1
|
Rehman MU, He F, Shu X, Guo J, Liu Z, Cao S, Long S. Antibacterial and antifungal pyrazoles based on different construction strategies. Eur J Med Chem 2025; 282:117081. [PMID: 39608204 DOI: 10.1016/j.ejmech.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
The growing prevalence of microbial infections, and antimicrobial resistance (AMR) stemming from the overuse and misuse of antibiotics, call for novel therapeutic agents, particularly ones targeting resistant microbial strains. Scientists are striving to develop innovative agents to tackle the rising microbial infections and abate the risk of AMR. Pyrazole, a five-membered heterocyclic compound belonging to the azole family, is a versatile scaffold and serves as a core structure in many drugs with antimicrobial and other therapeutic effects. In this review, we have updated pyrazole-based antibacterial and antifungal agents mainly developed between 2016 and 2024, by combining with diverse pharmacophores such as coumarin, thiazole, oxadiazole, isoxazole, indole, etc. Meanwhile, the various strategies (molecular hybridization, bioisosterism, scaffold hopping, multicomponent reactions, and catalyst-free synthesis) for integrating different functional groups with the pyrazole ring are discussed. Additionally, structure-activity relationships of these pyrazole derivatives, i.e., how structural modifications impact their selectivity and therapeutic potential against bacterial and fungal strains, are highlighted. This review provides insights into designing next-generation antimicrobials to combat AMR, and offers valuable perspectives to the scientists working on heterocyclic compounds with diverse bioactivities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Fang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Xi Shu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
2
|
Lassila L, Loimaranta V, Vallittu PK, Garoushi S. Bacterial adhesion and surface roughness of particulate-filled and short fiber-reinforced composites. Odontology 2024:10.1007/s10266-024-00997-z. [PMID: 39316233 DOI: 10.1007/s10266-024-00997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024]
Abstract
The objective of the study was to assess the initial adhesion of Streptococcus mutans (S. mutans) and surface roughness of different particulate-filled (PFC) and short fiber-reinforced (SFRC) composites. Five PFC composites (CeramX Universal, Filtek Universal, Omnichroma, Tetric Prime and Venus Diamond) and four SFRC composites (everX Posterior, everX Flow Bulk, everX Flow Dentin and experimental packable SFRC) were tested in this study. A non-contact 3D profilometer was employed to assess the surface roughness (Ra) of the polished specimens (using 4000-grit abrasive paper). For the bacterial adhesion test, the specimens (n = 5/group) were immersed in a solution of S. mutans to facilitate initial adhesion. To determine the number of cells on the surfaces of the discs as colony-forming units (CFU), the vials holding the microbial samples were highly agitated using a vortex machine. Subsequently, the samples were diluted multiple times and anaerobically incubated for 48 h at 37 °C on Mitis Salivarius Agar plates (Difco) supplemented with bacitracin. Bacterial adherence assessment was performed using SEM. The data were analyzed using ANOVA. All tested PFC and SFRC composites showed similar adhesion of S. mutan. The lowest Ra values (0.26 µm) (p < 0.05) were found in the flowable SFRCs (everX Flow Bulk & Dentin), while the highest values (p < 0.05) were observed in CeramX and everX Posterior (0.42 µm). Experimental SFRC had comparable Ra value (0.38 µm) than other commercial composites. The presence of short microfibers in the composite appeared to have no adverse effects on the initial adhesion of bacteria or the surface roughness.
