clinical translation of nanoradiopharmaceuticals in multimodal imaging and theranostic applications.
Collapse
Affiliation(s)
- Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
| | - Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, Klinikum Westfalen, Dortmund, Germany
- Department of Nuclear Medicine, Institute of Radiology, Neuroradiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Archibald SJ, Holland JP, Korde A, Martins AF, Shuhendler AJ, Scott PJH. Combining Nuclear Medicine With Other Modalities: Future Prospect for Multimodality Imaging. Mol Imaging 2024; 23:15353508241245265. [PMID: 38952398 PMCID: PMC11208883 DOI: 10.1177/15353508241245265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 07/03/2024] Open
Abstract
This meeting report summarizes a consultants meeting that was held at International Atomic Energy Agency Headquarters, Vienna, in July 2022 to provide an update on the development of multimodality imaging by combining nuclear medicine imaging agents with other nonradioactive molecular probes and/or biomedical imaging techniques.
Collapse
Affiliation(s)
| | - Jason P. Holland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Aruna Korde
- Radioisotope Products and Radiation Technology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Andre F. Martins
- Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Adam J. Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Heart Institute and Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Phua VJX, Yang CT, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:582. [PMID: 35214911 PMCID: PMC8875160 DOI: 10.3390/nano12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Nuclear imaging is a powerful non-invasive imaging technique that is rapidly developing in medical theranostics. Nuclear imaging requires radiolabeling isotopes for non-invasive imaging through the radioactive decay emission of the radionuclide. Nuclear imaging probes, commonly known as radiotracers, are radioisotope-labeled small molecules. Nanomaterials have shown potential as nuclear imaging probes for theranostic applications. By modifying the surface of nanomaterials, multifunctional radio-labeled nanomaterials can be obtained for in vivo biodistribution and targeting in initial animal imaging studies. Various surface modification strategies have been developed, and targeting moieties have been attached to the nanomaterials to render biocompatibility and enable specific targeting. Through integration of complementary imaging probes to a single nanoparticulate, multimodal molecular imaging can be performed as images with high sensitivity, resolution, and specificity. In this review, nanomaterial nuclear imaging probes including inorganic nanomaterials such as quantum dots (QDs), organic nanomaterials such as liposomes, and exosomes are summarized. These new developments in nanomaterials are expected to introduce a paradigm shift in nuclear imaging, thereby creating new opportunities for theranostic medical imaging tools.
Collapse
Affiliation(s)
- Vanessa Jing Xin Phua
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
4
|
Kastelik-Hryniewiecka A, Jewula P, Bakalorz K, Kramer-Marek G, Kuźnik N. Targeted PET/MRI Imaging Super Probes: A Critical Review of Opportunities and Challenges. Int J Nanomedicine 2022; 16:8465-8483. [PMID: 35002239 PMCID: PMC8733213 DOI: 10.2147/ijn.s336299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, the demand for hybrid PET/MRI imaging techniques has increased significantly, which has sparked the investigation into new ways to simultaneously track multiple molecular targets and improve the localization and expression of biochemical markers. Multimodal imaging probes have recently emerged as powerful tools for improving the detection sensitivity and accuracy-both important factors in disease diagnosis and treatment; however, only a limited number of bimodal probes have been investigated in preclinical models. Herein, we briefly describe the strengths and limitations of PET and MRI modalities and highlight the need for the development of multimodal molecularly-targeted agents. We have tried to thoroughly summarize data on bimodal probes available on PubMed. Emphasis was placed on their design, safety profiles, pharmacokinetics, and clearance properties. The challenges in PET/MR probe development using a number of illustrative examples are also discussed, along with future research directions for these novel conjugates.
