1
|
Wang X, Aleotti M, Hall M, Cong Z. Biocatalytic Strategies for Nitration Reactions. JACS AU 2025; 5:28-41. [PMID: 39886591 PMCID: PMC11775713 DOI: 10.1021/jacsau.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/01/2025]
Abstract
Nitro compounds are key synthetic intermediates used as enabling tools in synthesis and found in a large range of essential compounds, including pharmaceuticals, pesticides, and various organic dyes. Despite recent methodological developments, the industrial preparation of nitro compounds still suffers from harsh reaction conditions, along with poor selectivity and a problematic environmental footprint. Although biological enzymatic methods exist, mild approaches for bionitration are still underexplored. Enzymes, with their exquisite selectivity and compatibility with mild reaction conditions, have the potential to revolutionize the way nitro compounds are prepared. In this perspective, we systematically analyze currently available biological/enzymatic methods, including the oxidation of an amine precursor or methods consisting of direct oxidative nitration and non-oxidative nitration. By examining both the scope and mechanism of these reactions, we aim to present an update on the state-of-the-art while highlighting current challenges in this emerging field. The goal of this perspective is to inspire innovation in enzymatic nitration for sustainable organic synthesis, providing chemists with a valuable guide.
Collapse
Affiliation(s)
- Xiling Wang
- Key
Laboratory of Photoelectric Conversion and Utilization of Solar Energy,
Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels,
Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology,
Chinese Academy of Sciences, Qingdao 266101, China
| | - Matteo Aleotti
- Institute
of Chemistry, University of Graz, Graz 8010, Austria
| | - Mélanie Hall
- Institute
of Chemistry, University of Graz, Graz 8010, Austria
- BioHealth, University of Graz, Graz 8010, Austria
| | - Zhiqi Cong
- Key
Laboratory of Photoelectric Conversion and Utilization of Solar Energy,
Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels,
Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology,
Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
2
|
Tang J, Li Z, Xiao X, Liu B, Huang W, Xie Q, Lan C, Luo S, Tang L. Recent advancements in antibiotics removal by bio-electrochemical systems (BESs): From mechanisms to application of emerging combined systems. WATER RESEARCH 2025; 268:122683. [PMID: 39476544 DOI: 10.1016/j.watres.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
Recent advancements in bio-electrochemical systems (BESs) for antibiotic removal are receiving great attentions due to the electro-active bacteria on the electrode that could elevate the removal efficiency. Enhanced detoxification performance of BESs compared to the traditional biological processes indicates the great potential serving as a sustainable alternative or a pre-/post-processing unit to improve the performance of biological processes. However, the successfully application of BESs to antibiotic-polluted water remediation requires a deeper discussion on their operational performance and emerging coupled systems. In order to address BESs as a practical option for antibiotic removal, we deeply analyze the detoxification mechanism of antibiotic treatment by BESs, involving BES fundamentals, extracellular electron transfer and degradation pathways via functional enzymes of microorganisms, followed by systematic evaluations of the operational conditions. Furthermore, the recently-emerged BESs combined with other techniques for practical applications has been summarized and emphasized. This review further directions the current limitations such as the potential risk of antibiotic resistance genes, etc., and prospects for the attenuation of antibiotics via BESs related techniques, promoting the development of practical application.
Collapse
Affiliation(s)
- Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Zijun Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Baicheng Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Chenrui Lan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shuai Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| |
Collapse
|
3
|
Li RN, Chen SL. Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes. Chembiochem 2024:e202400788. [PMID: 39508533 DOI: 10.1002/cbic.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Oxoiron(IV) complexes are key intermediates in the catalytic reactions of some non-heme diiron enzymes. These enzymes, across various subfamilies, activate dioxygen to generate high-valent diiron-oxo species, which, in turn, drive the activation of substrates and mediate a variety of challenging oxidative transformations. In this review, we summarize the structures, formation mechanisms, and functions of high-valent diiron-oxo intermediates in eight representative diiron enzymes (sMMO, RNR, ToMO, MIOX, PhnZ, SCD1, AlkB, and SznF) spanning five subfamilies. We also categorize and analyze the structural and mechanistic differences among these enzymes.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Jiao R, Zhao G, Zhang T. Structural Insights into the Reaction between Hydrogen Peroxide and Di-iron Complexes at the Ferroxidase Center of Ferritin. Inorg Chem 2024; 63:3359-3365. [PMID: 38315811 DOI: 10.1021/acs.inorgchem.3c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The Fe(II) oxidation mechanism in the ferroxidase center of heavy chain ferritin has been studied extensively. However, the actual production of H2O2 was found to be substantially lower than expected at low flux of Fe(II) to ferritin subunits. Here, we demonstrated that H2O2 could interact with the di-iron nuclear center, leading to the production of hydroxyl radicals and oxygen. Two reaction intermediates were captured in the ferroxidase center by using the time-lapse crystallographic techniques in a shellfish ferritin. The crystal structures revealed the binding of H2O2 as a μ -1,2-peroxo-diferric species and the binding of O2 to the diferric structure. This investigation sheds light on the reaction between the di-iron nuclear center and H2O2 and provides insights for the exploitation of metalloenzymes.