Collapse
Affiliation(s)
- L Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterial Center, TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - V Loimaranta
- Department of Biomaterials Science and Turku Clinical Biomaterial Center, TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - P K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterial Center, TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of South-West Finland, Turku, Finland
| | - S Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterial Center, TCBC, Institute of Dentistry, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
The Effect of Ultraviolet Treatment on TiO2 Nanotubes: A Study of Surface Characteristics, Bacterial Adhesion, and Gingival Fibroblast Response. METALS 2022. [DOI: 10.3390/met12010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Titanium dioxide (TiO2) nanotubes are emerging as a provocative target for oral implant research. The aim of this study was to evaluate the effect of UV on the wettability behavior, bacterial colonization, and fibroblast proliferation rate of TiO2 nanotube surfaces prepared using different anodization voltages and aimed for use as implant abutment materials. Four different experimental materials were prepared: (1) TiO2 nanotube 10 V; (2) TiO2 nanotube 15 V; (3) TiO2 nanotube 20 V; and (4) commercial pure titanium as a control group. TiO2 nanotube arrays were prepared in an aqueous electrolyte solution of hydrofluoric acid (HF, 0.5 vol.%). Different anodization voltages were used to modify the morphology of the TiO2 nanotubes. Equilibrium contact angles were measured using the sessile drop method with a contact angle meter. The investigated surfaces (n = 3) were incubated at 37 °C in a suspension of Streptococcus mutans (S. mutans) for 30 min for bacterial adhesion and 3 days for biofilm formation. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 7 days and the cell proliferation rate was assessed using the AlamarBlue assayTM (BioSource International, Camarillo, CA, USA). The data were analyzed using one-way ANOVA followed by Tukey’s post-hoc test. Water contact angle measurements on the TiO2 after UV treatment showed an overall hydrophilic behavior regardless of the anodization voltage. The ranking of the UV-treated surfaces of experimental groups from lowest to highest for bacterial adhesion was: TiO2 nanotube 20 V < Ti and TiO2 nanotube 15 V < TiO2 nanotube 10 V (p < 0.05), and for bacterial biofilm formation was: TiO2 nanotube 20 V-TiO2 nanotube 10 V < Ti-TiO2 nanotube 15 V (p < 0.05). Fibroblast cell proliferation was lower on TiO2 nanotube surfaces throughout the incubation period and UV light treatment showed no enhancement in cellular response. UV treatment enhances the wettability behavior of TiO2 nanotube surfaces and could result in lower bacterial adhesion and biofilm formation.
Collapse
|
4
|
Wang T, Matinlinna JP, Burrow MF, Ahmed KE. The biocompatibility of glass-fibre reinforced composites (GFRCs) - a systematic review. J Prosthodont Res 2021; 65:273-283. [PMID: 34421062 DOI: 10.2186/jpr.jpr_d_20_00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Purpose Fiber-reinforced composites (FRCs) have received considerable attention, owing to their potential use in dental prostheses or bone fracture fixation applications. The aim of this systematic review was to analyze and report the biological properties of FRCs reported in the existing literature.Study selections A systematic search of four databases (PubMed/MEDLINE, Scopus, Web of Science, and Cochrane library) was performed to identify all relevant studies published between 1962 and 2019. The search was limited to laboratory-based studies published in English. Citation mining was also performed through cross-referencing of included studies and hand searching of relevant journals.Results A total of 1283 potentially relevant articles were initially identified, and thirty-three articles were full-text screened. In the final ten studies included for review, four investigated bacterial adhesion and growth abilities on FRCs, four investigated the fibroblastic cytotoxicity of different surface-treated FRCs, and two investigated the osseointegration between bone and FRCs. Owing to the heterogeneity of fiber types, FRC-coating, and lack of standardized testing protocols, a meta-analysis was not feasible. The included studies indicated that glass fibers, and in particular E-glass fibers, are superior to ceramics and other FRCs in terms of bacterial adherence, fibroblast cytotoxicity, and cell viability.Conclusions Glass-fiber-reinforced composites are cytocompatible materials that possess satisfactory biological properties and can be used in dental prosthesis and craniofacial implants. Further research is necessary to regulate the matrix ion release/degradation of FRCs to prolong the initially demonstrated properties.
