1
|
Zhang B, Arcinas AJ, Radle MI, Silakov A, Booker SJ, Krebs C. First Step in Catalysis of the Radical S-Adenosylmethionine Methylthiotransferase MiaB Yields an Intermediate with a [3Fe-4S] 0-Like Auxiliary Cluster. J Am Chem Soc 2020; 142:1911-1924. [PMID: 31899624 PMCID: PMC7008301 DOI: 10.1021/jacs.9b11093] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The enzyme MiaB catalyzes the attachment of a methylthio (-SCH3) group at the C2 position of N6-(isopentenyl)adenosine (i6A) in the final step of the biosynthesis of the hypermodified tRNA nucleotide 2-methythio-N6-(isopentenyl)adenosine (ms2i6A). MiaB belongs to the expanding subgroup of enzymes of the radical S-adenosylmethionine (SAM) superfamily that harbor one or more auxiliary [4Fe-4S] clusters in addition to the [4Fe-4S] cluster that all family members require for the reductive cleavage of SAM to afford the common 5'-deoxyadenosyl 5'-radical (5'-dA•) intermediate. While the role of the radical SAM cluster in generating the 5'-dA• is well understood, the detailed role of the auxiliary cluster, which is essential for MiaB catalysis, remains unclear. It has been proposed that the auxiliary cluster may serve as a coordination site for exogenously derived sulfur destined for attachment to the substrate or that the cluster itself provides the sulfur atom and is sacrificed during turnover. In this work, we report spectroscopic and biochemical evidence that the auxiliary [4Fe-4S]2+ cluster in Bacteroides thetaiotaomicron (Bt) MiaB is converted to a [3Fe-4S]0-like cluster during the methylation step of catalysis. Mössbauer characterization of the MiaB [3Fe-4S]0-like cluster revealed unusual spectroscopic properties compared to those of other well-characterized cuboidal [3Fe-4S]0 clusters. Specifically, the Fe sites of the mixed-valent moiety do not have identical Mössbauer parameters. Our results support a mechanism where the auxiliary [4Fe-4S] cluster is the direct sulfur source during catalysis.
Collapse
|
2
|
A trade-off for covalent and intercalation binding modes: a case study for Copper (II) ions and singly modified DNA nucleoside. Sci Rep 2019; 9:12602. [PMID: 31467417 PMCID: PMC6715747 DOI: 10.1038/s41598-019-48935-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/29/2019] [Indexed: 12/03/2022] Open
Abstract
Selective binding to nucleic acids and, more generally, to biopolymers, very often requires at a minimum the presence of specific functionalities and precise spatial arrangement. DNA can fold into defined 3D structures upon binding to metal centers and/or lanthanides. Binding efficiency can be boosted by modified nucleosides incorporated into DNA sequences. In this work the high selectivity of modified nucleosides towards copper (II) ions, when used in the monomeric form, is unexpectedly and drastically reduced upon being covalently attached to the DNA sequence in single-site scenario. Surprisingly, such selectivity is partially retained upon non-covalent (i.e. intercalation) mixture formed by native DNA duplex and a nucleoside in the monomeric form. Exploiting the electron spin properties of such different and rich binding mode scenarios, 1D/2D pulsed EPR experiments have been used and tailored to differentiate among the different modes. An unusual correlation of dispersion of hyperfine couplings and strength of the binding mode(s) is described.
