1
|
Martín-Faivre L, Prince L, Cornu C, Villeret B, Sanchez-Guzman D, Rouzet F, Sallenave JM, Garcia-Verdugo I. Pulmonary delivery of silver nanoparticles prevents influenza infection by recruiting and activating lymphoid cells. Biomaterials 2025; 312:122721. [PMID: 39106817 DOI: 10.1016/j.biomaterials.2024.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Silver nanoparticles (AgNPs) are a potential antiviral agent due to their ability to disrupt the viral particle or alter the virus metabolism inside the host cell. In vitro, AgNPs exhibit antiviral activity against the most common human respiratory viruses. However, their capacity to modulate immune responses during respiratory viral infections has yet to be explored. This study demonstrates that administering AgNPs directly into the lungs prior to infection can reduce viral loads and therefore virus-induced cytokines in mice infected with influenza virus or murine pneumonia virus. The prophylactic effect was diminished in mice with depleted lymphoid cells. We showed that AgNPs-treatment resulted in the recruitment and activation of lymphocytes in the lungs, particularly natural killer (NK) cells. Mechanistically, AgNPs enhanced the ability of alveolar macrophages to promote both NK cell migration and IFN-γ production. By contrast, following infection, in mice treated with AgNPs, NK cells exhibited decreased activation, indicating that these nanoparticles can regulate the potentially deleterious activation of these cells. Overall, the data suggest that AgNPs may possess prophylactic antiviral properties by recruiting and controlling the activation of lymphoid cells through interaction with alveolar macrophages.
Collapse
Affiliation(s)
- Lydie Martín-Faivre
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Lisa Prince
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Clémentine Cornu
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Bérengère Villeret
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Daniel Sanchez-Guzman
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - François Rouzet
- Nuclear Medicine Department, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris Cité and Inserm U1148, F-75018, Paris, France
| | - Jean-Michel Sallenave
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Ignacio Garcia-Verdugo
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France.
| |
Collapse
|
2
|
Barua N, Buragohain AK. Therapeutic Potential of Silver Nanoparticles (AgNPs) as an Antimycobacterial Agent: A Comprehensive Review. Antibiotics (Basel) 2024; 13:1106. [PMID: 39596799 PMCID: PMC11591479 DOI: 10.3390/antibiotics13111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The uncontrolled emergence of multidrug-resistant mycobacterial strains presents as the primary determinant of the present crisis in antimycobacterial therapeutics and underscores tuberculosis (TB) as a daunting global health concern. There is an urgent requirement for drug development for the treatment of TB. Numerous novel molecules are presently undergoing clinical investigation as part of TB drug development. However, the complex cell wall and the lifecycle of M. tuberculosis within the host pose a significant challenge to the development of new drugs and, therefore, led to a shift in research focus towards alternative antibacterial compounds, notably nanotechnology. A novel approach to TB therapy utilizing silver nanoparticles (AgNPs) holds the potential to address the medical limitations imposed by drug resistance commonly associated with currently available antibiotics. Their broad-spectrum antimicrobial activity presents the utilization of AgNPs as a promising avenue for the development of therapeutics targeting mycobacterial-induced diseases, which can effectively target Mycobacterium tuberculosis, including drug-resistant strains. AgNPs can enhance the effectiveness of traditional antibiotics, potentially leading to better treatment outcomes and a shorter duration of therapy. However, the successful implementation of this complementary strategy is contingent upon addressing several pivotal therapeutic challenges, including suboptimal delivery, variability in intra-macrophagic antimycobacterial effect, and potential toxicity. Future perspectives may involve developing targeted delivery systems that maximize therapeutic effects and minimize side effects, as well as exploring combinations with existing TB medications to enhance treatment outcomes. We have attempted to provide a comprehensive overview of the antimycobacterial activity of AgNPs, and critically analyze the advantages and limitations of employing silver nanoparticles in the treatment of TB.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin 999077, Hong Kong
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Biotechnology, Royal Global University, Guwahati 781035, India
| |
Collapse
|
3
|
