1
|
Richardson-Sanchez T, Telfer TJ, Soe CZ, Nolan KP, Gotsbacher MP, Codd R. The production of siderophore analogues using precursor-directed biosynthesis. Methods Enzymol 2024; 702:121-145. [PMID: 39155108 DOI: 10.1016/bs.mie.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Siderophores are low-molecular-weight organic bacterial and fungal secondary metabolites that form high affinity complexes with Fe(III). These Fe(III)-siderophore complexes are part of the siderophore-mediated Fe(III) uptake mechanism, which is the most widespread strategy used by microbes to access sufficient iron for growth. Microbial competition for limited iron is met by biosynthetic gene clusters that encode for the biosynthesis of siderophores with variable molecular scaffolds and iron binding motifs. Some classes of siderophores have well understood biosynthetic pathways, which opens opportunities to further expand structural and property diversity using precursor-directed biosynthesis (PDB). PDB involves augmenting culture medium with non-native substrates to compete against native substrates during metabolite assembly. This chapter provides background information and technical details of conducting a PDB experiment towards producing a range of different analogues of the archetypal hydroxamic acid siderophore desferrioxamine B. This includes processes to semi-purify the culture supernatant and the use of liquid chromatography-tandem mass spectrometry for downstream analysis of analogues and groups of constitutional isomers.
Collapse
Affiliation(s)
| | - Thomas J Telfer
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Cho Z Soe
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kate P Nolan
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Rachel Codd
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Ahmed MMA, Tripathi SK, Boudreau PD. Comparative metabolomic profiling of Cupriavidus necator B-4383 revealed production of cupriachelin siderophores, one with activity against Cryptococcus neoformans. Front Chem 2023; 11:1256962. [PMID: 37693169 PMCID: PMC10484230 DOI: 10.3389/fchem.2023.1256962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Cupriavidus necator H16 is known to be a rich source of linear lipopeptide siderophores when grown under iron-depleted conditions; prior literature termed these compounds cupriachelins. These small molecules bear β-hydroxyaspartate moieties that contribute to a photoreduction of iron when bound as ferric cupriachelin. Here, we present structural assignment of cupriachelins from C. necator B-4383 grown under iron limitation. The characterization of B-4383 cupriachelins is based on MS/MS fragmentation analysis, which was confirmed by 1D- and 2D-NMR for the most abundant analog (1). The cupriachelin congeners distinguish these two strains with differences in the preferred lipid tail; however, our rigorous metabolomic investigation also revealed minor analogs with changes in the peptide core, hinting at a potential mechanism by which these siderophores may reduce biologically unavailable ferric iron (4-6). Antifungal screening of the C. necator B-4383 supernatant extract and the isolated cupriachelin analog (1) revealed inhibitory activity against Cryptococcus neoformans, with IC50 values of 16.6 and 3.2 μg/mL, respectively. This antifungal activity could be explained by the critical role of the iron acquisition pathway in the growth and pathogenesis of the C. neoformans fungal pathogen.
Collapse
Affiliation(s)
- Mohammed M. A. Ahmed
- Boudreau Lab, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
- Department of Pharmacognosy, Al-Azhar University, Cairo, Egypt
| | - Siddarth K. Tripathi
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Paul D. Boudreau
- Boudreau Lab, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
4
|
Chen H, Zhong L, Zhou H, Sun T, Zhong G, Tu Q, Zhuang Y, Bai X, Wang X, Xu J, Xia L, Shen Y, Zhang Y, Bian X. Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of β-OH Amino Acid Building Blocks. Angew Chem Int Ed Engl 2022; 61:e202203591. [PMID: 35689369 DOI: 10.1002/anie.202203591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) can incorporate nonproteinogenic amino acids into peptidyl backbones to increase structural diversity. Genome mining of Schlegelella brevitalea led to the identification of a class of linear lipoheptapeptides, glidomides, featuring two unusual residues: threo-β-OH-L-His and threo-β-OH-D-Asp. The β-hydroxylation of Asp and His is catalyzed by the nonheme FeII /α-ketoglutarate-dependent β-hydroxylases GlmD and GlmF, respectively. GlmD independently catalyzes the hydroxylation of L-Asp to primarily produce threo-β-OH-L-Asp on the thiolation domain, and then undergoes epimerization to form threo-β-OH-D-Asp in the final products. However, β-hydroxylation of His requires the concerted action of GlmF and the interface (I) domain, a novel condensation domain family clade. The key sites of I domain for interaction with GlmF were identified, suggesting that the mechanism for hydroxylation of His depends on the collaboration between hydroxylase and NRPS.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Zhuang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiaying Xu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuemao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
5
|
Otsuka K, Miyahara M, Takaki S, Wakabayashi R, Miyako K, Irie R, Takamizawa S, Sakai R, Oikawa M. Synthetic Studies on the Initially Proposed Structure of Protoaculeine B: Discovery of Neuronally Active Heterotricyclic Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kazunori Otsuka