Collapse
Affiliation(s)
- Ruonan Jiao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tuo Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Yang B, Song X, Wang B. DFT mechanistic study of biomimetic diiron complex catalyzed dehydrogenation: Unexpected Fe(III)Fe(III)-1,1-μ-hydroperoxy active species for hydride abstraction. J Inorg Biochem 2024; 251:112426. [PMID: 37980877 DOI: 10.1016/j.jinorgbio.2023.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
The diiron active site is pivotal in catalyzing transformations in both biological and chemical systems. Recently, a range of biomimetic diiron catalysts have been synthesized, drawing inspiration from the active architecture of soluble methane monooxygenase (sMMO). These catalysts have been successfully deployed for the dehydrogenation of indolines, marking a significant advancement in the field. Using density functional theory (DFT) calculations, we have identified a novel mechanistic pathway that governs the dehydrogenation of indolines catalyzed by a biomimetic diiron complex. Specifically, this reaction is facilitated by the transfer of a hybrid atom from the C1 position of the substrate to the distal oxygen atom of the Fe(III)Fe(III)-1,1-μ-hydroperoxy active species. This transfer serves as the rate-limiting step for the heterolytic cleavage of the OO bond, ultimately generating the substrate cation. The mechanism we propose aligns well with mechanistic investigations incorporating both kinetic isotope effect (KIE) measurements and evaluations of stereochemical selectivity. This research contributes to the broader scientific understanding of catalysis involving biomimetic diiron complexes and offers valuable insights into the catalytic behaviors of non-heme diiron metalloenzymes.
Collapse
Affiliation(s)
- Boxuan Yang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xitong Song
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian 351100, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Zheng Z, Xiong J, Bu J, Ren D, Lee YH, Yeh YC, Lin CI, Parry R, Guo Y, Liu HW. Reconstitution of the Final Steps in the Biosynthesis of Valanimycin Reveals the Origin of Its Characteristic Azoxy Moiety. Angew Chem Int Ed Engl 2024; 63:e202315844. [PMID: 37963815 PMCID: PMC10843709 DOI: 10.1002/anie.202315844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Valanimycin is an azoxy-containing natural product isolated from the fermentation broth of Streptomyces viridifaciens MG456-hF10. While the biosynthesis of valanimycin has been partially characterized, how the azoxy group is constructed remains obscure. Herein, the membrane protein VlmO and the putative hydrazine synthetase ForJ from the formycin biosynthetic pathway are demonstrated to catalyze N-N bond formation converting O-(l-seryl)-isobutyl hydroxylamine into N-(isobutylamino)-l-serine. Subsequent installation of the azoxy group is shown to be catalyzed by the non-heme diiron enzyme VlmB in a reaction in which the N-N single bond in the VlmO/ForJ product is oxidized by four electrons to yield the azoxy group. The catalytic cycle of VlmB appears to begin with a resting μ-oxo diferric complex in VlmB, as supported by Mössbauer spectroscopy. This study also identifies N-(isobutylamino)-d-serine as an alternative substrate for VlmB leading to two azoxy regioisomers. The reactions catalyzed by the kinase VlmJ and the lyase VlmK during the final steps of valanimycin biosynthesis are established as well. The biosynthesis of valanimycin was thus fully reconstituted in vitro using the enzymes VlmO/ForJ, VlmB, VlmJ and VlmK. Importantly, the VlmB-catalyzed reaction represents the first example of enzyme-catalyzed azoxy formation and is expected to proceed by an atypical mechanism.
Collapse
Affiliation(s)
- Ziyang Zheng
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Junling Bu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX-78712, USA
| | - Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Chia-I Lin
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
| | - Ronald Parry
- Department of Chemistry, Rice University, Houston, TX-77005, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX-78712, USA
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX-78712, USA
| |
Collapse
|
7
|
Hou TT, Miao LL, Peng JS, Ma L, Huang Q, Liu Y, Wu MR, Ai GM, Liu SJ, Liu ZP. Dirammox Is Widely Distributed and Dependently Evolved in Alcaligenes and Is Important to Nitrogen Cycle. Front Microbiol 2022; 13:864053. [PMID: 35633697 PMCID: PMC9136411 DOI: 10.3389/fmicb.2022.864053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Nitrogen cycle is an essential process for environmental health. Dirammox (direct ammonia oxidation), encoded by the dnfT1RT2ABCD cluster, was a novel pathway for microbial N2 production defined in Alcaligenes ammonioxydans HO-1. Here, a copy of the cluster dnfT1RT2ABCD as a whole was proved to have existed and very conserved in all Alcaligenes genomes. Phylogenetic analyses based on 16S rRNA gene sequences and amino acid sequences of DnfAs, together with G + C content data, revealed that dnf cluster was evolved associated with the members of the genus Alcaligenes. Under 20% O2 conditions, 14 of 16 Alcaligenes strains showed Dirammox activity, which seemed likely taxon-related. However, the in vitro activities of DnfAs catalyzing the direct oxidation of hydroxylamine to N2 were not taxon-related but depended on the contents of Fe and Mn ions. The results indicated that DnfA is necessary but not sufficient for Dirammox activity. The fact that members of the genus Alcaligenes are widely distributed in various environments, including soil, water bodies (both freshwater and seawater), sediments, activated sludge, and animal-plant-associated environments, strongly suggests that Dirammox is important to the nitrogen cycle. In addition, Alcaligenes species are also commonly found in wastewater treatment plants, suggesting that they might be valuable resources for wastewater treatment.
