1
|
Orozco GA, Ristaniemi A, Haghighatnejad M, Mohammadi A, Finnilä MAJ, Saarakkala S, Herzog W, Isaksson H, Korhonen RK. Adaptation of Fibril-Reinforced Poroviscoelastic Properties in Rabbit Collateral Ligaments 8 Weeks After Anterior Cruciate Ligament Transection. Ann Biomed Eng 2023; 51:726-740. [PMID: 36129552 PMCID: PMC10023629 DOI: 10.1007/s10439-022-03081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
Ligaments of the knee provide stability and prevent excessive motions of the joint. Rupture of the anterior cruciate ligament (ACL), a common sports injury, results in an altered loading environment for other tissues in the joint, likely leading to their mechanical adaptation. In the collateral ligaments, the patterns and mechanisms of biomechanical adaptation following ACL transection (ACLT) remain unknown. We aimed to characterize the adaptation of elastic and viscoelastic properties of the lateral and medial collateral ligaments eight weeks after ACLT. Unilateral ACLT was performed in six rabbits, and collateral ligaments were harvested from transected and contralateral knee joints after eight weeks, and from an intact control group (eight knees from four animals). The cross-sectional areas were measured with micro-computed tomography. Stepwise tensile stress-relaxation testing was conducted up to 6% final strain, and the elastic and viscoelastic properties were characterized with a fibril-reinforced poroviscoelastic material model. We found that the cross-sectional area of the collateral ligaments in the ACL transected knees increased, the nonlinear elastic collagen network modulus of the LCL decreased, and the amount of fast relaxation in the MCL decreased. Our results indicate that rupture of the ACL leads to an early adaptation of the elastic and viscoelastic properties of the collagen fibrillar network in the collateral ligaments. These adaptations may be important to consider when evaluating whole knee joint mechanics after ACL rupture, and the results aid in understanding the consequences of ACL rupture on other tissues.
Collapse
Affiliation(s)
- Gustavo A Orozco
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland.
- Department of Biomedical Engineering, Lund University, Box 188, 221 00, Lund, Sweden.
| | - Aapo Ristaniemi
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
- AO Research Institute Davos, Davos, Switzerland
| | - Mehrnoush Haghighatnejad
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 188, 221 00, Lund, Sweden
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| |
Collapse
|
2
|
Hart DA, Ahmed AS, Ackermann P. Optimizing repair of tendon ruptures and chronic tendinopathies: Integrating the use of biomarkers with biological interventions to improve patient outcomes and clinical trial design. Front Sports Act Living 2023; 4:1081129. [PMID: 36685063 PMCID: PMC9853460 DOI: 10.3389/fspor.2022.1081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Tendons are dense connective tissues of the musculoskeletal system that link bones with muscles to foster mobility. They have complex structures and exist in varying biomechanical, metabolic and biological environments. In addition, tendon composition and mechanical properties can change over the lifespan as an individual ages. Many tendons function in high stress conditions with a low vascular and neuronal supply, conditions often leading to development of chronic tendinopathies, and in some cases, overt rupture of the tissues. Given their essential nature for human mobility and navigation through the environment, the effective repair and regeneration of different tendons after injury or damage is critical for quality of life, and for elite athletes, the return to sport participation at a high level. However, for mainly unknown reasons, the outcomes following injury are not always successful and lead to functional compromise and risk for re-injury. Thus, there is a need to identify those patients who are at risk for developing tendon problems, as well those at risk for poor outcomes after injury and to design interventions to improve outcomes after injury or rupture to specific tendons. This review will discuss recent advances in the identification of biomarkers prognostic for successful and less successful outcomes after tendon injury, and the mechanistic implications of such biomarkers, as well as the potential for specific biologic interventions to enhance outcomes to improve both quality of life and a return to participation in sports. In addition, the implication of these biomarkers for clinical trial design is discussed, as is the issue of whether such biomarkers for successful healing of one tendon can be extended to all tendons or are valid only for tendons in specific biomechanical and biological environments. As maintaining an active lifestyle is critical for health, the successful implementation of these advances will benefit the large number of individuals at risk.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada,Correspondence: David A. Hart
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Endo M, Urbankova I, Vlacil J, Sengupta S, Deprest T, Klosterhalfen B, Feola A, Deprest J. Cross-linked xenogenic collagen implantation in the sheep model for vaginal surgery. ACTA ACUST UNITED AC 2015; 12:113-122. [PMID: 25960708 PMCID: PMC4417472 DOI: 10.1007/s10397-015-0883-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/19/2015] [Indexed: 02/05/2023]