Collapse
Affiliation(s)
- Ting Wang
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Francis Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Khaled Elsayed Ahmed
- Prosthodontics Discipline, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| |
Collapse
|
5
|
Synergistic efficacy of high-intensity ultrasound and chlorine dioxide combination for Staphylococcus aureus biofilm control. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107822] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Wang T, Matinlinna JP, Burrow MF, Ahmed KE. The biocompatibility of glass-fibre reinforced composites (GFRCs) - a systematic review. J Prosthodont Res 2021. [PMID: 33612662 DOI: 10.2186/jpr.jpr_d20_00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Fiber-reinforced composites (FRCs) have received considerable attention, owing to their potential use in dental prostheses or bone fracture fixation applications. The aim of this systematic review was to analyze and report the biological properties of FRCs reported in the existing literature. STUDY SELECTIONS A systematic search of four databases (PubMed/MEDLINE, Scopus, Web of Science, and Cochrane library) was performed to identify all relevant studies published between 1962 and 2019. The search was limited to laboratory-based studies published in English. Citation mining was also performed through cross-referencing of included studies and hand searching of relevant journals. RESULTS A total of 1283 potentially relevant articles were initially identified, and thirty-three articles were full-text screened. In the final ten studies included for review, four investigated bacterial adhesion and growth abilities on FRCs, four investigated the fibroblastic cytotoxicity of different surface-treated FRCs, and two investigated the osseointegration between bone and FRCs. Owing to the heterogeneity of fiber types, FRC-coating, and lack of standardized testing protocols, a meta-analysis was not feasible. The included studies indicated that glass fibers, and in particular E-glass fibers, are superior to ceramics and other FRCs in terms of bacterial adherence, fibroblast cytotoxicity, and cell viability. CONCLUSIONS Glass-fiber-reinforced composites are cytocompatible materials that possess satisfactory biological properties and can be used in dental prosthesis and craniofacial implants. Further research is necessary to regulate the matrix ion release/degradation of FRCs to prolong the initially demonstrated properties.
Collapse
Affiliation(s)
- Ting Wang
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.,Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - Michael Francis Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - Khaled Elsayed Ahmed
- Prosthodontics Discipline, School of Dentistry and Oral Health, Griffith University, Gold Coast
| |
Collapse
|
7
|
Lactoferrin/Calcium Phosphate-Modified Porous Ti by Biomimetic Mineralization: Effective Infection Prevention and Excellent Osteoinduction. MATERIALS 2021; 14:ma14040992. [PMID: 33669904 PMCID: PMC7923298 DOI: 10.3390/ma14040992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/05/2023]
Abstract
The surface modification of titanium (Ti) can enhance the osseointegration and antibacterial properties of implants. In this study, we modified porous Ti discs with calcium phosphate (CaP) and different concentrations of Lactoferrin (LF) by biomimetic mineralization and examined their antibacterial effects and osteogenic bioactivity. Firstly, scanning electron microscopy (SEM), the fluorescent tracing method, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and the releasing kinetics of LF were utilized to characterize the modified Ti surface. Then, the antibacterial properties against S. sanguis and S. aureus were investigated. Finally, in vitro cytological examination was performed, including evaluations of cell adhesion, cell differentiation, extracellular matrix mineralization, and cytotoxicity. The results showed that the porous Ti discs were successfully modified with CaP and LF, and that the LF-M group (200 μg/mL LF in simulated body fluid) could mildly release LF under control. Further, the LF-M group could effectively inhibit the adhesion and proliferation of S. sanguis and S. aureus and enhance the osteogenic differentiation in vitro with a good biocompatibility. Consequently, LF-M-modified Ti may have potential applications in the field of dental implants to promote osseointegration and prevent the occurrence of peri-implantitis.