Collapse
Affiliation(s)
- Ting-Ting Hou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Sen Peng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Meng-Ru Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Min Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Song X, Liu J, Wang B. Emergence of Function from Nonheme Diiron Oxygenases: A Quantum Mechanical/Molecular Mechanical Study of Oxygen Activation and Organophosphonate Catabolism Mechanisms by PhnZ. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xitong Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
9
|
Manley OM, Tang H, Xue S, Guo Y, Chang WC, Makris TM. BesC Initiates C-C Cleavage through a Substrate-Triggered and Reactive Diferric-Peroxo Intermediate. J Am Chem Soc 2021; 143:21416-21424. [PMID: 34898198 PMCID: PMC8876372 DOI: 10.1021/jacs.1c11109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BesC catalyzes the iron- and O2-dependent cleavage of 4-chloro-l-lysine to form 4-chloro-l-allylglycine, formaldehyde, and ammonia. This process is a critical step for a biosynthetic pathway that generates a terminal alkyne amino acid which can be leveraged as a useful bio-orthogonal handle for protein labeling. As a member of an emerging family of diiron enzymes that are typified by their heme oxygenase-like fold and a very similar set of coordinating ligands, recently termed HDOs, BesC performs an unusual type of carbon-carbon cleavage reaction that is a significant departure from reactions catalyzed by canonical dinuclear-iron enzymes. Here, we show that BesC activates O2 in a substrate-gated manner to generate a diferric-peroxo intermediate. Examination of the reactivity of the peroxo intermediate with a series of lysine derivatives demonstrates that BesC initiates this unique reaction trajectory via cleavage of the C4-H bond; this process represents the rate-limiting step in a single turnover reaction. The observed reactivity of BesC represents the first example of a dinuclear-iron enzyme that utilizes a diferric-peroxo intermediate to capably cleave a C-H bond as part of its native function, thus circumventing the formation of a high-valent intermediate more commonly associated with substrate monooxygenations.
Collapse
Affiliation(s)
- Olivia M. Manley
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Haoyu Tang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shan Xue
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M. Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States,Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Zhang S, Li X, Wang Y, Yan L, Wei J, Liu Y. Computational Study of the C5-Hydroxylation Mechanism Catalyzed by the Diiron Monooxygenase PtmU3 as Part of the Platensimycin Biosynthesis. Inorg Chem 2021; 60:17783-17796. [PMID: 34762413 DOI: 10.1021/acs.inorgchem.1c02407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PtmU3 is a newly identified nonheme diiron monooxygenase, which installs a C-5 β-hydroxyl group into the C-19 CoA-ester intermediate involved in the biosynthesis of unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 possesses a noncanonical diiron active site architecture of a saturated six-coordinate iron center and lacks the μ-oxo bridge. Although the hydroxylation process is a simple reaction for nonheme mononuclear iron-dependent enzymes, how PtmU3 employs the diiron center to catalyze the H-abstraction and OH-rebound is still unknown. In particular, the electronic characteristic of diiron is also unclear. To understand the catalytic mechanism of PtmU3, we constructed two reactant models in which both the Fe1II-Fe2III-superoxo and Fe1II-Fe2IV═O are considered to trigger the H-abstraction and performed a series of quantum mechanics/molecular mechanics calculations. Our calculation results reveal that PtmU3 is a special monooxygenase, that is, both atoms of the dioxygen molecule can be incorporated into two molecules of the substrate by the successive reactions. In the first-round reaction, PtmU3 uses the Fe1II-Fe2III-superoxo to install a hydroxyl group into the substrate, generating the high-reactive Fe1II-Fe2IV═O complex. In the second-round reaction, the Fe1II-Fe2IV═O species is responsible for the hydroxylation of another molecule of the substrate. In the diiron center, Fe2 adopts the high spin state (S = 5/2) during the catalysis, whereas for Fe1, in addition to its structural role, it may also play an assistant role for Fe1 catalysis. In the two successive OH-installing steps, the H-abstraction is always the rate-liming step. E241 and D308 not only act as bridging ligands to connect two Fe ions but also take part in the electron reorganization. Owing to the high reactivity of Fe1II-Fe2IV═O compared to Fe1II-Fe2III-superoxo, besides the C5-hydroxylation, the C3- or C18-hydroxylation was also calculated to be feasible.