Abstract
The properties of meshes used in reconstructive surgery affect the host response and biomechanical characteristics of the grafted tissue. Whereas durable synthetics induce a chronic inflammation, biological grafts are usually considered as more biocompatible. The location of implantation is another determinant of the host response: the vagina is a different environment with specific function and anatomy. Herein, we evaluated a cross-linked acellular collagen matrix (ACM), pretreated by the anti-calcification procedure ADAPT® in a sheep model for vaginal surgery. Ten sheep were implanted with a cross-linked ACM, and six controls were implanted with a polypropylene (PP; 56 g/m2) control. One implant was inserted in the lower rectovaginal septum, and one was used for abdominal wall defect reconstruction. Grafts were removed after 180 days; all graft-related complications were recorded, and explants underwent bi-axial tensiometry and contractility testing. Half of ACM-implanted animals had palpable induration in the vaginal implantation area, two of these also on the abdominal implant. One animal had a vaginal exposure. Vaginal ACMs were 63 % less stiff compared to abdominal ACM explants (p = 0.01) but comparable to vaginal PP explants. Seven anterior vaginal ACM explants showed areas of graft degradation on histology. There was no overall difference in vaginal contractility. Considering histologic degradation in the anterior vaginal implant as representative for the host, posterior ACM explants of animals with degradation had a 60 % reduced contractility as compared to PP (p = 0.048). Three abdominal implants showed histologic degradation; those were more compliant than non-degraded implants. Vaginal implantation with ACM was associated with graft-related complications (GRCs) and biomechanical properties comparable to PP. Partially degraded ACM had a decreased vaginal contractility.
Collapse
Affiliation(s)
- Masayuki Endo
- Centre for Surgical Technologies, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Development and Regeneration, Organ Systems Cluster, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Pelvic Floor Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - Iva Urbankova
- Centre for Surgical Technologies, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Development and Regeneration, Organ Systems Cluster, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Institute for Care of Mother and Child, Prague, Czech Republic
| | - Jaromir Vlacil
- Centre for Surgical Technologies, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Development and Regeneration, Organ Systems Cluster, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Institute for Care of Mother and Child, Prague, Czech Republic
| | - Siddarth Sengupta
- Department of Development and Regeneration, Organ Systems Cluster, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Thomas Deprest
- Department of Development and Regeneration, Organ Systems Cluster, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - Andrew Feola
- Centre for Surgical Technologies, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Development and Regeneration, Organ Systems Cluster, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jan Deprest
- Centre for Surgical Technologies, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Development and Regeneration, Organ Systems Cluster, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Pelvic Floor Unit, University Hospitals KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Wang KCW, Brooks DA, Summers-Pearce B, Bobrovskaya L, Tosh DN, Duffield JA, Botting KJ, Zhang S, Caroline McMillen I, Morrison JL. Low birth weight activates the renin-angiotensin system, but limits cardiac angiogenesis in early postnatal life. Physiol Rep 2015; 3:3/2/e12270. [PMID: 25649246 PMCID: PMC4393187 DOI: 10.14814/phy2.12270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Low birth weight (LBW) is associated with increased risk of adult cardiovascular disease and this association may be partly a consequence of early programming of the renin-angiotensin system (RAS). We investigated the effects of LBW on expression of molecules in the RAS and cardiac tissue remodeling. Left ventricular samples were collected from the hearts of 21 days old lambs that were born average birth weight (ABW) and LBW. Cardiac mRNA expression was quantified using real-time RT-PCR and protein expression was quantified using Western blotting. DNA methylation and histone acetylation were assessed by combined bisulfite restriction analysis and chromatin immunoprecipitation, respectively. There were increased plasma renin activity, angiotensin I (ANGI), and ANGII concentrations in LBW compared to ABW lambs at day 20. In LBW lambs, there was increased expression of cardiac ACE2 mRNA, decreased ANGII receptor type 1 (AT1R) protein, and acetylation of histone H3K9 of the AT1R promoter but no changes in AT1R mRNA expression and AT1R promoter DNA methylation. There was no difference in the abundance of proteins involved in autophagy or fibrosis. BIRC5 and VEGF mRNA expression was increased; however, the total length of the capillaries was decreased in the hearts of LBW lambs. Activation of the circulating and local cardiac RAS in neonatal LBW lambs may be expected to increase cardiac fibrosis, autophagy, and capillary length. However, we observed only a decrease in total capillary length, suggesting a dysregulation of the RAS in the heart of LBW lambs and this may have significant implications for heart health in later life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Brooke Summers-Pearce
