1
|
Beigi S, Salehzadeh A, Habibollahi H, Shandiz SAS, Safa F. The Effect of ZnO Nanoparticles Functionalized with Glutamine and Conjugated with Thiosemicarbazide on Triggering of Apoptosis in the Adenocarcinoma Gastric Cell Line. Adv Biomed Res 2024; 13:72. [PMID: 39434942 PMCID: PMC11493220 DOI: 10.4103/abr.abr_412_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Gastric carcinoma is the fourth most common malignancy worldwide. Conjugation of metal nanoparticles with thiosemicarbazones has shown considerable anti-cancer potential. Materials and Methods Zinc oxide nanoparticles (ZnO NPs) were synthesized, functionalized by glutamine, and conjugated with thiosemicarbazide (ZnO@Gln-TSC). Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy imaging, energy-dispersive X-ray, DLS, and zeta potential were used to characterize the NPs. The toxicity of ZnO NPs, TSC, ZnO@Gln-TSC NPs, and oxaliplatin in AGS cells and ZnO NPs and ZnO@Gln-TSC NPs in HEK293 cells was investigated by MTT assay. Cell apoptosis was evaluated by flow cytometry, caspase-3 activity, and Hoechst staining assays. The intra-cellular reactive oxygen species level and expression level of the CASP3 gene in AGS cells treated with ZnO@Gln-TSC NPs were evaluated. Results The NPs were in the size range of 20 to 70 nm. The DLS and zeta potential were 374 nm and -31.7 mV, respectively. In MTT, the IC50 of ZnO, TSC, oxaliplatin, and ZnO@Gln-TSC NPs for AGS cells were 130, 80.5, 67.7, and 9.8 μg/mL, respectively, and the IC50 of ZnO and ZnO@Gln-TSC NPs for HEK293 cells were 215 and 150.5 μg/mL, respectively. Flow cytometry showed higher apoptosis in the cell treated with the NPs and TSC. Apoptotic features, including cell shrinkage, were recognized. A significant increase of 5.9 folds in the level of ROS was noticed. The activity of caspase-3 and the expression level of the CASP3 gene were increased by1.83 and 1.6 folds after exposure to ZnO@Gln-TSC NPs, respectively. Conclusions This study revealed the anti-cancer potential of ZnO@Gln-TSC NPs to be used for gastric cancer treatment after further in vitro and in vivo assays.
Collapse
Affiliation(s)
- Sadaf Beigi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hadi Habibollahi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Fariba Safa
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
2
|
Transition Metal Complexes of Thiosemicarbazides, Thiocarbohydrazides, and Their Corresponding Carbazones with Cu(I), Cu(II), Co(II), Ni(II), Pd(II), and Ag(I)-A Review. Molecules 2023; 28:molecules28041808. [PMID: 36838796 PMCID: PMC9962565 DOI: 10.3390/molecules28041808] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
This review focuses on some interesting and recent applications of transition metals towards the complexation of thiosemicarbazides, thiocarbohydrazides, and their corresponding carbazones. We started the review with a description of the chosen five metals, including Cu[Cu(I), Cu(II], Co(II), Ni(II), Pd(II), and Ag(I) and their electronic configurations. The stability of the assigned complexes was also discussed. We shed light on different routes describing the synthesis of these ligands. We also reported on different examples of the synthesis of Cu(I), Cu(II), Co(II), Ni(II), Ag(I), and Pd(II) of thiosemicarbazide and thiocarbohydrazide complexes (until 2022). This review also deals with a summary of the fruitful use of metal complexes of thiosemicarbazones and thiocarbazones ligands in the field of catalysis. Finally, this recent review focuses on the applications of these complexes related to their biological importance.