Collapse
Affiliation(s)
- Shiqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Lijuan Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
11
|
Chandra A, Ansari M, Monte‐Pérez I, Kundu S, Rajaraman G, Ray K. Ligand‐Constraint‐Induced Peroxide Activation for Electrophilic Reactivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anirban Chandra
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai Maharashtra 400 076 India
| | - Inés Monte‐Pérez
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Subrata Kundu
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai Maharashtra 400 076 India
| | - Kallol Ray
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
12
|
Chandra A, Ansari M, Monte-Pérez I, Kundu S, Rajaraman G, Ray K. Ligand-Constraint-Induced Peroxide Activation for Electrophilic Reactivity. Angew Chem Int Ed Engl 2021; 60:14954-14959. [PMID: 33843113 PMCID: PMC8252416 DOI: 10.1002/anie.202100438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Indexed: 12/16/2022]
Abstract
μ‐1,2‐peroxo‐bridged diiron(III) intermediates P are proposed as reactive intermediates in various biological oxidation reactions. In sMMO, P acts as an electrophile, and performs hydrogen atom and oxygen atom transfers to electron‐rich substrates. In cyanobacterial ADO, however, P is postulated to react by nucleophilic attack on electrophilic carbon atoms. In biomimetic studies, the ability of μ‐1,2‐peroxo‐bridged dimetal complexes of Fe, Co, Ni and Cu to act as nucleophiles that effect deformylation of aldehydes is documented. By performing reactivity and theoretical studies on an end‐on μ‐1,2‐peroxodicobalt(III) complex 1 involving a non‐heme ligand system, L1, supported on a Sn6O6 stannoxane core, we now show that a peroxo‐bridged dimetal complex can also be a reactive electrophile. The observed electrophilic chemistry, which is induced by the constraints provided by the Sn6O6 core, represents a new domain for metal−peroxide reactivity.
Collapse
Affiliation(s)
- Anirban Chandra
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India
| | - Inés Monte-Pérez
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Subrata Kundu
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
13
|
McBride MJ, Pope SR, Hu K, Okafor CD, Balskus EP, Bollinger JM, Boal AK. Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF. Proc Natl Acad Sci U S A 2021; 118:e2015931118. [PMID: 33468680 PMCID: PMC7848743 DOI: 10.1073/pnas.2015931118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In biosynthesis of the pancreatic cancer drug streptozotocin, the tridomain nonheme-iron oxygenase SznF hydroxylates Nδ and Nω' of Nω-methyl-l-arginine before oxidatively rearranging the triply modified guanidine to the N-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the monoiron cofactor in the enzyme's C-terminal cupin domain, which promotes the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in the N-hydroxylating heme-oxygenase-like (HO-like) central domain. We leveraged our recent observation that the N-oxygenating µ-peroxodiiron(III/III) intermediate can form in the HO-like domain after the apo protein self-assembles its diiron(II/II) cofactor to solve structures of SznF with both of its iron cofactors bound. These structures of a biochemically validated member of the emerging heme-oxygenase-like diiron oxidase and oxygenase (HDO) superfamily with intact diiron cofactor reveal both the large-scale conformational change required to assemble the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability-a trait shared by the other validated HDOs. During cofactor (dis)assembly, a ligand-harboring core helix dynamically (un)folds. The diiron cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulations. The additional carboxylate ligand is conserved in another N-oxygenating HDO but not in two HDOs that cleave carbon-hydrogen and carbon-carbon bonds to install olefins. Among ∼9,600 sequences identified bioinformatically as members of the emerging HDO superfamily, ∼25% conserve this additional carboxylate residue and are thus tentatively assigned as N-oxygenases.
Collapse
Affiliation(s)
- Molly J McBride
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Sarah R Pope
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Kai Hu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - J Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
14
|
Nóbile ML, Stricker AM, Iribarren AM, Lewkowicz ES. Streptomyces griseus: A new biocatalyst with N-oxygenase activity. J Biotechnol 2020; 327:36-42. [PMID: 33373628 DOI: 10.1016/j.jbiotec.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022]
Abstract
Aromatic nitro compounds are key building blocks for many industrial syntheses and are also components of explosives, drugs and pesticides. Due to the environmentally unfriendly experimental conditions involved in their chemical syntheses, industrial processes would benefit from the use of biocatalysts. Among potentially useful enzymes, N-oxygenases, whose role is to oxygenate primary amines, are becoming relevant. These enzymes are involved in different secondary metabolic pathways in Streptomyces and in few other bacteria, forming part of the enzyme pools implicated in antibiotic synthesis. In this work, a group of Streptomyces strains, whose biomass was obtained from simple and novel culture media, were identified as new sources of N-oxygenase activity. Furthermore, the use of unspecific metabolic stimulation strategies allowed substantial improvements in the activity of whole cells as biocatalysts. It is remarkable the 6 to 50-fold increase in nitro compound yields compared to the biotransformation under standard conditions when Streptomyces griseus was the biocatalyst. In addition, biocatalyst substrate acceptance was studied in order to determine the biocatalytic potential of this enzyme.