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Masayoshi Miyahara
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Sara Takaki
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Ryoya Wakabayashi
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Kei Miyako
- Hokkaido University Faculty of Fisheries Sciences Graduate School of Fisheries Sciences School of Fisheries Sciences: Hokkaido Daigaku Daigakuin Suisan Kagaku Kenkyuin Daigakuin Suisan Kagakuin Suisan Gakubu Faculty of Fisheries Sciences JAPAN
| | - Raku Irie
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Satoshi Takamizawa
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Ryuichi Sakai
- Hokkaido University Faculty of Fisheries Sciences Graduate School of Fisheries Sciences School of Fisheries Sciences: Hokkaido Daigaku Daigakuin Suisan Kagaku Kenkyuin Daigakuin Suisan Kagakuin Suisan Gakubu Faculty of Fisheries Sciences JAPAN
| | - Masato Oikawa
- Yokohama City University Graduate School of Nanobioscience Seto 22-2Kanazawa-ku 236-0027 Yokohama JAPAN
| |
Collapse
|
6
|
Chen H, Zhong L, Zhou H, Sun T, Zhong G, Tu Q, Zhuang Y, Bai X, Wang X, Xu J, Xia L, Shen Y, Zhang Y, Bian X. Biosynthesis of Glidomides and Elucidation of Different Mechanisms for Formation of β‐OH Amino Acid Building Blocks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Yan Zhuang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Jiaying Xu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology State Key Laboratory of Developmental Biology of Freshwater Fish College of Life Science Hunan Normal University Changsha 410081 China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology State Key Laboratory of Developmental Biology of Freshwater Fish College of Life Science Hunan Normal University Changsha 410081 China
| | - Yuemao Shen
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives Shandong University-Helmholtz Institute of Biotechnology State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
7
|
Duban M, Cociancich S, Leclère V. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Microorganisms 2022; 10:577. [PMID: 35336152 PMCID: PMC8949500 DOI: 10.3390/microorganisms10030577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Nonribosomal peptides are microbial secondary metabolites exhibiting a tremendous structural diversity and a broad range of biological activities useful in the medical and agro-ecological fields. They are built up by huge multimodular enzymes called nonribosomal peptide synthetases. These synthetases are organized in modules constituted of adenylation, thiolation, and condensation core domains. As such, each module governs, according to the collinearity rule, the incorporation of a monomer within the growing peptide. The release of the peptide from the assembly chain is finally performed by a terminal core thioesterase domain. Secondary domains with modifying catalytic activities such as epimerization or methylation are sometimes included in the assembly lines as supplementary domains. This assembly line structure is analyzed by bioinformatics tools to predict the sequence and structure of the final peptides according to the sequence of the corresponding synthetases. However, a constantly expanding literature unravels new examples of nonribosomal synthetases exhibiting very rare domains and noncanonical organizations of domains and modules, leading to several amazing strategies developed by microorganisms to synthesize nonribosomal peptides. In this review, through several examples, we aim at highlighting these noncanonical pathways in order for the readers to perceive their complexity.
Collapse
Affiliation(s)
- Matthieu Duban
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| | - Stéphane Cociancich
- CIRAD, UMR PHIM, F-34398 Montpellier, France;
- PHIM, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France
| | - Valérie Leclère
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| |
Collapse
|
8
|
Que L. Alison Butler: papers in celebration of her 2018 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry. J Biol Inorg Chem 2021; 26:375-377. [PMID: 30288609 DOI: 10.1007/s00775-018-1618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455-0431, USA.
| |
Collapse
|
9
|
Butler A, Harder T, Ostrowski AD, Carrano CJ. Photoactive siderophores: Structure, function and biology. J Inorg Biochem 2021; 221:111457. [PMID: 34010741 DOI: 10.1016/j.jinorgbio.2021.111457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
It is well known that bacteria and fungi have evolved sophisticated systems for acquiring the abundant but biologically inaccessible trace element iron. These systems are based on high affinity Fe(III)-specific binding compounds called siderophores which function to acquire, transport, and process this essential metal ion. Many hundreds of siderophores are now known and their numbers continue to grow. Extensive studies of their isolation, structure, transport, and molecular genetics have been undertaken in the last three decades and have been comprehensively reviewed many times. In this review we focus on a unique subset of siderophores that has only been recognized in the last 20 years, namely those whose iron complexes display photoactivity. This photoactivity, which typically results in the photooxidation of the siderophore ligand with concomitant reduction of Fe(III) to Fe(II), seemingly upsets the siderophore paradigm of forming and transporting only extremely stable Fe(III) complexes into microbial cells. Here we review their structure, synthesis, photochemistry, photoproduct coordination chemistry and explore the potential biological and ecological consequences of this photoactivity.