Collapse
|
3
|
Fernández-Fariña S, Velo-Heleno I, Carballido R, Martínez-Calvo M, Barcia R, Palacios Ò, Capdevila M, González-Noya AM, Pedrido R. Exploring the Biological Properties of Zn(II) Bisthiosemicarbazone Helicates. Int J Mol Sci 2023; 24:ijms24032246. [PMID: 36768568 PMCID: PMC9916454 DOI: 10.3390/ijms24032246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The design of artificial helicoidal molecules derived from metal ions with biological properties is one of the objectives within metallosupramolecular chemistry. Herein, we report three zinc helicates derived from a family of bisthiosemicarbazone ligands with different terminal groups, Zn2(LMe)2∙2H2O 1, Zn2(LPh)2∙2H2O 2 and Zn2(LPhNO2)23, obtained by an electrochemical methodology. These helicates have been fully characterized by different techniques, including X-ray diffraction. Biological studies of the zinc(II) helicates such as toxicity assays with erythrocytes and interaction studies with proteins and oligonucleotides were performed, demonstrating in all cases low toxicity and an absence of covalent interaction with the proteins and oligonucleotides. The in vitro cytotoxicity of the helicates was tested against MCF-7 (human breast carcinoma), A2780 (human ovarian carcinoma cells), NCI-H460 (human lung carcinoma cells) and MRC-5 (normal human lung fibroblasts), comparing the IC50 values with cisplatin. We will try to demonstrate if the terminal substituent of the ligand precursor exerts any effect in toxicity or in the antitumor activity of the zinc helicates.
Collapse
Affiliation(s)
- Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (S.F.-F.); (A.M.G.-N.)
| | - Isabel Velo-Heleno
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rocío Carballido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Martínez-Calvo
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Òscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (S.F.-F.); (A.M.G.-N.)
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
A Novel Copper Oxide Nanoparticle Conjugated by Thiosemicarbazone Promote Apoptosis in Human Breast Cancer Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Haseloer A, Lützenburg T, Strache JP, Neudörfl J, Neundorf I, Klein A. Building up Pt II -Thiosemicarbazone-Lysine-sC18 Conjugates. Chembiochem 2021; 22:694-704. [PMID: 32909347 PMCID: PMC7894172 DOI: 10.1002/cbic.202000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Three chiral tridentate N^N^S coordinating pyridine-carbaldehyde (S)-N4-(α-methylbenzyl)thiosemicarbazones (HTSCmB) were synthesised along with lysine-modified derivatives. One of them was selected and covalently conjugated to the cell-penetrating peptide sC18 by solid-phase peptide synthesis. The HTSCmB model ligands, the HTSCLp derivatives and the peptide conjugate rapidly and quantitatively form very stable PtII chlorido complexes [Pt(TSC)Cl] when treated with K2 PtCl4 in solution. The Pt(CN) derivatives were obtained from one TSCmB model complex and the peptide conjugate complex through Cl- →CN- exchange. Ligands and complexes were characterised by NMR, IR spectroscopy, HR-ESI-MS and single-crystal XRD. Intriguingly, no decrease in cell viability was observed when testing the biological activity of the lysine-tagged HdpyTSCLp, its sC18 conjugate HdpyTSCL-sC18 or the PtCl and Pt(CN) conjugate complexes in three different cell lines. Thus, given the facile and effective preparation of such Pt-TSC-peptide conjugates, these systems might pave the way for future use in late-stage labelling with Pt radionuclides and application in nuclear medicine.