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Larisa Bobrovskaya
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Darran N Tosh
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Jaime A Duffield
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
5
|
Xie X, Wu H, Zhao S, Xie G, Huangfu X, Zhao J. The effect of platelet-rich plasma on patterns of gene expression in a dog model of anterior cruciate ligament reconstruction. J Surg Res 2012; 180:80-8. [PMID: 23174707 DOI: 10.1016/j.jss.2012.10.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/24/2012] [Accepted: 10/11/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Autologous platelet-rich plasma (PRP) has been investigated as a potential promoter of tendon healing and has an enhancing effect on the anterior cruciate ligament (ACL) graft maturation process. However, the influence of PRP on the synthesis and degradation of the extracellular matrix during the ACL graft remodeling process has never been investigated. MATERIALS AND METHODS Healthy and mature beagle dogs were randomly assigned to one of four groups: in group I (PRP group), ACL grafts were treated with PRP; in group II (control group), ACL grafts were treated with saline; in group III (sham group), only the knee joints were exposed; in group IV (normal control group), no surgery was performed to the knees. Ligament tissue was dissected at 2, 6, and 12 wk after surgery, and real-time PCR was performed using primers for growth factor-β1 (TGF-β1), collagen type1A1 (COL1Al), collagen type3A1 (COL3A1), decorin, biglycan, matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-13 (MMP-13), and tissue inhibitor of metalloproteinase-1 (TIMP-1). RESULT In group I, the messenger RNA (mRNA) levels of collagen type 1A1, biglycan, and MMP-1 all increased 2, 6, and 12 wk after surgery, compared with group II (P < 0.05). At 2 and 6 wk after surgery, increased levels of COL3A1, MMP-1, and MMP-13 mRNA were also detected in group I (P < 0.05). Increased levels of TGF-β1 mRNA was observed at 6 and 12 wk in group I after surgery (P < 0.05). CONCLUSIONS During the graft remodeling process, we observed a time-dependent change of gene expression following ACL reconstruction surgery. Furthermore, our results demonstrate that PRP alters the expression of some target genes at certain time points, especially during the early stages of graft remodeling, which might explain the enhancing effect of PRP on the ACL graft maturation process.
Collapse
Affiliation(s)
- Xiaoxing Xie
- Department of Arthroscopic Surgery, Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
6
|
Achari Y, Chin JWS, Heard BJ, Rattner JB, Shrive NG, Frank CB, Hart DA. Molecular events surrounding collagen fibril assembly in the early healing rabbit medial collateral ligament--failure to recapitulate normal ligament development. Connect Tissue Res 2010; 52:301-12. [PMID: 21117900 DOI: 10.3109/03008207.2010.524719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
??Although injuries to the medial collateral ligament (MCL) can heal functionally without surgical intervention, the collagen fibers in the healing tissue remain compromised. The molecular basis for this poor healing potential was investigated by examining extracellular matrix-modifying molecules such as bone morphogenetic protein 1 (BMP-1), procollagen C proteinase enhancer (PCOLCE), lysyl oxidase (LOX), and transforming growth factor beta 1 (TGF-β1) involved in collagen fibrillogenesis during normal early postnatal ligament maturation and at comparable intervals after MCL injury. Samples of midsections of rabbit MCLs were collected from 3-, 6-, 14-, and 52-week-old normal animals and at 3, 6, and 14 weeks postinjury. Harvested midsubstance tissues were analyzed for collagen fibril diameter by transmission electron microscopy (TEM), and mRNA levels were assessed by reverse transcription-polymerase chain reaction (RT-PCR). Results showed different patterns of expression between normal MCL maturation and during scar maturation. BMP-1 and PCOLCE mRNA levels were upregulated in the 3?14-week period during maturation of normal ligaments but decreased at skeletal maturity. The scar tissue exhibited a 3.5-fold increase in PCOLCE mRNA levels during the early healing phase, but these decreased with time. After injury, BMP-1 mRNA levels in scars were low and did not change during healing. Both LOX and TGF-β1 mRNA levels were low during normal MCL development compared with levels at maturity and exhibited elevated mRNA levels during early healing that decreased with time postinjury. These results suggest that gene expression in scars during MCL healing does not recapitulate expression in normal ligament fibroblasts during maturation.