Collapse
Affiliation(s)
- Alison Butler
- Department of Chemistry and Biochemistry University of California, Santa Barbara, CA 93106 United States
| | - Tilmann Harder
- Department of Biology and Chemistry, University of Bremen, and Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany
| | | | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, United States.
| |
Collapse
|
10
|
Fe(III)-polyuronic acid photochemistry: radical chemistry in natural polysaccharide. Photochem Photobiol Sci 2021; 20:255-263. [DOI: 10.1007/s43630-021-00014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
|
11
|
The Desotamide Family of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9080452. [PMID: 32727132 PMCID: PMC7459860 DOI: 10.3390/antibiotics9080452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products underpin the majority of antimicrobial compounds in clinical use and the discovery of new effective antibacterial treatments is urgently required to combat growing antimicrobial resistance. Non-ribosomal peptides are a major class of natural products to which many notable antibiotics belong. Recently, a new family of non-ribosomal peptide antibiotics were discovered-the desotamide family. The desotamide family consists of desotamide, wollamide, surugamide, ulleungmycin and noursamycin/curacomycin, which are cyclic peptides ranging in size between six and ten amino acids in length. Their biosynthesis has attracted significant attention because their highly functionalised scaffolds are cyclised by a recently identified standalone cyclase. Here, we provide a concise review of the desotamide family of antibiotics with an emphasis on their biosynthesis.
Collapse
|
12
|
Li Y, Liu L, Zhang G, He N, Guo W, Hong B, Xie Y. Potashchelins, a Suite of Lipid Siderophores Bearing Both L- threo and L- erythro Beta-Hydroxyaspartic Acids, Acquired From the Potash-Salt-Ore-Derived Extremophile Halomonas sp. MG34. Front Chem 2020; 8:197. [PMID: 32266214 PMCID: PMC7100376 DOI: 10.3389/fchem.2020.00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Four new lipid siderophores bearing both L-threo- and L-erythro-β-hydroxyaspartic acids, potashchelins A-D (1-4), were isolated from the potash-salt-ore-derived extremophile Halomonas sp. MG34. The planar structures of 1-4 were elucidated on the basis of extensive 1D and 2D NMR studies and MS/MS data. Potashchelins 1-4 contain a hydrophilic nonapeptide headgroup sequentially consisting of β-hydroxyaspartic acid, serine, glycine, serine, serine, β-hydroxyaspartic acid, threonine, serine, and cyclic N(δ)-hydroxy-ornithine, which is appended by one of a series of fatty acids ranging from dodecanoic acid to tetradecanoic acid. The absolute configurations of the amino acids of potashchelins 1-4 were determined by C3 and advanced Marfey's reaction, partial hydrolysis, and bioinformatics analysis, which revealed that potashchelins 1-4 bear both L-threo- and L-erythro-β-hydroxyaspartic acid. Phylogenetic analysis showed that the stand-alone β-hydroxylase, PtcA, and the fused domain with β-hydroxylase activity in PtcB are expected to be responsible for the formation of L-erythro and L-threo diastereomers, respectively. Additionally, utilizing a comparative genomics approach, we revealed an evolutionary mechanism for lipid siderophores in Halomonas involving horizontal transfer. Bioassays showed that potashchelin A and D had weak antibacterial activity against B. subtilis CPCC 100029 with an MIC value of 64 μg/mL.
Collapse
Affiliation(s)
- Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Liu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gengxin Zhang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, China Academy of Sciences, Beijing, China
| | - Ning He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenqiang Guo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
14
|
Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family. Proc Natl Acad Sci U S A 2019; 116:19805-19814. [PMID: 31527229 DOI: 10.1073/pnas.1903161116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome mining of biosynthetic pathways streamlines discovery of secondary metabolites but can leave ambiguities in the predicted structures, which must be rectified experimentally. Through coupling the reactivity predicted by biosynthetic gene clusters with verified structures, the origin of the β-hydroxyaspartic acid diastereomers in siderophores is reported herein. Two functional subtypes of nonheme Fe(II)/α-ketoglutarate-dependent aspartyl β-hydroxylases are identified in siderophore biosynthetic gene clusters, which differ in genomic organization-existing either as fused domains (IβHAsp) at the carboxyl terminus of a nonribosomal peptide synthetase (NRPS) or as stand-alone enzymes (TβHAsp)-and each directs opposite stereoselectivity of Asp β-hydroxylation. The predictive power of this subtype delineation is confirmed by the stereochemical characterization of β-OHAsp residues in pyoverdine GB-1, delftibactin, histicorrugatin, and cupriachelin. The l-threo (2S, 3S) β-OHAsp residues of alterobactin arise from hydroxylation by the β-hydroxylase domain integrated into NRPS AltH, while l-erythro (2S, 3R) β-OHAsp in delftibactin arises from the stand-alone β-hydroxylase DelD. Cupriachelin contains both l-threo and l-erythro β-OHAsp, consistent with the presence of both types of β-hydroxylases in the biosynthetic gene cluster. A third subtype of nonheme Fe(II)/α-ketoglutarate-dependent enzymes (IβHHis) hydroxylates histidyl residues with l-threo stereospecificity. A previously undescribed, noncanonical member of the NRPS condensation domain superfamily is identified, named the interface domain, which is proposed to position the β-hydroxylase and the NRPS-bound amino acid prior to hydroxylation. Through mapping characterized β-OHAsp diastereomers to the phylogenetic tree of siderophore β-hydroxylases, methods to predict β-OHAsp stereochemistry in silico are realized.