Collapse
Affiliation(s)
- Alexander Haseloer
- Universität zu Köln, Department für ChemieInstitut für Anorganische ChemieGreinstraße 650939KölnGermany
| | - Tamara Lützenburg
- Universität zu KölnDepartment für Chemie, Institut für BiochemieZülpicher Strasse 47a50674KölnGermany
| | - Joss Pepe Strache
- Universität zu Köln, Department für ChemieInstitut für Anorganische ChemieGreinstraße 650939KölnGermany
| | - Jörg Neudörfl
- Universität zu KölnDepartment für Chemie, Institut für Organische ChemieGreinstraße 450939KölnGermany
| | - Ines Neundorf
- Universität zu KölnDepartment für Chemie, Institut für BiochemieZülpicher Strasse 47a50674KölnGermany
| | - Axel Klein
- Universität zu Köln, Department für ChemieInstitut für Anorganische ChemieGreinstraße 650939KölnGermany
| |
Collapse
|
6
|
In Vitro Efficacies, ADME, and Pharmacokinetic Properties of Phenoxazine Derivatives Active against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01010-19. [PMID: 31427302 DOI: 10.1128/aac.01010-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a leading infectious killer globally, demanding the urgent development of faster-acting drugs with novel mechanisms of action. Riminophenazines such as clofazimine are clinically efficacious against both drug-susceptible and drug-resistant strains of M. tuberculosis We determined the in vitro anti-M. tuberculosis activities, absorption, distribution, metabolism, and excretion properties, and in vivo mouse pharmacokinetics of a series of structurally related phenoxazines. One of these, PhX1, displayed promising drug-like properties and potent in vitro efficacy, supporting its further investigation in an M. tuberculosis-infected animal model.
Collapse
|
7
|
Habibi A, Sadat Shandiz SA, Salehzadeh A, Moradi-Shoeili Z. Novel pyridinecarboxaldehyde thiosemicarbazone conjugated magnetite nanoparticulates (MNPs) promote apoptosis in human lung cancer A549 cells. J Biol Inorg Chem 2019; 25:13-22. [PMID: 31630253 DOI: 10.1007/s00775-019-01728-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
The present study highlights the apoptotic activity of magnetic Fe3O4 nanoparticulates functionalized by glutamic acid and 2-pyridinecarboxaldehyde thiosemicarbazone (PTSC) toward human lung epithelial carcinoma A549 cell line. To this aim, the Fe3O4 nanoparticulates were prepared using co-precipitation method. Then, the glutamic acid and Fe3O4 nanoparticulates were conjugated to each other. The product was further functionalized with bio-reactive PTSC moiety. In addition, the synthesized Fe3O4@Glu/PTSC nanoparticulates were characterized by physico-chemical techniques including scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and zeta potential analysis. The effects of in vitro cell viability in Fe3O4@Glu/PTSC nanoparticulate indicated the anti-proliferative properties in a dose-dependent manner (IC50 = 135.6 µM/mL). The high selectivity for tumor cells and far below of activity in HEK293 non-tumorigenic cells is considered as an important feature for this complex (SI, 3.48). Based on the results, PTSC failed to reveal any activity against A549 cells alone. However, Fe3O4 nanoparticulates had some effects in inhibiting the growth of lung cancer cell. Furthermore, Bax and Bcl-2 gene expressions were quantified by real-time PCR method. The expression of Bax increased 1.62-fold, while the expression of Bcl-2 decreased 0.76-fold at 135.6 µM/mL concentration of Fe3O4@Glu/PTSC compared to untreated A549 cells. Furthermore, the Fe3O4@Glu/PTSC nanoparticulate-inducing apoptosis properties were evaluated by Hoechst 33258 staining, Caspase-3 activation assay and Annexin V/propidium iodide staining. The results of the present study suggest that Fe3O4@Glu/PTSC nanoparticulates exhibit effective anti-cancer activity against lung cancer cells.