Collapse
Affiliation(s)
- Matías L Nóbile
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina.
| | - Abigail M Stricker
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| | - Adolfo M Iribarren
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| | - Elizabeth S Lewkowicz
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| |
Collapse
|
15
|
Nachtschatt M, Okada S, Speight R. Integral Membrane Fatty Acid Desaturases: A Review of Biochemical, Structural, and Biotechnological Advances. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Nachtschatt
- Commonwealth Scientific and Industrial Research Organisation Clunies Ross St. Canberra ACT 2601 Australia
- Queensland University of Technology 2 George St. Brisbane QLD 4000 Australia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research Organisation Clunies Ross St. Canberra ACT 2601 Australia
| | - Robert Speight
- Queensland University of Technology 2 George St. Brisbane QLD 4000 Australia
| |
Collapse
|
16
|
|
17
|
Kaniusaite M, Goode RJA, Schittenhelm RB, Makris TM, Cryle MJ. The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of β-Hydroxylation during Glycopeptide Antibiotic Biosynthesis. ACS Chem Biol 2019; 14:2932-2941. [PMID: 31774267 PMCID: PMC6929969 DOI: 10.1021/acschembio.9b00862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
β-Hydroxylation plays an important role in the nonribosomal peptide biosynthesis of many important natural products, including bleomycin, chloramphenicol, and the glycopeptide antibiotics (GPAs). Various oxidative enzymes have been implicated in such a process, with the mechanism of incorporation varying from installation of hydroxyl groups in amino acid precursors prior to adenylation to direct amino acid oxidation during peptide assembly. In this work, we demonstrate the in vitro utility and scope of the unusual nonheme diiron monooxygenase CmlA from chloramphenicol biosynthesis for the β-hydroxylation of a diverse range of carrier protein bound substrates by adapting this enzyme as a non-native trans-acting enzyme within NRPS-mediated GPA biosynthesis. The results from our study show that CmlA has a broad substrate specificity for modified phenylalanine/tyrosine residues as substrates and can be used in a practical strategy to functionally cross complement compatible NRPS biosynthesis pathways in vitro.
Collapse
Affiliation(s)
- Milda Kaniusaite
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL
Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Robert J. A. Goode
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash
Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B. Schittenhelm
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash
Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas M. Makris
- Department
of Chemistry and Biochemistry, University
of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Max J. Cryle
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL
Australia, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
A di-iron protein recruited as an Fe[II] and oxygen sensor for bacterial chemotaxis functions by stabilizing an iron-peroxy species. Proc Natl Acad Sci U S A 2019; 116:14955-14960. [PMID: 31270241 DOI: 10.1073/pnas.1904234116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many bacteria contain cytoplasmic chemoreceptors that lack sensor domains. Here, we demonstrate that such cytoplasmic receptors found in 8 different bacterial and archaeal phyla genetically couple to metalloproteins related to β-lactamases and nitric oxide reductases. We show that this oxygen-binding di-iron protein (ODP) acts as a sensor for chemotactic responses to both iron and oxygen in the human pathogen Treponema denticola (Td). The ODP di-iron site binds oxygen at high affinity to reversibly form an unusually stable μ-peroxo adduct. Crystal structures of ODP from Td and the thermophile Thermotoga maritima (Tm) in the Fe[III]2-O2 2-, Zn[II], and apo states display differences in subunit association, conformation, and metal coordination that indicate potential mechanisms for sensing. In reconstituted systems, iron-peroxo ODP destabilizes the phosphorylated form of the receptor-coupled histidine kinase CheA, thereby providing a biochemical link between oxygen sensing and chemotaxis in diverse prokaryotes, including anaerobes of ancient origin.
Collapse
|
19
|
Manley OM, Fan R, Guo Y, Makris TM. Oxidative Decarboxylase UndA Utilizes a Dinuclear Iron Cofactor. J Am Chem Soc 2019; 141:8684-8688. [DOI: 10.1021/jacs.9b02545] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Olivia M. Manley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas M. Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
20
|
Komor AJ, Jasniewski AJ, Que L, Lipscomb JD. Diiron monooxygenases in natural product biosynthesis. Nat Prod Rep 2018; 35:646-659. [PMID: 29552683 PMCID: PMC6051903 DOI: 10.1039/c7np00061h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2017 The participation of non-heme dinuclear iron cluster-containing monooxygenases in natural product biosynthetic pathways has been recognized only recently. At present, two families have been discovered. The archetypal member of the first family, CmlA, catalyzes β-hydroxylation of l-p-aminophenylalanine (l-PAPA) covalently linked to the nonribosomal peptide synthetase (NRPS) CmlP, thereby effecting the first step in the biosynthesis of chloramphenicol by Streptomyces venezuelae. CmlA houses the diiron cluster in a metallo-β-lactamase protein fold instead of the 4-helix bundle fold of nearly every other diiron monooxygenase. CmlA couples O2 activation and substrate hydroxylation via a structural change caused by formation of the l-PAPA-loaded CmlP:CmlA complex. The other new diiron family is typified by two enzymes, AurF and CmlI, which catalyze conversion of aryl-amine substrates to aryl-nitro products with incorporation of oxygen from O2. AurF from Streptomyces thioluteus catalyzes the formation of p-nitrobenzoate from p-aminobenzoate as a precursor to the biostatic compound aureothin, whereas CmlI from S. venezuelae catalyzes the ultimate aryl-amine to aryl-nitro step in chloramphenicol biosynthesis. Both enzymes stabilize a novel type of peroxo-intermediate as the reactive species. The rare 6-electron N-oxygenation reactions of CmlI and AurF involve two progressively oxidized pathway intermediates. The enzymes optimize efficiency by utilizing one of the reaction pathway intermediates as an in situ reductant for the diiron cluster, while simultaneously generating the next pathway intermediate. For CmlI, this reduction allows mid-pathway regeneration of the peroxo intermediate required to complete the biosynthesis. CmlI ensures specificity by carrying out the multistep aryl-amine oxygenation without dissociating intermediate products.