Collapse
Affiliation(s)
- Yamini Achari
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Attia E, Brown H, Henshaw R, George S, Hannafin JA. Patterns of gene expression in a rabbit partial anterior cruciate ligament transection model: the potential role of mechanical forces. Am J Sports Med 2010; 38:348-56. [PMID: 19966107 DOI: 10.1177/0363546509348052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The inconsistency in healing after anterior cruciate ligament (ACL) repair has been attributed to ACL fibroblast cellular metabolism, lack of a sufficient vascular supply, and the inability to form a scar or scaffold after ligament rupture because of the uniqueness of the intra-articular environment. Hypotheses (1) Stress deprivation in the surgically transected ACL will increase matrix metalloproteinase (MMP) and alpha smooth muscle actin (alpha-SMA) expression. (2) Stress deprivation will decrease collagen expression. (3) The transected anteromedial bundle of the ACL will demonstrate a pattern of gene expression similar to the completely transected ACL, while gene expression profiles in the intact posterolateral bundle will be similar to the sham-operated controls. STUDY DESIGN Controlled laboratory study. METHODS Thirty-six New Zealand White rabbits underwent a partial ACL surgical transection separating the anteromedial (AM) and posterolateral (PL) bundles and transecting the AM bundle. Contralateral ACLs were either sham operated or completely transected. Ligament tissue was harvested at 1, 2, or 6 weeks after surgery, and real-time PCR was performed using primers for collagen I, collagen III, alpha-SMA, MMP-1, and MMP-13. RESULTS At 1 week, a 28- and 29-fold increase in MMP-13 expression was seen in the complete transection and the transected AM bundle specimens when compared with sham-operated controls (P = .049, P = .018), respectively. There was no significant difference in MMP-13 between the sham controls and the intact PL bundle specimens. A 22- and 23-fold increase in alpha-SMA was seen (P = .03, P = .009) in the complete transection and transected AM bundle specimens, respectively, while no difference was seen between the intact PL bundle and controls. No significant differences were seen in collagen I (Col I) or collagen III (Col III) gene expression at 1 week. At 6 weeks, Col I expression increased 5-fold in complete transection samples (P = 3.9 x 10(-6)), 3-fold in transected AM samples (P = 3.3 x 10(-6)), and 2-fold in the intact PL bundle samples as compared with controls. alpha-SMA was increased 7.5-fold and 5-fold in complete transection and transected AM samples, respectively (P = .004, P = 2.2 x 10(-6)), while no significant change was seen in the intact PL bundle samples compared with controls. Complete transection specimens showed a 3-fold increase in MMP-1 expression. Col III increased 5.4-, 2.6-, and 2.4-fold in the complete transection, transected AM, and intact PL groups, respectively (P = .003, P = .004, P = .04). CONCLUSION Partial or complete surgical transection of the rabbit ACL with resultant loss of mechanical stimuli results in an increase in MMP-13 and alpha-SMA expression at the early time point (1 week) and an increase in alpha-SMA, Col I, and Col III expression at the later time point (6 weeks). These data provide support for the hypothesis that there is a time-dependent alteration of anabolic and catabolic matrix gene expression after injury/loss of ligament integrity. Clinical Relevance Identification of pathways that respond to mechanical stress in the intact ACL and after surgical transection may permit development of novel therapies to alter healing of the partial ACL injury or to assist in the development of biomechanical active ''smart'' scaffolds for tissue-engineered ligament replacements.