Collapse
|
8
|
Abaszadeh M, Mohammadzadeh I. Creating Antibacterial Properties in Flowable Dental Composites by Incorporation of 3,4-dihydropyrimidin-2(1H)-ones. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Mangal U, Kwon JS, Choi SH. Bio-Interactive Zwitterionic Dental Biomaterials for Improving Biofilm Resistance: Characteristics and Applications. Int J Mol Sci 2020; 21:E9087. [PMID: 33260367 PMCID: PMC7730019 DOI: 10.3390/ijms21239087] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilms are formed on surfaces inside the oral cavity covered by the acquired pellicle and develop into a complex, dynamic, microbial environment. Oral biofilm is a causative factor of dental and periodontal diseases. Accordingly, novel materials that can resist biofilm formation have attracted significant attention. Zwitterionic polymers (ZPs) have unique features that resist protein adhesion and prevent biofilm formation while maintaining biocompatibility. Recent literature has reflected a rapid increase in the application of ZPs as coatings and additives with promising outcomes. In this review, we briefly introduce ZPs and their mechanism of antifouling action, properties of human oral biofilms, and present trends in anti-biofouling, zwitterionic, dental materials. Furthermore, we highlight the existing challenges in the standardization of biofilm research and the future of antifouling, zwitterated, dental materials.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea;
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
10
|
Mangal U, Min YJ, Seo JY, Kim DE, Cha JY, Lee KJ, Kwon JS, Choi SH. Changes in tribological and antibacterial properties of poly(methyl methacrylate)-based 3D-printed intra-oral appliances by incorporating nanodiamonds. J Mech Behav Biomed Mater 2020; 110:103992. [PMID: 32750663 DOI: 10.1016/j.jmbbm.2020.103992] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
It is essential for 3D-printed intra-oral appliances to be able to withstand the mechanical and microbial insult existent in the harsh environment of the oral cavity. Poly(methyl methacrylate) (PMMA)-based appliances are widely used in dentistry. Hence, the present study aimed to evaluate the role of nanodiamonds (NDs) as fillers to enhance the resistance to friction and wear. Using a solution-based mixing technique, 0.1 wt% ND was incorporated into the PMMA, and specimens were 3D-printed for tribological and bacterial analysis. The control specimens without ND fillers were tested against specimens with both amine-functionalized NDs (A-ND) and pure non-functionalized NDs (ND). The surface hardness test revealed a statistically significant increase in the Vickers micro-hardness (p < 0.001) in the nanocomposite groups. There was a significant reduction in the coefficient of friction (COF) (p < 0.01) in both the ND and A-ND nanocomposites compared to the stainless steel (SS) counter surfaces. However, for titanium (Ti)-based specimens, the COF of the control group was similar to that of A-ND but lower than that of ND. The wear resistance evaluation revealed that both the ND and A-ND groups displayed enhanced resistance to surface loss in comparison to the controls for both SS and Ti counter-surfaces (p < 0.001). Furthermore, both A-ND and ND exhibited significantly enhanced resistance to the formation of Streptococcus mutans biofilms after 48 h (p < 0.01) compared to the control group. Hence, we concluded that the addition of 0.1 wt% ND in the PMMA-based resin for 3D printing resulted in significant improvement in properties such as COF, wear resistance, and resistance to S. mutans, without any notable impact associated with the functionalization of the NDs.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - You Jin Min
- Department of Mechanical Engineering, Yonsei University College of Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dae-Eun Kim
- Department of Mechanical Engineering, Yonsei University College of Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Oznurhan F, Ozturk C. Evaluation of Polypropylene Fiber Reinforced Glass Ionomer Cement: A Comparative In-Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820930490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aim: To compare the surface roughness, microtensile bond strength (µTBS), and flexural strength of polypropylene (PP) fibers reinforced glass ionomer cements (GICs). Materials and Methods: A comparative in vitro study was designed to test the PP fiber reinforced GIC, which was formed when 0.5–1 mm length PP fibers were added into the powder of conventional GIC. Four groups were prepared (Group 1: control, Group 2: 1 wt% PP fiber, Group 3: 3 wt% PP fiber, and Group 4: 5 wt% PP fiber) to evaluate flexural strength, surface roughness values, and µTBS. A total of 10 samples with 25 × 2.5 × 5 mm dimensions were prepared for each group to test flexural strength. Disk-shaped specimens ( n = 10) of 2 mm thickness and 10 mm diameter were used to test surface roughness. A total of 24 human primary molar teeth were used to evaluate µTBS, and 12 sticks were obtained for each group. The fractured surface analyses of samples from µTBS was performed using scanning electron microscope. The data obtained from the experiments were recorded and analyzed with one-way analyses of variance technique, and the normality was tested using the Shapiro–Wilk technique. A significance level of .05 was used. Results: In flexural strength tests, Group 3 (3 wt% PP fiber) showed significantly increased values ( p < .05) when compared with other groups. Group 4 (5 wt% PP) showed significantly highest values in surface roughness tests ( p < .05). No significant differences were seen between the groups ( p > .05) according to µTBS results. More PP fibers were seen in fractured surfaces, when PP ratio increases. Conclusion: It was observed that increased PP fiber percentage showed increased surface roughness, and 3 wt% PP fiber gave optimal values for fracture toughness. Incorporation of PP fiber to GIC does not affect the bonding to primary tooth dentine.