Collapse
Affiliation(s)
- Anna J Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Andrew J Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
21
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Zhang L, Xu Y, Makris TM, Wang Q. Enhanced Arylamine N-Oxygenase Activity of Polymer–Enzyme Assemblies by Facilitating Electron-Transferring Efficiency. Biomacromolecules 2018; 19:918-925. [DOI: 10.1021/acs.biomac.7b01706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Yanmei Xu
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Thomas M. Makris
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
23
|
Komor AJ, Rivard BS, Fan R, Guo Y, Que L, Lipscomb JD. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates. Biochemistry 2017; 56:4940-4950. [PMID: 28823151 PMCID: PMC5605456 DOI: 10.1021/acs.biochem.7b00695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CmlI catalyzes the six-electron oxidation of an aryl-amine precursor (NH2-CAM) to the aryl-nitro group of chloramphenicol (CAM). The active site of CmlI contains a (hydr)oxo- and carboxylate-bridged dinuclear iron cluster. During catalysis, a novel diferric-peroxo intermediate P is formed and is thought to directly effect oxygenase chemistry. Peroxo intermediates can facilitate at most two-electron oxidations, so the biosynthetic pathway of CmlI must involve at least three steps. Here, kinetic techniques are used to characterize the rate and/or dissociation constants for each step by taking advantage of the remarkable stability of P in the absence of substrates (decay t1/2 = 3 h at 4 °C) and the visible chromophore of the diiron cluster. It is found that diferrous CmlI (CmlIred) can react with NH2-CAM and O2 in either order to form a P-NH2-CAM intermediate. P-NH2-CAM undergoes rapid oxygen transfer to form a diferric CmlI (CmlIox) complex with the aryl-hydroxylamine [NH(OH)-CAM] pathway intermediate. CmlIox-NH(OH)-CAM undergoes a rapid internal redox reaction to form a CmlIred-nitroso-CAM (NO-CAM) complex. O2 binding results in formation of P-NO-CAM that converts to CmlIox-CAM by enzyme-mediated oxygen atom transfer. The kinetic analysis indicates that there is little dissociation of pathway intermediates as the reaction progresses. Reactions initiated by adding pathway intermediates from solution occur much more slowly than those in which the intermediate is generated in the active site as part of the catalytic process. Thus, CmlI is able to preserve efficiency and specificity while avoiding adventitious chemistry by performing the entire six-electron oxidation in one active site.
Collapse
Affiliation(s)
- Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brent S. Rivard
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Wang C, Chen H. Convergent Theoretical Prediction of Reactive Oxidant Structures in Diiron Arylamine Oxygenases AurF and CmlI: Peroxo or Hydroperoxo? J Am Chem Soc 2017; 139:13038-13046. [DOI: 10.1021/jacs.7b06343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Wang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory
of Photochemistry, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- Beijing
National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory
of Photochemistry, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
25
|
Banerjee R, Komor AJ, Lipscomb JD. Use of Isotopes and Isotope Effects for Investigations of Diiron Oxygenase Mechanisms. Methods Enzymol 2017; 596:239-290. [PMID: 28911774 DOI: 10.1016/bs.mie.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Isotope effects of four broad and overlapping categories have been applied to the study of the mechanisms of chemical reaction and regulation of nonheme diiron cluster-containing oxygenases. The categories are: (a) mass properties that allow substrate-to-product conversions to be tracked, (b) atomic properties that allow specialized spectroscopies, (c) mass properties that impact primarily vibrational spectroscopies, and (d) bond dissociation energy shifts that permit dynamic isotope effect studies of many types. The application of these categories of isotope effects is illustrated using the soluble methane monooxygenase system and CmlI, which catalyzes the multistep arylamine to arylnitro conversion in the biosynthetic pathway for chloramphenicol.