Collapse
Affiliation(s)
- Anna Kastelik-Hryniewiecka
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Pawel Jewula
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Karolina Bakalorz
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| | - Gabriela Kramer-Marek
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Nikodem Kuźnik
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| |
Collapse
|
5
|
Papadopoulou S, Kolokithas-Ntoukas A, Salvanou EA, Gaitanis A, Xanthopoulos S, Avgoustakis K, Gazouli M, Paravatou-Petsotas M, Tsoukalas C, Bakandritsos A, Bouziotis P. Chelator-Free/Chelator-Mediated Radiolabeling of Colloidally Stabilized Iron Oxide Nanoparticles for Biomedical Imaging. NANOMATERIALS 2021; 11:nano11071677. [PMID: 34202370 PMCID: PMC8307582 DOI: 10.3390/nano11071677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
The aim of this study was to develop a bioimaging probe based on magnetic iron oxide nanoparticles (MIONs) surface functionalized with the copolymer (p(MAA-g-EGMA)), which were radiolabeled with the positron emitter Gallium-68. The synthesis of the hybrid MIONs was realized by hydrolytic condensation of a single ferrous precursor in the presence of the copolymer. The synthesized MagP MIONs displayed an average Dh of 87 nm, suitable for passive targeting of cancerous tissues through the enhanced permeation and retention (EPR) effect after intravenous administration, while their particularly high magnetic content ascribes strong magnetic properties to the colloids. Two different approaches were explored to develop MIONs radiolabeled with 68Ga: the chelator-mediated approach, where the chelating agent NODAGA-NHS was conjugated onto the MIONs (MagP-NODAGA) to form a chelate complex with 68Ga, and the chelator-free approach, where 68Ga was directly incorporated onto the MIONs (MagP). Both groups of NPs showed highly efficient radiolabeling with 68Ga, forming constructs which were stable with time, and in the presence of PBS and human serum. Ex vivo biodistribution studies of [68Ga]Ga- MIONs showed high accumulation in the mononuclear phagocyte system (MPS) organs and satisfactory blood retention with time. In vivo PET imaging with [68Ga]Ga-MagP MIONs was in accordance with the ex vivo biodistribution results. Finally, the MIONs showed low toxicity against 4T1 breast cancer cells. These detailed studies established that [68Ga]Ga- MIONs exhibit potential for application as tracers for early cancer detection.
Collapse
Affiliation(s)
- Sofia Papadopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.P.); (E.-A.S.); (S.X.); (M.P.-P.); (C.T.)
- Radioanalytics-Environmental Radioactivity, Radiochemistry & Radiobiology Research Laboratories SMPC, 20131 Corinth, Greece
| | - Argiris Kolokithas-Ntoukas
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
- Department of Materials Science, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Evangelia-Alexandra Salvanou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.P.); (E.-A.S.); (S.X.); (M.P.-P.); (C.T.)
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
| | - Anastasios Gaitanis
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Stavros Xanthopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.P.); (E.-A.S.); (S.X.); (M.P.-P.); (C.T.)
| | - Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.P.); (E.-A.S.); (S.X.); (M.P.-P.); (C.T.)
| | - Charalampos Tsoukalas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.P.); (E.-A.S.); (S.X.); (M.P.-P.); (C.T.)
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic;
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB–Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.P.); (E.-A.S.); (S.X.); (M.P.-P.); (C.T.)
- Correspondence: ; Tel.: +30-2106503687
| |
Collapse
|
6
|
Wellm V, Groebner J, Heitmann G, Sönnichsen FD, Herges R. Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vanessa Wellm
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| | - Jens Groebner
- Department of Electrical Engineering and Information Technology South Westphalian University of Applied Sciences Bahnhofsallee 5 58507 Luedenscheid Germany
| | - Gernot Heitmann
- IWS Innovations- und Wissenstrategien GmbH Aviares Research Network Deichstraße 25 20459 Hamburg Germany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| |
Collapse
|
7
|
Wellm V, Groebner J, Heitmann G, Sönnichsen FD, Herges R. Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angew Chem Int Ed Engl 2021; 60:8220-8226. [PMID: 33606332 PMCID: PMC8048480 DOI: 10.1002/anie.202015851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/27/2022]
Abstract
Temperature can be used as clinical marker for tissue metabolism and the detection of inflammations or tumors. The use of magnetic resonance imaging (MRI) for monitoring physiological parameters like the temperature noninvasively is steadily increasing. In this study, we present a proof-of-principle study of MRI contrast agents (CA) for absolute and concentration independent temperature imaging. These CAs are based on azoimidazole substituted NiII porphyrins, which can undergo Light-Driven Coordination-Induced Spin State Switching (LD-CISSS) in solution. Monitoring the fast first order kinetic of back isomerisation (cis to trans) with standard clinical MR imaging sequences allows the determination of half-lives, that can be directly translated into absolute temperatures. Different temperature responsive CAs were successfully tested as prototypes in methanol-based gels and created temperature maps of gradient phantoms with high spatial resolution (0.13×0.13×1.1 mm) and low temperature errors (<0.22 °C). The method is sufficiently fast to record the temperature flow from a heat source as a film.