Collapse
Affiliation(s)
- Fatih Oznurhan
- Department of Pediatric Dentistry, Faculty of Dentistry, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ceren Ozturk
- Department of Pediatric Dentistry, Faculty of Dentistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
12
|
Ultrastructural changes of smooth and rough titanium implant surfaces induced by metal and plastic periodontal probes. Clin Oral Investig 2020; 25:105-114. [PMID: 32564141 PMCID: PMC8590678 DOI: 10.1007/s00784-020-03341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
Objectives To determine the ultrastructural changes of titanium surfaces of dental implants induced by the tip of periodontal probes. Materials and methods A total of 40 samples of smooth and rough surfaces of titanium implants were randomly assigned for the treatment with metal or plastic periodontal probes under application angles of 20° and 60°. Titanium surfaces have been evaluated with CLSM prior and following to experimental probing determining various standardized 2D and 3D roughness parameters. Results The average profile and surface roughness (Ra and Sa) showed no significant difference between treated and untreated samples on smooth and rough surface areas irrespective of the probe material. On smooth surfaces several amplitude roughness parameters were increased with metal probes but reached significance only for Rp (p = 0.007). Rough surface parts showed a slight but not significant reduction of roughness following to the contact with metal probes. The surface roughness remained almost unchanged on smooth and rough implant surfaces using plastic probes. The surface roughness on implant surfaces was not dependent on the application angle irrespective of the probe material. Conclusion Probing of titanium implants with metal probes and even less with plastic probes causes only minor changes of the surface roughness. The clinical significance of these changes remains to be elucidated. Clinical relevance Using plastic probes for the clinical evaluation of the peri-implant sulcus might avoid ultrastructural changes to titanium implant surfaces.
Collapse
|
13
|
Mohammadzadeh I, Eskandarizadeh A, Shahravan A, Bavafa M, Kakooei S, Torabi M. Prevention of secondary caries by a new antibacterial compound. Dent Res J (Isfahan) 2020. [DOI: 10.4103/1735-3327.276234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Early Biofilm Formation on UV Light Activated Nanoporous TiO 2 Surfaces In Vivo. Int J Biomater 2019; 2018:7275617. [PMID: 30595694 PMCID: PMC6282137 DOI: 10.1155/2018/7275617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose To explore early S. mutans biofilm formation on hydrothermally induced nanoporous TiO2 surfaces in vivo and to examine the effect of UV light activation on the biofilm development. Materials and Methods Ti-6Al-4V titanium alloy discs (n = 40) were divided into four groups with different surface treatments: noncoated titanium alloy (NC); UV treated noncoated titanium alloy (UVNC); hydrothermally induced TiO2 coating (HT); and UV treated titanium alloy with hydrothermally induced TiO2 coating (UVHT). In vivo plaque formation was studied in 10 healthy, nonsmoking adult volunteers. Titanium discs were randomly distributed among the maxillary first and second molars. UV treatment was administered for 60 min immediately before attaching the discs in subjects' molars. Plaque samples were collected 24h after the attachment of the specimens. Mutans streptococci (MS), non-mutans streptococci, and total facultative bacteria were cultured, and colonies were counted. Results The plaque samples of NC (NC + UVNC) surfaces showed over 2 times more often S. mutans when compared to TiO2 surfaces (HT + UVHT), with the number of colonized surfaces equal to 7 and 3, respectively. Conclusion This in vivo study suggested that HT TiO2 surfaces, which we earlier showed to improve blood coagulation and encourage human gingival fibroblast attachment in vitro, do not enhance salivary microbial (mostly mutans streptococci) adhesion and initial biofilm formation when compared with noncoated titanium alloy. UV light treatment provided Ti-6Al-4V surfaces with antibacterial properties and showed a trend towards less biofilm formation when compared with non-UV treated titanium surfaces.