Palacka K, Hermankova B, Cervena T, Rossner P, Zajicova A, Uherkova E, Holan V, Javorkova E. The Immunomodulatory Effect of Silver Nanoparticles in a Retinal Inflammatory Environment. Inflammation 2024:10.1007/s10753-024-02128-w. [PMID: 39190103 DOI: 10.1007/s10753-024-02128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Activation of immune response plays an important role in the development of retinal diseases. One of the main populations of immune cells contributing to the retinal homeostasis are microglia, which represent a population of residential macrophages. However, under pathological conditions, microglia become activated and rather support a harmful inflammatory reaction and retinal angiogenesis. Therefore, targeting these cells could provide protection against retinal neuroinflammation and neovascularization. In the recent study, we analyzed effects of silver nanoparticles (AgNPs) on microglia in vitro and in vivo. We showed that the AgNPs interact in vitro with stimulated mouse CD45/CD11b positive cells (microglia/macrophages), decrease their secretion of nitric oxide and vascular endothelial growth factor, and regulate the expression of genes for Iba-1 and interleukin-1β (IL-1β). In our in vivo experimental mouse model, the intravitreal application of a mixture of proinflammatory cytokines tumor necrosis factor-α, IL-1β and interferon-γ induced local inflammation and increased local expression of genes for inducible nitric oxide synthase, IL-α, IL-1β and galectin-3 in the retina. This stimulation of local inflammatory reaction was significantly inhibited by intravitreal administration of AgNPs. The application of AgNPs also decreased the presence of CD11b/Galectin-3 positive cells in neuroinflammatory retina, but did not influence viability of cells and expression of gene for rhodopsin in the retinal tissue. These data indicate that AgNPs regulate reactivity of activated microglia in the diseased retina and thus could provide a beneficial effect for the treatment of several retinal diseases.
Collapse
Affiliation(s)
- Katerina Palacka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Barbora Hermankova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Tereza Cervena
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Alena Zajicova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Eva Uherkova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, 121 08, Prague 2, Czech Republic
| | - Vladimir Holan
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Eliska Javorkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| |
Collapse
|
4
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
5
|
Feng Y, Sun Q, Liu P, Fan W, Fan B. Antibacterial Property and Mechanisms of Au@Ag Core-Shell Nanoparticles with Near-Infrared Absorption Against E. faecalis Infection of Dentin. Int J Nanomedicine 2024; 19:6981-6997. [PMID: 39005961 PMCID: PMC11246666 DOI: 10.2147/ijn.s468649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Background Enterococcus faecalis (E. faecalis) is one of the main pathogens responsible for refractory root canal infections in the teeth and shows resistance against various antibacterial managements. Effective control of E. faecalis infection is a prerequisite for successful treatment of refractory apical periodontitis. This study aimed to analyze the antibacterial activity and mechanisms of Au@Ag nanoparticles (NPs) combined with photothermal therapy (PTT) against the original and Ag+-resistant E. faecalis. Methods Au@AgNPs with optimal shell thicknesses were synthesized and characterized. The antibacterial activity of Au@AgNPs with PTT against the original or Ag+-resistant E. faecalis was evaluated, and the antibiofilm activity was tested on E. faecalis biofilm on the dentin of teeth. The potential antibacterial mechanisms of Au@AgNPs combined with PTT against E. faecalis have also been studied. Moreover, its influence on dentin microhardness and cytotoxicity was assessed. Results This study revealed that Au@AgNPs combined with PTT showed enhanced antibacterial and antibiofilm effects, no negative effects on dentin microhardness, and low cytotoxicity toward human periodontal ligament cells (hPDLCs). Moreover, Au@AgNPs combined with PTT effectively inhibited the growth of Ag+-resistant E. faecalis. Its antibacterial effects may be exerted through the release of silver ions (Ag+), destruction of the cell membrane, production of reactive oxygen species (ROS) and inhibition of adenosine triphosphate (ATP) production. Hyperthermia generated by Au@AgNPs with PTT reduced membrane fluidity and enhanced Ag+ sensitivity by downregulating fabF expression. The upregulated expression of heat shock genes demonstrated that the Ag+ released from Au@AgNPs compromised the heat adaptation of E. faecalis. Conclusion PTT significantly enhanced Ag+ sensitivity of the original and Ag+-resistant E. faecalis. Au@AgNPs combined with PTT may have the potential to be developed as a new antibacterial agent to control E. faecalis infections in teeth.