Collapse
Affiliation(s)
- Vanessa Wellm
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| | - Jens Groebner
- Department of Electrical Engineering and Information TechnologySouth Westphalian University of Applied SciencesBahnhofsallee 558507LuedenscheidGermany
| | - Gernot Heitmann
- IWS Innovations- und Wissenstrategien GmbHAviares Research NetworkDeichstraße 2520459HamburgGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| | - Rainer Herges
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| |
Collapse
|
8
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
9
|
Development of Ga-68 labeled, biotinylated thiosemicarbazone dextran-coated iron oxide nanoparticles as multimodal PET/MRI probe. Int J Biol Macromol 2020; 148:932-941. [PMID: 31981670 DOI: 10.1016/j.ijbiomac.2020.01.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Bifunctional biotinylated thiosemicarbazone dextran-coated iron oxide Nanoparticles (NPs) were fabricated. Aldehyde groups of the oxidized dextran-coating layer were utilized to conjugate biotin as a tumor-targeting agent and thiosemicarbazide as a cation chelator on the surface of NPs. The final product was characterized for physicochemical and biological properties. It was compatible with red blood cells and did not change the blood coagulation time. It also showed a significantly enhanced affinity to biotin receptor-positive 4T1 cells compared to non-biotinylated ones. The r2 relaxivity coefficient value of the final product was 110.2 mM-1 s-1. Although biotinylated NPs were easily radiolabeled with Ga-68 at room temperature, the stable radiolabeled NPs were achieved at a higher temperature (60 °C). The radiolabeled NPs were majorly accumulated in the liver and spleen. However, about 5.4% ID/g of the radiolabeled NPs was accumulated within the 4T1 tumor site. Blocking studies was performed by the biotin molecules pre-injection showed uptake reduction in the 4T1 tumor (about 1.1% ID/g). The radiolabeled NPs could be used for the early detection of biotin receptor-positive tumors via PET-MRI.
Collapse
|
10
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Eng DNC, Halldin C, Gulyás B. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics 2018; 8:6210-6232. [PMID: 30613293 PMCID: PMC6299694 DOI: 10.7150/thno.26610] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET)-magnetic resonance (MR) or single photon emission computed tomography (SPECT)-MR hybrid imaging is being used in daily clinical practice. Due to its advantages over stand-alone PET, SPECT or MR imaging, in many areas such as oncology, the demand for hybrid imaging techniques is increasing dramatically. The use of multimodal imaging probes or biomarkers in a single molecule or particle to characterize the imaging subjects such as disease tissues certainly provides us with more accurate diagnosis and promotes therapeutic accuracy. A limited number of multimodal imaging probes are being used in preclinical and potential clinical investigations. The further development of multimodal PET-MR and SPECT-MR imaging probes includes several key elements: novel synthetic strategies, high sensitivity for accurate quantification and high anatomic resolution, favourable pharmacokinetic profile and target-specific binding of a new probe. This review thoroughly summarizes all recently available and noteworthy PET-MR and SPECT-MR multimodal imaging probes including small molecule bimodal probes, nano-sized bimodal probes, small molecular trimodal probes and nano-sized trimodal probes. To the best of our knowledge, this is the first comprehensive overview of all PET-MR and SPECT-MR multimodal probes. Since the development of multimodal PET-MR and SPECT-MR imaging probes is an emerging research field, a selection of 139 papers were recognized following the literature review. The challenges for designing multimodal probes have also been addressed in order to offer some future research directions for this novel interdisciplinary research field.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology and Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P.R. China, 315201
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
| | - Krishna K. Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
| | - Oliver Langer
- Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, A-1090, Vienna, Austria
- Center for Health and Bioresources, Biomedical Systems, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jiang Liu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology and Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P.R. China, 315201
| | - David Ng Chee Eng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| |
Collapse
|
11
|
Burke BP, Cawthorne C, Archibald SJ. Multimodal nanoparticle imaging agents: design and applications. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0261. [PMID: 29038384 DOI: 10.1098/rsta.2017.0261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 05/24/2023]
Abstract
Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Benjamin P Burke