Collapse
|
3
|
Wang B, Blaszczyk A, Knox HL, Zhou S, Blaesi EJ, Krebs C, Wang RX, Booker SJ. Stereochemical and Mechanistic Investigation of the Reaction Catalyzed by Fom3 from Streptomyces fradiae, a Cobalamin-Dependent Radical S-Adenosylmethionine Methylase. Biochemistry 2018; 57:4972-4984. [PMID: 30036047 PMCID: PMC6554712 DOI: 10.1021/acs.biochem.8b00693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fom3, a cobalamin-dependent radical S-adenosylmethionine (SAM) methylase, has recently been shown to catalyze the methylation of carbon 2″ of cytidylyl-2-hydroxyethylphosphonate (HEP-CMP) to form cytidylyl-2-hydroxypropylphosphonate (HPP-CMP) during the biosynthesis of fosfomycin, a broad-spectrum antibiotic. It has been hypothesized that a 5'-deoxyadenosyl 5'-radical (5'-dA•) generated from the reductive cleavage of SAM abstracts a hydrogen atom from HEP-CMP to prime the substrate for addition of a methyl group from methylcobalamin (MeCbl); however, the mechanistic details of this reaction remain elusive. Moreover, it has been reported that Fom3 catalyzes the methylation of HEP-CMP to give a mixture of the ( S)-HPP and ( R)-HPP stereoisomers, which is rare for an enzyme-catalyzed reaction. Herein, we describe a detailed biochemical investigation of a Fom3 that is purified with 1 equiv of its cobalamin cofactor bound, which is almost exclusively in the form of MeCbl. Electron paramagnetic resonance and Mössbauer spectroscopies confirm that Fom3 contains one [4Fe-4S] cluster. Using deuterated enantiomers of HEP-CMP, we demonstrate that the 5'-dA• generated by Fom3 abstracts the C2″- pro-R hydrogen of HEP-CMP and that methyl addition takes place with inversion of configuration to yield solely ( S)-HPP-CMP. Fom3 also sluggishly converts cytidylyl-ethylphosphonate to the corresponding methylated product but more readily acts on cytidylyl-2-fluoroethylphosphonate, which exhibits a lower C2″ homolytic bond-dissociation energy. Our studies suggest a mechanism in which the substrate C2″ radical, generated upon hydrogen atom abstraction by the 5'-dA•, directly attacks MeCbl to transfer a methyl radical (CH3•) rather than a methyl cation (CH3+), directly forming cob(II)alamin in the process.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anthony Blaszczyk
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hayley L. Knox
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shengbin Zhou
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth J. Blaesi
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Roy X. Wang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Squire J. Booker
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Huang XL. Hydrolysis of Phosphate Esters Catalyzed by Inorganic Iron Oxide Nanoparticles Acting as Biocatalysts. ASTROBIOLOGY 2018; 18:294-310. [PMID: 29489387 DOI: 10.1089/ast.2016.1628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus ester hydrolysis is one of the key chemical processes in biological systems, including signaling, free-energy transaction, protein synthesis, and maintaining the integrity of genetic material. Hydrolysis of this otherwise kinetically stable phosphoester and/or phosphoanhydride bond is induced by enzymes such as purple acid phosphatase. Here, I report that, as in previously reported aged inorganic iron ion solutions, the iron oxide nanoparticles in the solution, which are trapped in a dialysis membrane tube filled with the various iron oxides, significantly promote the hydrolysis of the various phosphate esters, including the inorganic polyphosphates, with enzyme-like kinetics. This observation, along with those of recent studies of iron oxide, vanadium pentoxide, and molybdenum trioxide nanoparticles that behave as mimics of peroxidase, bromoperoxidase, and sulfite oxidase, respectively, indicates that the oxo-metal bond in the oxide nanoparticles is critical for the function of these corresponding natural metalloproteins. These inorganic biocatalysts challenge the traditional concept of replicator-first scenarios and support the metabolism-first hypothesis. As biocatalysts, these inorganic nanoparticles with enzyme-like activity may work in natural terrestrial environments and likely were at work in early Earth environments as well. They may have played an important role in the C, H, O, S, and P metabolic pathway with regard to the emergence and early evolution of life. Key Words: Enzyme-Hydrolysis-Iron oxide-Nanoparticles-Origin of life-Phosphate ester. Astrobiology 18, 294-310.