Collapse
Affiliation(s)
- Erik Attia
- Laboratory for Soft Tissue Research, Tissue Engineering Repair and Regeneration Program, Hospital for Special Surgery, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
8
|
McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res 2009; 27:1033-42. [PMID: 19170097 DOI: 10.1002/jor.20853] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Platelet-rich plasma (PRP) has generated substantial interest for tendon and ligament regeneration because of the high concentrations of growth factors in platelet alpha-granules. This study compared the temporal release of growth factors from bone marrow aspirate (BMA), PRP, and lyophilized platelet product (PP), and measured their effects on tendon and ligament gene expression. Blood and BMA were collected and processed to yield PRP and plasma. Flexor digitorum superficialis tendon (FDS) and suspensory ligament (SL) explants were cultured in 10% plasma in DMEM (control), BMA, PRP, or PP. TGF-beta1 and PDGF-BB concentrations were determined at 0, 24, and 96 h of culture using ELISA. Quantitative RT-PCR for collagen types I and III (COL1A1, COL3A1), cartilage oligomeric matrix protein (COMP), decorin, and matrix metalloproteinases-3 and 13 (MMP-3, MMP-13) was performed. TGF-beta1 and PDGF-BB concentrations were highest in PRP and PP. Growth factor quantity was unchanged in BMA, increased in PRP, and decreased in PP over 4 days. TGF-beta1 and platelet concentrations were positively correlated. Lyophilized PP and PRP resulted in increased COL1A1:COL3A1 ratio, increased COMP, and decreased MMP-13 expression. BMA resulted in decreased COMP and increased MMP-3 and MMP-13 gene expression. Platelet concentration was positively correlated with COL1A1, ratio of COL1A1:COL3A1, and COMP, and negatively correlated with COL3A1, MMP-13, and MMP-3. White blood cell concentration was positively correlated with COL3A1, MMP3, and MMP13, and negatively correlated with a ratio of COL1A1:COL3A1, COMP, and decorin. These findings support further in vivo investigation of PRP and PP for treatment of tendonitis and desmitis.
Collapse
Affiliation(s)
- Taralyn McCarrel
- Department of Clinical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
9
|
Jackson MT, Smith MM, Smith SM, Jackson CJ, Xue M, Little CB. Activation of cartilage matrix metalloproteinases by activated protein C. ACTA ACUST UNITED AC 2009; 60:780-91. [DOI: 10.1002/art.24303] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Stalling SS, Nicoll SB. Fetal ACL fibroblasts exhibit enhanced cellular properties compared with adults. Clin Orthop Relat Res 2008; 466:3130-7. [PMID: 18648900 PMCID: PMC2628219 DOI: 10.1007/s11999-008-0391-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 06/30/2008] [Indexed: 01/31/2023]
Abstract
Fetal tendons and skin heal regeneratively without scar formation. Cells isolated from these fetal tissues exhibit enhanced cellular migration and collagen production in comparison to cells from adult tissue. We determined whether fetal and adult fibroblasts isolated from the anterior cruciate ligament (ACL), a tissue that does not heal regeneratively, exhibit differences in cell migration rates and collagen elaboration. An in vitro migration assay showed fetal ACL fibroblasts migrated twice as fast as adult ACL fibroblasts at a rate of 38.90 +/- 7.69 microm per hour compared with 18.88 +/- 4.18 microm per hour, respectively. Quantification of Type I collagen elaboration by enzyme-linked immunosorbent assay showed fetal ACL fibroblasts produced four times the amount of Type I collagen compared with adult ACL fibroblasts after 7 days in culture. We observed no differences in Type III collagen with time for adult or fetal ACL fibroblasts. Our findings indicate fetal ACL fibroblasts are intrinsically different from adult ACL fibroblasts, suggesting the healing potential of the ACL may be age-dependent.