Collapse
Affiliation(s)
- Yaxu Feng
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Qing Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Pei Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Wei Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Bing Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Noga M, Milan J, Frydrych A, Jurowski K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int J Mol Sci 2023; 24:ijms24065133. [PMID: 36982206 PMCID: PMC10049346 DOI: 10.3390/ijms24065133] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, research on silver nanoparticles (AgNPs) has attracted considerable interest among scientists because of, among other things, their alternative application to well-known medical agents with antibacterial properties. The size of the silver nanoparticles ranges from 1 to 100 nm. In this paper, we review the progress of research on AgNPs with respect to the synthesis, applications, and toxicological safety of AgNPs, and the issue of in vivo and in vitro research on silver nanoparticles. AgNPs’ synthesis methods include physical, chemical, and biological routes, as well as “green synthesis”. The content of this article covers issues related to the disadvantages of physical and chemical methods, which are expensive and can also have toxicity. This review pays special attention to AgNP biosafety concerns, such as potential toxicity to cells, tissues, and organs.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: or
| |
Collapse
|
7
|
Railean V, Buszewski B. Flow Cytometry - Sophisticated Tool for Basic Research or/and Routine Diagnosis; Impact of the Complementarity in Both Pre- as Well as Clinical Studies. Crit Rev Anal Chem 2022; 54:2087-2109. [PMID: 36576036 DOI: 10.1080/10408347.2022.2154596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flow cytometry is a sophisticated technology used widely in both basic research and as a routine tool in clinical diagnosis. The technology has progressed from single parameter detection in the 1970s and 1980s to high end multicolor analysis, with currently 30 parameters detected simultaneously, allowing the identification and purification of rare subpopulations of cells of interest. Flow cytometry continues to evolve and expand to facilitate the investigation of new diagnostic and therapeutic avenues. The present review gives an overview of basic theory and instrumentation, presents and compares the advantages and disadvantages of conventional, spectral and imaging flow cytometry as well as mass cytometry. Current methodologies and applications in both research, pre- and clinical settings are discussed, as well as potential limitations and future evolution. This finding encourages the reader to promote such relationship between basic science, diagnosis and multidisciplinary approach since the standard methods have limitations (e.g., in differentiating the cells after staining). Moreover, such path inspires future cytometry specialists develop new/alternative frontiers between pre- and clinical diagnosis and be more flexible in designing the study for both human as well as veterinary medicine.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
8
|
Railean V, Buszewska-Forajta M, Rodzik A, Gołębiowski A, Pomastowski P, Buszewski B. In Vivo Efficacy of Wound Healing under External (Bio)AgNCs Treatment: Localization Case Study in Liver and Blood Tissue. Int J Mol Sci 2022; 24:ijms24010434. [PMID: 36613874 PMCID: PMC9820314 DOI: 10.3390/ijms24010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
The present study reports on the in vivo application of (Bio)silver nanocomposite formulations (LBPC-AgNCs) on wound healing. Additionally, the present study emphasizes the limited uptake of silver by liver and blood tissues as well as the high viability of PBMCs following external LBPC-AgNCs treatment. The wound closure was monitored via stereoscopic microscope, a localization case study in liver and blood tissue was carried out by (Inductively Coupled Plasma-Mass Spectrometers (ICP/MS), and peripheral blood mononuclear cells (PMBC) viability was determined via flow cytometry technique. The silver formulation was applied externally on the site of the wound infection for a period of ten days. At the beginning of the experiment, a moderate decrease in body weight and atypical behavior was observed. However, during the last period of the experiment, no abnormal mouse behaviors were noticed. The wound-healing process took place in a gradual manner, presenting the regeneration effect at around 30% from the fourth day. From the seventh day, the wounds treated with the silver formulation showed 80% of the wound healing potential. The viability of PBMCs was found to be 97%, whereas the concentrations of silver in the liver and blood samples were determined to be 0.022 µg/g and 9.3 µg/g, respectively. Furthermore, the present report becomes a pilot study in transferring from in vitro to in vivo scale (e.g., medical field application) once LBPC-AgNCs have demonstrated a unique wound healing potential as well as a non-toxic effect on the liver and blood.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Gagarina 7, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Correspondence: (V.R.); (P.P.)
| | - Magdalena Buszewska-Forajta
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Torun, Poland
- Department of Plant Physiology, Genetics, and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland
| | - Agnieszka Rodzik
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| | - Adrian Gołębiowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Correspondence: (V.R.); (P.P.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| |
Collapse
|
9
|
Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes. MATERIALS 2022; 15:ma15030775. [PMID: 35160720 PMCID: PMC8836503 DOI: 10.3390/ma15030775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor κB (NF-κb) activation, Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-α (TNF-α) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability.
Collapse
|