Collapse
Affiliation(s)
- Alireza Habibi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| |
Collapse
|
8
|
Synthesis and characterisations of copper(II) complexes of 5-methoxyisatin thiosemicarbazones: Effect of N-terminal substitution on DNA/protein binding and biological activities. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Akladios FN, Andrew SD, Boog SJ, de Kock C, Haynes RK, Parkinson CJ. The Evaluation of Metal Co-ordinating Bis-Thiosemicarbazones as Potential Anti-malarial Agents. Med Chem 2019; 15:51-58. [DOI: 10.2174/1573406414666180525132204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/06/2018] [Accepted: 04/22/2018] [Indexed: 11/22/2022]
Abstract
Background:The emergence of resistance to the artemisinins which are the current mainstays for antimalarial chemotheraphy has created an environment where the development of new drugs acting in a mechanistally discrete manner is a priority.Objective:The goal of this work was to synthesize ane evaluate bis-thiosemicarbazones as potential antimalarial agents. </P><P> Methods: Fifteen compounds were generated using two condensation protocols and evaluated in vitro against the NF54 (CQ sensitive) strain of Plasmodium falciparum. A preliminary assessment of the potential for human toxicity was conducted in vitro against the MRC5 human lung fibroblast line.Results:The activity of the bis-thiosemicarbazones was highly dependent on the nature of the arene at the core of the structure. The inclusion of a non-coordinating benzene core resulted in inactive compounds, while the inclusion of a pyridyl core resulted in compounds of moderate or potent antimalarial activity (4 compounds showing IC50 < 250 nM).Conclusion:Bis-thiosemicarbazones containing a central pyridyl core display potent antimalarial activity in vitro. Sequestration and activation of ferric iron appears to play a significant role in this activity. Ongoing studies are aimed at further development of this series as potential antimalarials.
Collapse
Affiliation(s)
- Fady N. Akladios
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Scott D. Andrew
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Samantha J. Boog
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Carmen de Kock
- Division of Clinical Pharmacology, University of Cape Town, Groote Schuur Hospital, Observatory 7925, South Africa
| | - Richard K. Haynes
- Centre for Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa
| | | |
Collapse
|
10
|
Massoud SS, Louka FR, Tusa AF, Bordelon NE, Fischer RC, Mautner FA, Vančo J, Hošek J, Dvořák Z, Trávníček Z. Copper(ii) complexes based on tripodal pyridyl amine derivatives as efficient anticancer agents. NEW J CHEM 2019. [DOI: 10.1039/c9nj00061e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in vitro cytotoxicity of a series of chlorido-Cu(ii) complexes based on tripod pyridyl N4-donor derivatives revealed significant-to-moderate cytotoxicity against human cancer cell lines with the best results obtained for [Cu(BQPA)Cl]ClO4/PF6 (5-ClO4/PF6) with IC50 values of 4.7–10.8 μM.
Collapse
Affiliation(s)
- Salah S. Massoud
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | - Febee R. Louka
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | - Ada F. Tusa
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | | | - Roland C. Fischer
- Institut für Anorganische Chemische
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Franz A. Mautner
- Institut für Physikalische and Theoretische Chemie
- Technische Universität Graz
- Graz
- Austria
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-783 71 Olomouc
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-783 71 Olomouc
| | - Zdeněk Dvořák
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-783 71 Olomouc
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-783 71 Olomouc
| |
Collapse
|
11
|
Deng J, Yu P, Zhang Z, Wang J, Cai J, Wu N, Sun H, Liang H, Yang F. Designing anticancer copper(II) complexes by optimizing 2-pyridine-thiosemicarbazone ligands. Eur J Med Chem 2018; 158:442-452. [PMID: 30241011 DOI: 10.1016/j.ejmech.2018.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 11/18/2022]
Abstract
To develop potential next-generation metal anticancer agents, we designed and synthesised five Cu(II) 2-pyridine-thiosemicarbazone complexes by modifying the hydrogen atom at the N-4 position of ligands, and then investigated their structure-activity relationships and anticancer mechanisms. Modification of the N-4 position with different groups caused significant differences in cellular uptake and produced superior antitumor activity. Cu complexes arrested the cell cycle at S phase, leading to down-regulation of levels of cyclin and cyclin-dependent kinases and up-regulation of expression of cyclin-dependent kinase inhibitors. Cu complexes exerted chemotherapeutic effects via activating p53 and inducing production of reactive oxygen species to regulate expression of the B-cell lymphoma-2 family of proteins, causing a change in the mitochondrial membrane potential and release of cytochrome c to form a dimer with apoptosis protease activating factor-1, resulting in activation of caspase-9/3 to induce apoptosis. In addition, Cu complexes inhibited telomerase by down-regulating the c-myc regulator gene and expression of the human telomerase reverse transcriptase.