Collapse
|
15
|
Tanner J, Niemi H, Ojala E, Tolvanen M, Närhi T, Hjerppe J. Zirconia single crowns and multiple-unit FDPs—An up to 8 -year retrospective clinical study. J Dent 2018; 79:96-101. [DOI: 10.1016/j.jdent.2018.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
|
16
|
Biofilm formation on restorative materials and resin composite cements. Dent Mater 2018; 34:1702-1709. [DOI: 10.1016/j.dental.2018.08.300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/16/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
|
17
|
Abushahba F, Söderling E, Aalto-Setälä L, Sangder J, Hupa L, Närhi TO. Antibacterial properties of bioactive glass particle abraded titanium against
Streptococcus mutans. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabeee] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Stanković-Pešić J, Kostić M, Igić M, Đorđević V. Biofilm formation on dental materials. ACTA STOMATOLOGICA NAISSI 2018. [DOI: 10.5937/asn1877821p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
19
|
Mangoush E, Säilynoja E, Prinssi R, Lassila L, Vallittu PK, Garoushi S. Comparative evaluation between glass and polyethylene fiber reinforced composites: A review of the current literature. J Clin Exp Dent 2017; 9:e1408-e1417. [PMID: 29410756 PMCID: PMC5794118 DOI: 10.4317/jced.54205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/23/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Fiber reinforced composite (FRC) is a promising class of material that gives clinicians alternative treatment options. There are many FRC products available in the market based on either glass or polyethylene fiber type. The aim of this study was to present a comparison between glass and polyethylene fiber reinforced composites based on available literature review. MATERIAL AND METHODS A thorough literature search, with no limitation, was done up to June 2017. The range of relevant publications was surveyed using PubMed and Google Scholar. From the search results, articles related to our search terms were only considered. An assessment of these articles was done by two individuals in order to include only articles directly compare between glass and polyethylene FRCs. The search terms used were "fiber reinforced dental composites" and "glass and polyethylene fibers in dentistry". RESULTS The search provided 276 titles. Full-text analysis was performed for 29 articles that met the inclusion criteria. Most were laboratory-based research with various test specimen designs prepared according to ISO standard or with extracted teeth and only three articles were clinical studies. Most of studies (n=23) found superior characteristics of glass FRCs over polyethylene FRCs. CONCLUSIONS Significant reinforcement differences between commercial glass and polyethylene fiber reinforced composites were found. Key words:Fiber reinforced composite, glass fiber, polyethylene fiber.
Collapse
Affiliation(s)
- Enas Mangoush
- Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Eija Säilynoja
- Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Reseach Development and Production Department, Stick Tech Ltd - Member of GC Group, Turku, Finland
| | - Roosa Prinssi
- Reseach Development and Production Department, Stick Tech Ltd - Member of GC Group, Turku, Finland
| | - Lippo Lassila
- Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Biomaterials Science, Institute of Dentistry, University of Turku
| | - Pekka K Vallittu
- Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Biomaterials Science, Institute of Dentistry, University of Turku
- City of Turku Welfare Division, Oral Health Care, Turku, Finland
| | - Sufyan Garoushi
- Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Biomaterials Science, Institute of Dentistry, University of Turku
| |
Collapse
|
20
|
Altinci P, Mutluay M, Söderling E, Tezvergil-Mutluay A. Antimicrobial efficacy and mechanical properties of BAC-modified hard and soft denture liners. Odontology 2017; 106:83-89. [PMID: 28321584 DOI: 10.1007/s10266-017-0303-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/09/2017] [Indexed: 11/30/2022]
Abstract