Collapse
Affiliation(s)
| | - Anna J Komor
- University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
26
|
Tomita H, Katsuyama Y, Minami H, Ohnishi Y. Identification and characterization of a bacterial cytochrome P450 monooxygenase catalyzing the 3-nitration of tyrosine in rufomycin biosynthesis. J Biol Chem 2017; 292:15859-15869. [PMID: 28774961 DOI: 10.1074/jbc.m117.791269] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/02/2017] [Indexed: 12/22/2022] Open
Abstract
Rufomycin is a circular heptapeptide with anti-mycobacterial activity and is produced by Streptomyces atratus ATCC 14046. Its structure contains three non-proteinogenic amino acids, N-dimethylallyltryptophan, trans-2-crotylglycine, and 3-nitrotyrosine (3NTyr). Although the rufomycin structure was already reported in the 1960s, its biosynthesis, including 3NTyr generation, remains unclear. To elucidate the rufomycin biosynthetic pathway, we assembled a draft genome sequence of S. atratus and identified the rufomycin biosynthetic gene cluster (ruf cluster), consisting of 20 ORFs (rufA-rufT). We found a putative heptamodular nonribosomal peptide synthetase encoded by rufT, a putative tryptophan N-dimethylallyltransferase encoded by rufP, and a putative trimodular type I polyketide synthase encoded by rufEF Moreover, the ruf cluster contains an apparent operon harboring putative cytochrome P450 (rufO) and nitric oxide synthase (rufN) genes. A similar operon, txtDE, is responsible for the formation of 4-nitrotryptophan in thaxtomin biosynthesis; the cytochrome P450 TxtE catalyzes the 4-nitration of Trp. Therefore, we hypothesized that RufO should catalyze the Tyr 3-nitration. Disruption of rufO abolished rufomycin production by S. atratus, which was restored when 3NTyr was added to the culture medium of the disruptant. Recombinant RufO protein exhibited Tyr 3-nitration activity both in vitro and in vivo Spectroscopic analysis further revealed that RufO recognizes Tyr as the substrate with a dissociation constant of ∼0.1 μm These results indicate that RufO is an unprecedented cytochrome P450 that catalyzes Tyr nitration. Taken together with the results of an in silico analysis of the ruf cluster, we propose a rufomycin biosynthetic pathway in S. atratus.
Collapse
Affiliation(s)
- Hiroya Tomita
- From the Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657.,the Japan Science and Technology Agency (JST), CREST, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, and
| | - Yohei Katsuyama
- From the Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, .,the Japan Science and Technology Agency (JST), CREST, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, and
| | - Hiromichi Minami
- the Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Yasuo Ohnishi
- From the Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, .,the Japan Science and Technology Agency (JST), CREST, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, and
| |
Collapse
|
27
|
Jasniewski AJ, Komor AJ, Lipscomb JD, Que L. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. J Am Chem Soc 2017; 139:10472-10485. [PMID: 28673082 PMCID: PMC5568637 DOI: 10.1021/jacs.7b05389] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlIP). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlIP is not consistent with the μ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as μ-η2:η1 based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlIP. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm-1, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a μ-1,1-peroxo ligand that is bound symmetrically between the irons. The (μ-oxo)(μ-1,1-peroxo)diferric core structure associated with CmlIP is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
28
|
A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nat Chem Biol 2017; 13:916-921. [DOI: 10.1038/nchembio.2421] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/12/2017] [Indexed: 12/25/2022]
|
29
|
Scott TA, Heine D, Qin Z, Wilkinson B. An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat Commun 2017; 8:15935. [PMID: 28649989 PMCID: PMC5490192 DOI: 10.1038/ncomms15935] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/15/2017] [Indexed: 12/15/2022] Open
Abstract
β-Lactone natural products occur infrequently in nature but possess a variety of potent and valuable biological activities. They are commonly derived from β-hydroxy-α-amino acids, which are themselves valuable chiral building blocks for chemical synthesis and precursors to numerous important medicines. However, despite a number of excellent synthetic methods for their asymmetric synthesis, few effective enzymatic tools exist for their preparation. Here we report cloning of the biosynthetic gene cluster for the β-lactone antibiotic obafluorin and delineate its biosynthetic pathway. We identify a nonribosomal peptide synthetase with an unusual domain architecture and an L-threonine:4-nitrophenylacetaldehyde transaldolase responsible for (2S,3R)-2-amino-3-hydroxy-4-(4-nitrophenyl)butanoate biosynthesis. Phylogenetic analysis sheds light on the evolutionary origin of this rare enzyme family and identifies further gene clusters encoding L-threonine transaldolases. We also present preliminary data suggesting that L-threonine transaldolases might be useful for the preparation of L-threo-β-hydroxy-α-amino acids.