- Department of Chemistry, Cottingham Road, Hull HU6 7RX, UK
- Positron Emission Tomography Research Centre, Cottingham Road, Hull HU6 7RX, UK
| | - Christopher Cawthorne
- Positron Emission Tomography Research Centre, Cottingham Road, Hull HU6 7RX, UK
- School of Life Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Stephen J Archibald
- Department of Chemistry, Cottingham Road, Hull HU6 7RX, UK
- Positron Emission Tomography Research Centre, Cottingham Road, Hull HU6 7RX, UK
| |
Collapse
|
12
|
Lahooti A, Sarkar S, Laurent S, Shanehsazzadeh S. Dual nano-sized contrast agents in PET/MRI: a systematic review. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 11:428-447. [PMID: 28102031 DOI: 10.1002/cmmi.1719] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022]
Abstract
Nowadays molecular imaging plays a vital role in achieving a successful targeted and personalized treatment. Hence, the approach of combining two or more medical imaging modalities was developed. The objective of this review is to systematically compare recent dual contrast agents in Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI) and in some cases Single photon emission computed tomography (SPECT)/MRI in terms of some their characteristics, such as tumor uptake, and reticuloendothelial system uptake (especially liver) and their relaxivity rates for early detection of primary cancer tumor. To the best of our knowledge, this is the first systematic and integrated overview of this field. Two reviewers individually directed the systematic review search using PubMed, MEDLINE and Google Scholar. Two other reviewers directed quality assessment, using the criteria checklist from the CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies) tool, and differences were resolved by consensus. After reviewing all 49 studies, we concluded that a size range of 20-200 nm can be used for molecular imaging, although it is better to try to achieve as small a size as it is possible. Also, small nanoparticles with a hydrophilic coating and positive charge are suitable as a T2 contrast agent. According to our selected data, the most successful dual probes in terms of high targeting were with an average size of 40 nm, PEGylated using peptides as a biomarker and radiolabeled with copper 64 and gallium 68. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Afsaneh Lahooti
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Iran
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic, and Biomedical Chemistry, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041, Gosselies, Belgium
| | - Saeed Shanehsazzadeh
- NMR and Molecular Imaging Laboratory, Department of General, Organic, and Biomedical Chemistry, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium
| |
Collapse
|
13
|
Pellico J, Llop J, Fernández-Barahona I, Bhavesh R, Ruiz-Cabello J, Herranz F. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1549580. [PMID: 29358900 PMCID: PMC5735613 DOI: 10.1155/2017/1549580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 12/12/2022]
Abstract
The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging.
Collapse
Affiliation(s)
- Juan Pellico
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia, Spain
| | - Irene Fernández-Barahona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Riju Bhavesh
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- Departamento Química Física II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Fernando Herranz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
14
|
Montiel Schneider MG, Lassalle VL. Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis. Biomed Pharmacother 2017; 93:1098-1115. [PMID: 28738519 DOI: 10.1016/j.biopha.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular complications derivate from atherosclerosis are the main cause of death in western world. An early detection of vulnerable atherosclerotic plaques is primordial for a better care of patients suffering the pathology. In this context nanotechnology has emerged as a promising tool to achieve this goal. Nanoparticles based on magnetic iron oxide (MNPs) have been extensively studied in cardiovascular diseases diagnosis, as well as in the treatment and diagnostic of other pathologies. The present review aims to describe and analyze the most current literature regarding to this topic, offering the level of detail required to reproduce the experimental tasks providing a critical input of the latest available reports. The current diagnostic features are presented and compared, highlighting their advantages and disadvantages. Information on novel technology intended to this purpose is also recompiled and in deep analyzed. Special emphasis is placed in magnetic nanotechnology, remarking the possibility to assess selective and multifunctional systems to the early detection of artherosclerotic pathologies. Finally, in view of the state of the art, the future perspectives about the trends on MNPs in artherosclerorsis diagnostic and treatment have also been addressed.