Collapse
|
15
|
Koomsiri W, Inahashi Y, Leetanasaksakul K, Shiomi K, Takahashi YK, O Mura S, Samborskyy M, Leadlay PF, Wattana-Amorn P, Thamchaipenet A, Nakashima T. Sarpeptins A and B, Lipopeptides Produced by Streptomyces sp. KO-7888 Overexpressing a Specific SARP Regulator. JOURNAL OF NATURAL PRODUCTS 2019; 82:2144-2151. [PMID: 31381320 DOI: 10.1021/acs.jnatprod.9b00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Whole genome analysis of Streptomyces sp. KO-7888 has revealed various pathway-specific transcriptional regulatory genes associated with silent biosynthetic gene clusters. A Streptomyces antibiotic regulatory protein gene, speR, located adjacent to a novel nonribosomal peptide synthetase (NRPS) gene cluster, was overexpressed in the wild-type strain. The resulting recombinant strain of Streptomyces sp. KO-7888 produced two new lipopeptides, sarpeptins A and B. Their structures were elucidated by high-resolution electrospray ionization mass spectrometry, NMR analysis, and the advanced Marfey's method. The distinct modular sections of the corresponding NRPS biosynthetic gene cluster were characterized, and the assembly line for production of the lipopeptide chain was proposed.
Collapse
Affiliation(s)
- Wilaiwan Koomsiri
- Department of Genetics, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
- Omics Center for Agriculture, Bioresources, Food and Health , Kasetsart University (OmiKU) , Bangkok 10900 , Thailand
| | - Yuki Inahashi
- Kitasato Institute for Life Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Kantinan Leetanasaksakul
- Department of Genetics, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
- Omics Center for Agriculture, Bioresources, Food and Health , Kasetsart University (OmiKU) , Bangkok 10900 , Thailand
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Yo Ko Takahashi
- Kitasato Institute for Life Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Satoshi O Mura
- Kitasato Institute for Life Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Markiyan Samborskyy
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1TN , U.K
| | - Peter F Leadlay
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1TN , U.K
| | - Pakorn Wattana-Amorn
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
- Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry , Kasetsart University , Bangkok 10900 , Thailand
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
- Omics Center for Agriculture, Bioresources, Food and Health , Kasetsart University (OmiKU) , Bangkok 10900 , Thailand
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences , Kitasato University , Tokyo 108-8641 , Japan
| |
Collapse
|
16
|
Hardy CD, Butler A. Ambiguity of NRPS Structure Predictions: Four Bidentate Chelating Groups in the Siderophore Pacifibactin. JOURNAL OF NATURAL PRODUCTS 2019; 82:990-997. [PMID: 30869895 DOI: 10.1021/acs.jnatprod.8b01073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Identified through a bioinformatics approach, a nonribosomal peptide synthetase gene cluster in Alcanivorax pacificus encodes the biosynthesis of the new siderophore pacifibactin. The structure of pacifibactin differs markedly from the bioinformatic prediction and contains four bidentate metal chelation sites, atypical for siderophores. Genome mining and structural characterization of pacifibactin is reported herein, as well as characterization of pacifibactin variants accessible due to a lack of adenylation domain fidelity during biosynthesis. A spectrophotometric titration of pacifibactin with Fe(III) and 13C NMR spectroscopy of the Ga(III)-pacifibactin complex establish 1:1 metal:pacifibactin coordination and reveal which of the bidentate binding groups are coordinated to the metal. The photoreaction of Fe(III)-pacifibactin, resulting from Fe(III) coordination of the β-hydroxyaspartic acid ligands, is reported.
Collapse
Affiliation(s)
- Clifford D Hardy
- Department of Chemistry & Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106-9510 , United States
| | - Alison Butler
- Department of Chemistry & Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106-9510 , United States
| |
Collapse
|
17
|
A reevaluation of iron binding by Mycobactin J. J Biol Inorg Chem 2018; 23:995-1007. [DOI: 10.1007/s00775-018-1592-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
|