Collapse
Affiliation(s)
- Simone S. Stalling
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA
| | - Steven B. Nicoll
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA ,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
11
|
Doom M, de Bruin T, de Rooster H, van Bree H, Cox E. Immunopathological mechanisms in dogs with rupture of the cranial cruciate ligament. Vet Immunol Immunopathol 2008; 125:143-61. [DOI: 10.1016/j.vetimm.2008.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 05/06/2008] [Accepted: 05/19/2008] [Indexed: 01/24/2023]
|
12
|
Beye JA, Hart DA, Bray RC, McDougall JJ, Salo PT. Injury-induced changes in mRNA levels differ widely between anterior cruciate ligament and medial collateral ligament. Am J Sports Med 2008; 36:1337-46. [PMID: 18448582 DOI: 10.1177/0363546508316283] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The drastic difference in healing capacity between the anterior cruciate ligament and the medial collateral ligament is still largely unexplained. Few studies have compared the profiles of messenger ribonucleic acid expression for healing-associated molecules in ligaments during the course of healing. HYPOTHESIS Injury responses of the injured anterior cruciate ligament and medial collateral ligament are characterized by very different profiles of angiogenesis-promoting and repair-associated gene expression during the healing process. STUDY DESIGN Controlled laboratory study. METHODS Reverse-transcriptase polymerase chain reaction was used to assay expression of messenger ribonucleic acid for 11 healing- and angiogenesis-associated molecules at 3 days and 2, 6, and 16 weeks after anterior cruciate ligament or medial collateral ligament injury in adult female New Zealand White rabbits. RESULTS Marked differences were found in the postinjury changes in messenger ribonucleic acid levels in the anterior cruciate ligament compared to the medial collateral ligament. Notably, messenger ribonucleic acid levels for the important repair-associated growth factor transforming growth factor-beta1 did not increase in injured anterior cruciate ligament at any time point. Similarly, unlike the injured medial collateral ligament, no statistically significant increases in messenger ribonucleic acid levels for the important scar matrix protein collagen III were detected in injured anterior cruciate ligament. In contrast, matrix metalloproteinase messenger ribonucleic acid levels were markedly elevated in injured anterior cruciate ligament but only modestly increased in medial collateral ligament. CONCLUSION The results suggest that injury leads to an antifibrotic, catabolic response in the rabbit anterior cruciate ligament, possibly to prevent fibrosis and diminish the risk for loss of joint motion. CLINICAL RELEVANCE The development of effective biologically based treatments for anterior cruciate ligament injuries will need to incorporate strategies to deal with the significant differences in the molecular responses to injury of these tissues.
Collapse
Affiliation(s)
- Jasmine A Beye
- McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
13
|
Smith MM, Sakurai G, Smith SM, Young AA, Melrose J, Stewart CM, Appleyard RC, Peterson JL, Gillies RM, Dart AJ, Sonnabend DH, Little CB. Modulation of aggrecan and ADAMTS expression in ovine tendinopathy induced by altered strain. ACTA ACUST UNITED AC 2008; 58:1055-66. [DOI: 10.1002/art.23388] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res 2007; 25:1007-17. [PMID: 17415785 DOI: 10.1002/jor.20367] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The anterior cruciate ligament (ACL) of the knee is an intra-articular ligament that fails to heal after primary repair. The medial collateral ligament (MCL) of the knee is an extra-articular ligament that heals uneventfully in the majority of cases. Why these two ligaments have such different responses to injury remains unclear. In this article, we address two hypotheses: first, that the histologic response to injury is different in intra-articular and extra-articular ligaments, and second, that the response of the intra-articular ligaments can be altered by placing a collagen-platelet-rich plasma (collagen-PRP) hydrogel in the wound site. Wounds were created in extra-articular ligaments (MCL and/or patellar ligament) and an intra-articular ligament (ACL) in canine knees, and the histologic response to injury evaluated at 3 days (n = 3), 7 days (n = 4), 3 weeks (n = 5), and 6 weeks (n = 5). In the 3-week (n = 5) and 6-week (n = 5) animals, bilateral central wounds were made in the ACLs and the wounds in one knee of each animal treated with a collagen-PRP hydrogel while the contralateral side was untreated. Extra-articular ligament wounds had greater filling of the wound site and increased presence in the wound site of fibrinogen, fibronectin, PDGF-A, TGF-beta1, FGF-2, and von Willebrand's factor when compared to intra-articular ligament wounds. Treatment of the intra-articular wound with a collagen-PRP hydrogel resulted in increased filling of the wound site with repair tissue that had similar profiles of growth factor and protein expression to the extra-articular ligament wounds. The use of a collagen-PRP scaffold can ameliorate histologic differences noted between healing extra-articular ligamentous wounds and nonhealing intra-articular ligamentous wounds. This study supports the hypothesis that premature scaffold failure may play a key role in the normally expected failure of the ACL to heal after injury.