Collapse
Affiliation(s)
| | - Verónica Leticia Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
15
|
Chakravarty R, Goel S, Dash A, Cai W. Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2017; 61:181-204. [PMID: 28124549 DOI: 10.23736/s1824-4785.17.02969-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the last few years, a plethora of radiolabeled inorganic nanoparticles have been developed and evaluated for their potential use as probes in positron emission tomography (PET) imaging of a wide variety of cancers. Inorganic nanoparticles represent an emerging paradigm in molecular imaging probe design, allowing the incorporation of various imaging modalities, targeting ligands, and therapeutic payloads into a single vector. A major challenge in this endeavor is to develop disease-specific nanoparticles with facile and robust radiolabeling strategies. Also, the radiolabeled nanoparticles should demonstrate adequate in vitro and in vivo stability, enhanced sensitivity for detection of disease at an early stage, optimized in vivo pharmacokinetics for reduced non-specific organ uptake, and improved targeting for achieving high efficacy. Owing to these challenges and other technological and regulatory issues, only a single radiolabeled nanoparticle formulation, namely "C-dots" (Cornell dots), has found its way into clinical trials thus far. This review describes the available options for radiolabeling of nanoparticles and summarizes the recent developments in PET imaging of cancer in preclinical and clinical settings using radiolabeled nanoparticles as probes. The key considerations toward clinical translation of these novel PET imaging probes are discussed, which will be beneficial for advancement of the field.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India -
| | - Shreya Goel
- Materials Science Program, University of Wisconsin, Madison, WI, USA
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Weibo Cai
- Materials Science Program, University of Wisconsin, Madison, WI, USA.,Department of Radiology, University of Wisconsin, Madison, WI, USA.,Department of Medical Physics, University of Wisconsin, Madison, WI, USA.,University of Wisconsin, Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
16
|
Same S, Aghanejad A, Akbari Nakhjavani S, Barar J, Omidi Y. Radiolabeled theranostics: magnetic and gold nanoparticles. BIOIMPACTS 2016; 6:169-181. [PMID: 27853680 PMCID: PMC5108989 DOI: 10.15171/bi.2016.23] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
![]()
Introduction: Growing advances in nanotechnology have facilitated the applications of newly emerged nanomaterials in the field of biomedical/pharmaceutical sciences. Following this trend, the multifunctional nanoparticles (NPs) play a significant role in development of advanced drug delivery systems (DDSs) such as diapeutics/theranostics used for simultaneous diagnosis and therapy. Multifunctional radiolabeled NPs with capability of detecting, visualizing and destroying diseased cells with least side effects have been considered as an emerging filed in presentation of the best choice in solving the therapeutic problems. Functionalized magnetic and gold NPs (MNPs and GNPs, respectively) have produced the potential of nanoparticles as sensitive multifunctional probes for molecular imaging, photothermal therapy and drug delivery and targeting.
Methods: In this study, we review the most recent works on the improvement of various techniques for development of radiolabeled magnetic and gold nanoprobes, and discuss the methods for targeted imaging and therapies.
Results: The receptor-specific radiopharmaceuticals have been developed to localized radiotherapy in disease sites. Application of advanced multimodal imaging methods and related modality imaging agents labeled with various radioisotopes (e.g., 125I, 111In, 64Cu, 68Ga, 99mTc) and MNPs/GNPs have significant effects on treatment and prognosis of cancer therapy. In addition, the surface modification with biocompatible polymer such as polyethylene glycol (PEG) have resulted in development of stealth NPs that can evade the opsonization and immune clearance. These long-circulating agents can be decorated with homing agents as well as radioisotopes for targeted imaging and therapy purposes.
Conclusion: The modified MNPs or GNPs have wide applications in concurrent diagnosis and therapy of various malignancies. Once armed with radioisotopes, these nanosystems (NSs) can be exploited for combined multimodality imaging with photothermal/photodynamic therapy while delivering the loaded drugs or genes to the targeted cells/tissues. These NSs will be a game changer in combating various cancers.
Collapse
Affiliation(s)
- Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Akbari Nakhjavani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Molecular Medicine, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK. The evolution of gadolinium based contrast agents: from single-modality to multi-modality. NANOSCALE 2016; 8:10491-10510. [PMID: 27159645 DOI: 10.1039/c6nr00267f] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Ruiqing Liu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Hui Peng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia.