Collapse
Affiliation(s)
- Thomas A. Scott
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel Heine
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Zhiwei Qin
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
30
|
Kudo K, Ozaki T, Shin-ya K, Nishiyama M, Kuzuyama T. Biosynthetic Origin of the Hydroxamic Acid Moiety of Trichostatin A: Identification of Unprecedented Enzymatic Machinery Involved in Hydroxylamine Transfer. J Am Chem Soc 2017; 139:6799-6802. [DOI: 10.1021/jacs.7b02071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kei Kudo
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taro Ozaki
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Park K, Li N, Kwak Y, Srnec M, Bell CB, Liu LV, Wong SD, Yoda Y, Kitao S, Seto M, Hu M, Zhao J, Krebs C, Bollinger JM, Solomon EI. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF. J Am Chem Soc 2017; 139:7062-7070. [PMID: 28457126 DOI: 10.1021/jacs.7b02997] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binuclear non-heme iron enzymes activate O2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. This activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States.,Department of Chemistry, KAIST , Daejeon 34141, Republic of Korea
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Yeonju Kwak
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Martin Srnec
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Caleb B Bell
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Lei V Liu
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Shaun D Wong
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | | | - Shinji Kitao
- Research Reactor Institute, Kyoto University , Kumatori-cho, Osaka 590-0494, Japan
| | - Makoto Seto
- Research Reactor Institute, Kyoto University , Kumatori-cho, Osaka 590-0494, Japan
| | - Michael Hu
- Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford, California 94309, United States
| |
Collapse
|
32
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
33
|
In-crystal reaction cycle of a toluene-bound diiron hydroxylase. Nature 2017; 544:191-195. [PMID: 28346937 DOI: 10.1038/nature21681] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O2, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures. Here we show the structure of a diiron hydroxylase intermediate formed during a reaction with toluene. Density functional theory geometry optimizations of an active site model reveal that the intermediate is an arylperoxo Fe2+/Fe3+ species with delocalized aryl radical character. The structure suggests that a carboxylate ligand of the diiron centre may trigger homolytic cleavage of the O-O bond by transferring a proton from a metal-bound water. Our work provides the spatial and electronic constraints needed to propose a comprehensive mechanism for diiron enzyme arene hydroxylation that accounts for many prior experimental results.
Collapse
|
34
|
Wise CE, Grant JL, Amaya JA, Ratigan SC, Hsieh CH, Manley OM, Makris TM. Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis. J Biol Inorg Chem 2016; 22:221-235. [DOI: 10.1007/s00775-016-1425-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
|
35
|
Jasniewski AJ, Knoot CJ, Lipscomb JD, Que L. A Carboxylate Shift Regulates Dioxygen Activation by the Diiron Nonheme β-Hydroxylase CmlA upon Binding of a Substrate-Loaded Nonribosomal Peptide Synthetase. Biochemistry 2016; 55:5818-5831. [PMID: 27668828 PMCID: PMC5258830 DOI: 10.1021/acs.biochem.6b00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first step in the nonribosomal peptide synthetase (NRPS)-based biosynthesis of chloramphenicol is the β-hydroxylation of the precursor l-p-aminophenylalanine (l-PAPA) catalyzed by the monooxygenase CmlA. The active site of CmlA contains a dinuclear iron cluster that is reduced to the diferrous state (WTR) to initiate O2 activation. However, rapid O2 activation occurs only when WTR is bound to CmlP, the NRPS to which l-PAPA is covalently attached. Here the X-ray crystal structure of WTR is reported, which is very similar to that of the as-isolated diferric enzyme in which the irons are coordinately saturated. X-ray absorption spectroscopy is used to investigate the WTR cluster ligand structure as well as the structures of WTR in complex with a functional CmlP variant (CmlPAT) with and without l-PAPA attached. It is found that formation of the active WTR:CmlPAT-l-PAPA complex converts at least one iron of the cluster from six- to five-coordinate by changing a bidentately bound amino acid carboxylate to monodentate on Fe1. The only bidentate carboxylate in the structure of WTR is E377. The crystal structure of the CmlA variant E377D shows only monodentate carboxylate coordination. Reduced E377D reacts rapidly with O2 in the presence or absence of CmlPAT-l-PAPA, showing loss of regulation. However, this variant fails to catalyze hydroxylation, suggesting that E377 has the dual role of coupling regulation of O2 reactivity with juxtaposition of the substrate and the reactive oxygen species. The carboxylate shift in response to substrate binding represents a novel regulatory strategy for oxygen activation in diiron oxygenases.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Cory J. Knoot
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
36
|
Jasniewski AJ, Engstrom LM, Vu VV, Park MH, Que L. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. J Biol Inorg Chem 2016; 21:605-18. [PMID: 27380180 PMCID: PMC4990465 DOI: 10.1007/s00775-016-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Lisa M Engstrom
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Van V Vu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Solomon EI, Park K. Structure/function correlations over binuclear non-heme iron active sites. J Biol Inorg Chem 2016; 21:575-88. [PMID: 27369780 PMCID: PMC5010389 DOI: 10.1007/s00775-016-1372-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.
Collapse
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
38
|
Celebrating Ed Solomon. J Biol Inorg Chem 2016. [DOI: 10.1007/s00775-016-1383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|