Collapse
Affiliation(s)
- Martha M Murray
- Department of Orthopaedic Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Funakoshi Y, Hariu M, Tapper JE, Marchuk LL, Shrive NG, Kanaya F, Rattner JB, Hart DA, Frank CB. Periarticular ligament changes following ACL/MCL transection in an ovine stifle joint model of osteoarthritis. J Orthop Res 2007; 25:997-1006. [PMID: 17436314 DOI: 10.1002/jor.20370] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injuries often lead to significant functional impairment, and are associated with increased risk for induction of degenerative joint disease. However, few studies have described the effect of ligament transection on the remaining intact knee ligaments. This study sought to determine specifically what impact combined ACL/medial collateral ligament (MCL) transection had on the remaining intact knee ligaments, particularly from the histological, biochemical, and molecular perspectives. Twenty weeks post-ACL/MCL transection, the cut ends of sheep MCLs were bridged by scar, while the posterior cruciate ligaments (PCLs) and lateral collateral ligaments (LCLs) seemed gross morphologically normal. Water content and cell density increased significantly in the MCL scars and the intact PCLs but were unchanged in the LCLs. Collagen fibril diameter distribution was significantly altered in both MCL scar tissue and uninjured PCLs from transected joints. MMP-13 mRNA levels in MCL scars and PCLs from ligament transected joints were increased, while TIMP-1 mRNA levels were significantly decreased in the PCLs only. This study has shown that some intact ligaments in injured joints are impacted by the injury. The joint appears to behave like an integrated organ system, with injury to one component affecting the other components as the "organ" attempts to adapt to the loss of integrity.
Collapse
Affiliation(s)
- Yusei Funakoshi
- McCaig Centre for Joint Injury & Arthritis Research, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brink HE, Miller GJ, Beredjiklian PK, Nicoll SB. Serum-dependent effects on adult and fetal tendon fibroblast migration and collagen expression. Wound Repair Regen 2006; 14:179-86. [PMID: 16630107 DOI: 10.1111/j.1743-6109.2006.00108.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell migration and extracellular matrix synthesis play an important role in the wound-healing response to injury. Several studies have described differences in migratory behavior and collagen biosynthetic activity in adult vs. fetal skin fibroblasts. The objective of this study was to examine the serum- and age-dependent effects on cell migration and collagen expression in tendon fibroblasts. Medial tendon fibroblasts were isolated from pregnant ewes and their fetuses, and cultured with and without serum for up to 7 days. Cell migration was determined by quantitative image analysis, and collagen expression was assessed by reverse transcription-polymerase chain reaction and immunohistochemical staining. In serum-containing medium, tendon fibroblasts migrated significantly faster than cells in serum-free medium. Additionally, fetal tendon fibroblasts migrated significantly faster than adult tendon fibroblasts under both culture conditions. The expression of types I and III collagen mRNA was significantly up-regulated in tendon cell populations in serum-free medium compared with those in serum-containing medium. Quantitative assessment of collagen staining indicated that fetal tenocytes produced more type I collagen than adult tenocytes under both culture conditions. These findings suggest that there is an inherent difference between adult and fetal tendon fibroblasts, which may have implications in the wound-healing response in tendons.
Collapse
Affiliation(s)
- Hallie E Brink
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvannia 19104, USA
| | | | | | | |
Collapse
|
17
|
Brink HE, Stalling SS, Nicoll SB. Influence of serum on adult and fetal dermal fibroblast migration, adhesion, and collagen expression. In Vitro Cell Dev Biol Anim 2006; 41:252-7. [PMID: 16409110 DOI: 10.1290/0503023r.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The wound healing response to injury can be affected by many factors such as cell migration and extracellular matrix elaboration. The objective of this study was to examine the serum- and age-dependent effects on cell migration, adhesion, and collagen expression by skin fibroblasts. Dermal fibroblasts were isolated and plated with and without serum for up to 7 d. Cell migration was determined by quantitative image analysis, adhesion was quantified using a centrifugation assay, and collagen expression was assessed by PCR and immunohistochemical staining. Both adult and fetal fibroblasts migrated significantly faster in serum-containing medium compared to serum-free medium. There was no significant difference in migration between the two cell types in either serum-containing or serum-free medium. There was no significant difference in adhesion in the presence of serum, although there was a greater fraction of adherent fetal skin fibroblasts than adult fibroblasts in serum-free medium. Moreover, the adherent fraction of fetal fibroblasts in serum-free medium was not significantly different from that in serum-containing medium, suggesting that fetal skin fibroblasts possess serum-independent adhesion properties. Collagen mRNA expression was significantly up-regulated in serum-free compared to serum-containing medium for both cell types. With respect to collagen immunohistochemistry, both dermal fibroblast populations exhibited greater type I collagen compared to type III collagen staining. Quantitative assessment of collagen staining indicated significantly enhanced type I collagen secretion in the presence of serum by fetal skin fibroblasts. These findings suggest that intrinsic cellular characteristics may govern the observed differences in adult and fetal wound healing.