Collapse
Affiliation(s)
- Jungang Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Ping Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jun Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinhua Cai
- College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, Jiangxi, China
| | - Na Wu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Hongbin Sun
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
12
|
Lambert AE, Carrick JD. Diversification of 6‐bromo‐2‐substituted Pyridine Derivatives
via
Suzuki‐Miyaura Cross‐Coupling. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Abigail E. Lambert
- Department of Chemistry Tennessee Technological University 55 University Drive Cookeville TN 38505‐0001 USA
| | - Jesse D. Carrick
- Department of Chemistry Tennessee Technological University 55 University Drive Cookeville TN 38505‐0001 USA
| |
Collapse
|
13
|
Rodríguez-Fanjul V, López-Torres E, Mendiola MA, Pizarro AM. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting. Eur J Med Chem 2018; 148:372-383. [DOI: 10.1016/j.ejmech.2018.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
|
14
|
Bonaccorso C, Grasso G, Musso N, Barresi V, Condorelli DF, La Mendola D, Rizzarelli E. Water soluble glucose derivative of thiocarbohydrazone acts as ionophore with cytotoxic effects on tumor cells. J Inorg Biochem 2018; 182:92-102. [PMID: 29452884 DOI: 10.1016/j.jinorgbio.2018.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
A novel water-soluble ionophore based on the thiocarbohydrazone moiety conjugated with glucose (GluTch) was synthesized through a simple two-step procedure. Structural elucidation was carried out in water solution by means of various spectroscopic techniques (NMR, UV-Vis, and CD), electrospray ionization mass spectrometry and density functional theory calculations. The flexible nature of the thiocarbohydrazone moiety of the new glycoderivative compound induced both different coordination motifs and stoichiometry towards copper and zinc. Cytotoxicity assays of the ligands on the human normal keratinocyte NCTC-2544, MDA-MB-231 breast cancer and PC-3 human prostate adenocarcinoma cell lines demonstrated that i) higher activity on cancer cells growth inhibition compared to a normal cell line; ii) the introduction of the glucose unit does not alter the cytotoxic activity of the underivatized ionophore ligand and iii) the presence of copper ion improves the activity of the thiocarbohydrazones.
Collapse
Affiliation(s)
- Carmela Bonaccorso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Nicolò Musso
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Vincenza Barresi
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Daniele F Condorelli
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy.
| | - Enrico Rizzarelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy
| |
Collapse
|
15
|
Massoud SS, Louka FR, Ducharme GT, Fischer RC, Mautner FA, Vančo J, Herchel R, Dvořák Z, Trávníček Z. Copper(II) complexes based on tripodal pyrazolyl amines: Synthesis, structure, magnetic properties and anticancer activity. J Inorg Biochem 2017; 180:39-46. [PMID: 29232637 DOI: 10.1016/j.jinorgbio.2017.11.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/11/2022]
Abstract
The Cu(II) complexes [Cu(bpdmpz)Cl]ClO4 (1), [Cu(bdmpzp)Cl]ClO4 (2-ClO4), [Cu(bdmpzp)Cl]PF6 (2-PF6) and [Cu(tdmpza)Cl]ClO4 (3), bpdmpzp=[bis[((2-pyridylmethyl)-di(3,5-dimethyl-1H-pyrazolyl)methyl)]amine, bdmpzp=[bis((di(3,5-dimethyl-1H-pyrazolyl)methyl)-(2-pyridylmethyl)]amine and tdmpza=tris[di(3,5-dimethyl-1H-pyrazolyl)-methyl)]amine were synthesized and characterized by elemental analysis, magnetic and conductivity measurements, electrospray-ionization mass spectrometry, infrared and electronic spectroscopy, and X-ray crystallography. The magnetic properties of the complexes, measured at variable temperature, revealed weak antiferromagnetic intermolecular interactions. The