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Andrew K Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
18
|
Abstract
The integration of PET and MRI modalities into a single hybrid imaging system has been demonstrated to synergistically compensate for the limitations of each modality, with the potential to enhance diagnostic accuracy and improve development of therapeutics. To take advantage of the progress of the hybrid PET/MRI hardware, nanoparticle-based probes are being developed for multimodal applications. In this paper, recent advances in the development of nanoparticle-based, multimodal PET/MRI probes are reviewed. Common MRI contrast agents, PET tracers and chelators and surface functionality that comprised PET/MRI nanoprobes reported in the last 10 years are summarized, followed by a description of the physical properties of these probes and their imaging applications.
Collapse
Affiliation(s)
- Joel Garcia
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
19
|
Moon SH, Yang BY, Kim YJ, Hong MK, Lee YS, Lee DS, Chung JK, Jeong JM. Development of a complementary PET/MR dual-modal imaging probe for targeting prostate-specific membrane antigen (PSMA). NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:871-879. [PMID: 26739097 DOI: 10.1016/j.nano.2015.12.368] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023]
Abstract
UNLABELLED We tried to develop a dual-modal PET/MR imaging probe using a straightforward one-pot method by encapsulation with specific amphiphiles. In this study, iron oxide (IO) nanoparticles were encapsulated with three amphiphiles containing PEG, DOTA and the prostate-specific membrane antigen (PSMA)-targeting ligand in aqueous medium. The diameter of the prepared nanoparticle DOTA-IO-GUL was 11.01±1.54nm. DOTA-IO-GUL was labeled with (68)Ga in high efficiency. The DOTA-IO-GUL showed a dose-dependent binding to LNCaP (PSMA positive) cells via a competitive binding study against (125)I-labeled MIP-1072 (PSMA-targeting agent). Additionally, PET and MR imaging results showed PSMA selective uptake by only 22Rv1 (PSMA positive) but not PC-3 (PSMA negative) in dual-tumor xenograft mouse model study. MR imaging showed high resolution, and PET imaging enabled quantification and confirmation of the specificity. In conclusion, we have successfully developed the specific PSMA-targeting IO nanoparticle, DOTA-IO-GUL, as a dual-modality probe for complementary PET/MR imaging. FROM THE CLINICAL EDITOR The combination of using Positron Emission Tomography (PET) and computed tomography (CT) in clinical practice is now the norm. With advances in technology, the next step would be to develop combined PET and Magnetic Resonance (MR) dual-imaging. In this article, the authors described their positive study on the development of a dual-modal PET/MR imaging probe using a prostate cancer model.
Collapse
Affiliation(s)
- Sung-Hyun Moon
- Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Korea
| | - Bo Yeun Yang
- Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ju Kim
- Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kyung Hong
- Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Tang T, Tu C, Chow SY, Leung KH, Du S, Louie AY. Quantitative assessment of binding affinities for nanoparticles targeted to vulnerable plaque. Bioconjug Chem 2015; 26:1086-94. [PMID: 25970303 DOI: 10.1021/acs.bioconjchem.5b00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent successes in targeted immune and cell-based therapies have driven new directions for pharmaceutical research. With the rise of these new therapies there is an unfilled need for companion diagnostics to assess patients' potential for therapeutic response. Targeted nanomaterials have been widely investigated to fill this niche; however, in contrast to small molecule or peptide-based targeted agents, binding affinities are not reported for nanomaterials, and to date there has been no standard, quantitative measure for the interaction of targeted nanoparticle agents with their targets. Without a standard measure, accurate comparisons between systems and optimization of targeting behavior are challenging. Here, we demonstrate a method for quantitative assessment of the binding affinity for targeted nanoparticles to cell surface receptors in living systems and apply it to optimize the development of a novel targeted nanoprobe for imaging vulnerable atherosclerotic plaques. In this work, we developed sulfated dextran-coated iron oxide nanoparticles with specific targeting to macrophages, a cell type whose density strongly correlates with plaque vulnerability. Detailed quantitative, in vitro characterizations of (111)In(3+) radiolabeled probes show high-affinity binding to the macrophage scavenger receptor A (SR-A). Cell uptake studies illustrate that higher surface sulfation levels result in much higher uptake efficiency by macrophages. We use a modified Scatchard analysis to quantitatively describe nanoparticle binding to targeted receptors. This characterization represents a potential new standard metric for targeted nanomaterials.