Collapse
Affiliation(s)
- Hallie E Brink
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
18
|
Majima T, Lo IKY, Marchuk LL, Shrive NG, Frank CB. Effects of ligament repair on laxity and creep behavior of an early healing ligament scar. J Orthop Sci 2006; 11:272-7. [PMID: 16721529 DOI: 10.1007/s00776-006-1015-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Previous clinical studies have reported that conservatively managed medial collateral ligament (MCL) injuries remained unstable 9 years post injury with subjective complaints of muscle weakness, reinjuries, and post-traumatic osteoarthritis. Animal studies have also reported that healing MCLs were weaker and more lax than controls. Therefore, our purpose was to study the early effects of ligament repair on scar laxity, creep, and creep recovery in a rabbit model of bilateral medial collateral ligament (MCL) injury. METHODS Each rabbit had one MCL cut in midsubstance which was not repaired, while the other MCL had a sagittal Z-plasty repair. Six weeks after surgery, isolated bone-MCL-bone complexes were biomechanically tested for MCL laxity, cyclic creep, creep recovery, and then loaded to ultimate failure. RESULTS Nonrepaired scars were significantly more lax than both repaired Z-plasty scars and normal controls. In contrast, there was no significant difference in MCL laxity between repaired scars and normal controls. There were no significant differences between nonrepaired or repaired scars for either cyclic creep and creep recovery. Both crept significantly more and recovered significantly less than normal controls after the same load history. There were no significant differences in the failure load, stiffness, and tensile strength between gap scars and Z-plasty scars. All healing ligaments had significantly lower failure load, stiffness, and tensile strength than normal controls. CONCLUSIONS The present study demonstrates that ligament repair is effective in decreasing short-term laxity of ligament scars. These 6-week scars would be prone to abnormal creep if loaded excessively.
Collapse
Affiliation(s)
- Tokifumi Majima
- Division of Orthopaedics, Faculty of Medicine, McCaig Centre for Joint Injury & Arthritis Research, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
19
|
Batiste DL, Kirkley A, Laverty S, Thain LMF, Spouge AR, Holdsworth DW. Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthritis Cartilage 2004; 12:986-96. [PMID: 15564066 DOI: 10.1016/j.joca.2004.08.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 08/26/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize the rabbit anterior cruciate ligament transection (ACLT) model of osteoarthritis (OA) at various stages of disease using high-resolution 3-D medical imaging systems, which, in turn, will facilitate future longitudinal studies evaluating disease progression and response to therapy in live animals. METHODS Degenerative changes in femorotibial cartilage, volumetric bone mineral density (vBMD), bone volume fraction (BV/TV), and osteophyte volume were characterized ex vivo using 4-T magnetic resonance imaging (MRI) and micro-computed tomography (micro-CT) at 4, 8, and 12 weeks post-ACLT. These changes were subsequently correlated to macroscopic joint evaluation. RESULTS Macroscopic assessment demonstrated progressive cartilage degeneration post-surgery, which was significantly correlated to MRI evaluation (r=0.82, P<0.0001). Linear regression analysis indicated that vBMD and BV/TV are linearly related such that as vBMD increases, BV/TV increases (P<0.0001). Micro-CT revealed bone loss at 4 and 8 weeks post-ACLT, but recovery to control values at 12 weeks post-ACLT. Volumetric BMD was not strongly correlated with macroscopic assessment of articular cartilage degeneration (r=-0.35, P<0.0001). Quantitative measurement of osteophyte volume demonstrated a statistically significant difference (with respect to control groups) at both 8 and 12 weeks post-ACLT, but not at 4 weeks post-ACLT. CONCLUSIONS The rabbit ACLT model of OA demonstrates progressive cartilage degeneration and intermediate bone changes at 4, 8, and 12 weeks post-surgery. Cartilage and bone lesions were characterized ex vivo using 4-T MRI and micro-CT, and MRI assessment of cartilage degeneration was correlated to macroscopic grading.
Collapse
Affiliation(s)
- Danika L Batiste
- Imaging Research Laboratory, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|