cytotoxicity of the complexes 1, 2-ClO4, 3, and 4 ([Cu(bedmpzp)Cl]PF6, where bedmpzp=[bis(3,5-dimethyl-1H-pyrazol-1-yl-1-ethyl)-(2-pyridylmethyl)]amine), was investigated against four human cancer cell lines: A2780 (ovarian), A2780R (cisplatin-resistant variant), HOS (aggressive bone tumors), CaCo2 (epithelial colorectal adenocarcinoma) and on healthy human hepatocytes. The complex 4 was the most cytotoxic one, with IC50=1.4μM (A2780), 8.3μM (A2780R), 4.7μM (HOS) and 10.8μM (CaCo2). The mass spectrometry-based interaction studies, involving selected sulfur-containing biomolecules and small model proteins, revealed pro-oxidant effects of complexes 1 and 4 and differences in stability of both complexes in the mixtures containing the model protein cytochrome c after 24h incubation, complex 1 formed 1:1 adduct, the formation of which was accompanied by the loss of one dimethylpyrazole pendant arm from the bpdmpz ligand, while the complex 4 composition remained intact and the complex formed both 1:1 and 1:2 adducts (cytochrome c vs. Cu(II)-complex).
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | - Febee R Louka
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Gerard T Ducharme
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Roland C Fischer
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Franz A Mautner
- Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010 Graz, Austria.
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Radovan Herchel
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
16
|
In vitro and in vivo anti-proliferative evaluation of bis(4′-(4-tolyl)-2,2′:6′,2″-terpyridine)copper(II) complex against Ehrlich ascites carcinoma tumors. J Biol Inorg Chem 2017; 22:1109-1122. [DOI: 10.1007/s00775-017-1488-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/20/2017] [Indexed: 12/15/2022]
|
17
|
King AP, Gellineau HA, Ahn JE, MacMillan SN, Wilson JJ. Bis(thiosemicarbazone) Complexes of Cobalt(III). Synthesis, Characterization, and Anticancer Potential. Inorg Chem 2017; 56:6609-6623. [PMID: 28509538 PMCID: PMC8113979 DOI: 10.1021/acs.inorgchem.7b00710] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nine bis(thiosemicarbazone) (BTSC) cobalt(III) complexes of the general formula [Co(BTSC)(L)2]NO3 were synthesized, where BTSC = diacetyl bis(thiosemicarbazone) (ATS), pyruvaldehyde bis(thiosemicarbazone) (PTS), or glyoxal bis(thiosemicarbazone) (GTS) and L = ammonia, imidazole (Im), or benzylamine (BnA). These compounds were characterized by multinuclear NMR spectroscopy, mass spectrometry, cyclic voltammetry, and X-ray crystallography. Their stability in phosphate-buffered saline was investigated and found to be highly dependent on the nature of the axial ligand, L. These studies revealed that complex stability is primarily dictated by the axial ligand following the sequence NH3 > Im > BnA. The cellular uptake and cytotoxicity in cancer cells were also determined. Both the cellular uptake and cytotoxicity were significantly affected by the nature of the equatorial BTSC. Complexes of ATS were taken up much more effectively than those of PTS and GTS. The cytotoxicity of the complexes was correlated to that of the free ligand. Cell uptake and cytotoxicity were also determined under hypoxic conditions. Only minor differences in the hypoxia activity and uptake were observed. Treatment of the cancer cells with the copper-depleting agent tetrathiomolybdate decreased the cytotoxic potency of the complexes, indicating that they may operate via a copper-dependent mechanism. These results provide a structure-activity relationship for this class of compounds, which may be applied for the rational design of new cobalt(III) anticancer agents.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Hendryck A. Gellineau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jung-Eun Ahn
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|