Collapse
|
5
|
Molle T, Moreau Y, Clemancey M, Forouhar F, Ravanat JL, Duraffourg N, Fourmond V, Latour JM, Gambarelli S, Mulliez E, Atta M. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity. Biochemistry 2016; 55:5798-5808. [PMID: 27677419 DOI: 10.1021/acs.biochem.6b00597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS- ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Thibaut Molle
- Laboratoire de Chimie et Biologie des Métaux, team "Biocatalyse", Biosciences & Biotechnology Institute of Grenoble (BIG), BIG/LCBM/Biocat, UMR 5249 CEA/CNRS/UGA, CEA/Grenoble, 17, rue des Martyrs, Grenoble, France
| | - Yohann Moreau
- Laboratoire de Chimie et Biologie des Métaux, team "MCT" Biosciences & Biotechnology Institute of Grenoble (BIG), BIG/LCBM/MCT, UMR 5249 CEA/CNRS/UGA, CEA/Grenoble, 17, rue des Martyrs, Grenoble, France
| | - Martin Clemancey
- Laboratoire de Chimie et Biologie des Métaux, team "PMB" Biosciences & Biotechnology Institute of Grenoble (BIG), BIG/LCBM/PMB, UMR 5249 CEA/CNRS/UGA, CEA/Grenoble, 17, rue des Martyrs, Grenoble, France
| | - Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University , New York, New York 10027, United States
| | - Jean-Luc Ravanat
- University Grenoble Alpes , INAC-SCIB, F-38000 Grenoble, France.,CEA , INAC-SyMMES, F-38000 Grenoble, France
| | - Nicolas Duraffourg
- Laboratoire de Chimie et Biologie des Métaux, team "Affond" Biosciences & Biotechnology Institute of Grenoble (BIG), BIG/LCBM/Affond, UMR 5249 CEA/CNRS/UGA, CEA/Grenoble, 17, rue des Martyrs, Grenoble, France
| | - Vincent Fourmond
- Aix-Marseille University , CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | - Jean-Marc Latour
- Laboratoire de Chimie et Biologie des Métaux, team "PMB" Biosciences & Biotechnology Institute of Grenoble (BIG), BIG/LCBM/PMB, UMR 5249 CEA/CNRS/UGA, CEA/Grenoble, 17, rue des Martyrs, Grenoble, France
| | - Serge Gambarelli
- University Grenoble Alpes, INAC, SCIB/LRM , F-38000 Grenoble, France.,CEA, INAC, SCIB/LRM, F-38054 Grenoble, France
| | - Etienne Mulliez
- Laboratoire de Chimie et Biologie des Métaux, team "Biocatalyse", Biosciences & Biotechnology Institute of Grenoble (BIG), BIG/LCBM/Biocat, UMR 5249 CEA/CNRS/UGA, CEA/Grenoble, 17, rue des Martyrs, Grenoble, France
| | - Mohamed Atta
- Laboratoire de Chimie et Biologie des Métaux, team "Biocatalyse", Biosciences & Biotechnology Institute of Grenoble (BIG), BIG/LCBM/Biocat, UMR 5249 CEA/CNRS/UGA, CEA/Grenoble, 17, rue des Martyrs, Grenoble, France
| |
Collapse
|
6
|
Maiocco SJ, Arcinas AJ, Landgraf BJ, Lee KH, Booker SJ, Elliott SJ. Transformations of the FeS Clusters of the Methylthiotransferases MiaB and RimO, Detected by Direct Electrochemistry. Biochemistry 2016; 55:5531-5536. [PMID: 27598886 PMCID: PMC5461913 DOI: 10.1021/acs.biochem.6b00670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methylthiotransferases (MTTases) represent a subfamily of the S-adenosylmethionine (AdoMet) radical superfamily of enzymes that catalyze the attachment of a methylthioether (-SCH3) moiety on unactivated carbon centers. These enzymes contain two [4Fe-4S] clusters, one of which participates in the reductive fragmentation of AdoMet to generate a 5'-deoxyadenosyl 5'-radical and the other of which, termed the auxiliary cluster, is believed to play a central role in constructing the methylthio group and attaching it to the substrate. Because the redox properties of the bound cofactors within the AdoMet radical superfamily are so poorly understood, we have examined two MTTases in parallel, MiaB and RimO, using protein electrochemistry. We resolve the redox potentials of each [4Fe-4S] cluster, show that the auxiliary cluster has a potential higher than that of the AdoMet-binding cluster, and demonstrate that upon incubation of either enzyme with AdoMet, a unique low-potential state of the enzyme emerges. Our results are consistent with a mechanism whereby the auxiliary cluster is transiently methylated during substrate methylthiolation.
Collapse
Affiliation(s)
- Stephanie J Maiocco
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | | | | | | | - Sean J Elliott
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|