Collapse
Affiliation(s)
- Tang Tang
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Chuqiao Tu
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sarah Y Chow
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Kevin H Leung
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Siyi Du
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Angelique Y Louie
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
21
|
Abstract
Molecular imaging non-invasively visualizes and characterizes the biologic functions and mechanisms in living organisms at a molecular level. In recent years, advances in imaging instruments, imaging probes, assay methods, and quantification techniques have enabled more refined and reliable images for more accurate diagnoses. Multimodal imaging combines two or more imaging modalities into one system to produce details in clinical diagnostic imaging that are more precise than conventional imaging. Multimodal imaging offers complementary advantages: high spatial resolution, soft tissue contrast, and biological information on the molecular level with high sensitivity. However, combining all modalities into a single imaging probe involves problems yet to be solved due to the requirement of high dose contrast agents for a component of imaging modality with low sensitivity. The introduction of targeting moieties into the probes enhances the specific binding of targeted multimodal imaging modalities and selective accumulation of the imaging agents at a disease site to provide more accurate diagnoses. An extensive list of prior reports on the targeted multimodal imaging probes categorized by each modality is presented and discussed. In addition to accurate diagnosis, targeted multimodal imaging agents carrying therapeutic medications make it possible to visualize the theranostic effect and the progress of disease. This will facilitate the development of an imaging-guided therapy, which will widen the application of the targeted multimodal imaging field to experiments in vivo.
Collapse
|
22
|
Hu Z, Yang W, Liu H, Wang K, Bao C, Song T, Wang J, Tian J. From PET/CT to PET/MRI: advances in instrumentation and clinical applications. Mol Pharm 2014; 11:3798-809. [PMID: 25058336 DOI: 10.1021/mp500321h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multimodality imaging of positron emission tomography/computed tomography (PET/CT) provides both metabolic information and the anatomic structure, which is significantly superior to either PET or CT alone and has greatly improved its clinical applications. Because of the higher soft-tissue contrast of magnetic resonance imaging (MRI) and no extra ionizing radiation, PET/MRI imaging is the hottest topic currently. PET/MRI is swiftly making its way into clinical practice. However, it has many technical difficulties to overcome, such as photomultiplier tubes, which cannot work properly in a magnetic field, and the inability to provide density information on the object for attenuation correction. This paper introduces the technique process of PET/MRI and summarizes its clinical applications, including imaging in oncology, neurology, and cardiology.
Collapse
Affiliation(s)
- Zhenhua Hu
- Institute of Automation, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pierre VC, Allen MJ, Caravan P. Contrast agents for MRI: 30+ years and where are we going? J Biol Inorg Chem 2014; 19:127-31. [PMID: 24414380 PMCID: PMC4075138 DOI: 10.1007/s00775-013-1074-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/08/2013] [Indexed: 12/21/2022]
Abstract
Thirty years ago, Schering filed the first patent application for a contrast agent for magnetic resonance imaging (MRI) covering the forefather of the gadolinium contrast agents and still the most widely used gadolinium probe: gadolinium(III) diethylenetriaminepentaacetate (Magnevist). To date, 11 contrast agents have been approved by the US Food and Drug Administration for intravenous use. Coordination chemists have done a great deal to move the field forward. Our understanding of lanthanide chemistry now makes possible the design of complexes with long rotational correlation times, fast or slow water-exchange rates, high thermodynamic stabilities, and kinetic inertness, leading to sensitive and nontoxic contrast agents. Chemists did not stop there. The last few decades has seen the development of novel classes of probes that yield contrast through different mechanisms, such as paramagnetic chemical exchange saturation transfer agents. Thirty years since the first patent, chemists are still leading the way. The development of high-sensitivity contrast agents for high magnetic fields, safe probes for patients with kidney disorders, and multimodal, targeted, and responsive agents demonstrates that the field of contrast agents for MRI still has much to offer.
Collapse
Affiliation(s)
- Valérie C. Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, MassachusettsGeneral Hospital and Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|