This study investigated the antimicrobial efficacy and mechanical strength of hard and soft denture liners modified with benzalkonium chloride (BAC). The specimens (1 mm thickness, 8 mm diameter) were prepared by mixing 0.5, 1, 2 and 5 wt% BAC with soft (Sofreliner Medium, Tokuyama) and hard (Rebase II, Tokuyama) denture liners (n = 5/group). BAC was not added to the controls. Candida albicans ATCC 28366 (A 550 = 0.5) and Streptococcus mutans Ingbritt suspensions (A 550 = 0.35) were pipetted onto the specimens, and incubated for 4 h. The viable cells were collected, and determined by plate-culturing (CFU). The tests were repeated after the specimens were soaked in distilled water for 7 days. The mechanical strengths were evaluated by tear and 4-point flexural strength tests for soft and hard liners, respectively. The data were analyzed with ANOVA and Tukey's HSD tests at p = 0.05. C. albicans viability was lost in all groups of BAC-modified soft liners (p < 0.001), and S. mutans viability was reduced (p < 0.01), except of soaked BAC 0.5 wt% group (p > 0.05). For the hard liner, BAC 5 wt% killed the C. albicans and S. mutans cells both before and after soaked in water (p < 0.001). BAC 2 wt% showed comparable tear strength with the soft liner control (p > 0.05). BAC did not reduce the flexural strength of the hard liner (p > 0.05), except of BAC 5 wt% group (p < 0.01). BAC can be a promising agent reducing the C. albicans and S. mutans viability on the soft and hard denture liner surfaces.
Collapse
Affiliation(s)
- Pinar Altinci
- Finnish Doctoral Program in Oral Sciences, Turku, Finland. .,Department of Restorative Dentistry and Cariology, Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland.
| | - Murat Mutluay
- Department of Restorative Dentistry and Cariology, Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland.,TYKS University Hospital, University of Turku, Turku, Finland
| | - Eva Söderling
- Department of Restorative Dentistry and Cariology, Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland
| | - Arzu Tezvergil-Mutluay
- Department of Restorative Dentistry and Cariology, Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland.,TYKS University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Compositional differences in multi-species biofilms formed on various orthodontic adhesives. Eur J Orthod 2017; 39:528-533. [DOI: 10.1093/ejo/cjw089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Antibacterial and anti-biofilm efficacy of fluoropolymer coating by a 2,3,5,6-tetrafluoro-p-phenylenedimethanol structure. Colloids Surf B Biointerfaces 2016; 151:363-371. [PMID: 28056438 DOI: 10.1016/j.colsurfb.2016.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022]
Abstract
Fluorinated polymers generally function as antibacterial agents, but their anti-biofilm effect remains unresolved. This study investigates the efficacy of fluoropolymers containing 2,3,5,6-tetrafluoro-p-phenylenedimethanol (TFPDM) in preventing biofilm formation by Bacillus subtilis and Escherichia coli (Gram-positive and Gram-negative bacterial species). To this end, TFPDM-based acrylate and epoxy polymers (AF and EF, respectively) and their structural analogues without TFPDM (A and E, respectively) were synthesized. All polymers were coated onto polyethylene terephthalate (PET) sheets. Relative to pristine PET, sheets coated with AF reduced the initial bacterial adhesion (72h) and biofilm formation (30days) of B. subtilis by 27.6% and 68.7% and of E. coli by 89.2% and 93.8%, respectively. The comparable antibacterial and anti-biofilm efficacies were obtained by sheets with EF. The biofilm detachment was substantially facilitated from the AF, compared with the structural analogue without TFPDM (A). In this comprehensive study, the bacterial adhesion and subsequent biofilm formation were prevented by TFPDM-containing polymers effectively.
Collapse
|
23
|
Pereira SMB, Anami LC, Pereira CA, Souza ROA, Kantorski KZ, Bottino MA, Jorge AOC, Valandro LF. Bacterial Colonization in the Marginal Region of Ceramic Restorations: Effects of Different Cement Removal Methods and Polishing. Oper Dent 2016; 41:642-654. [DOI: 10.2341/15-206-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
This study evaluated the effects of excess cement removal techniques, with or without subsequent polishing, on biofilm formation and micromorphology in the marginal region of the tooth/restoration. From bovine teeth, 96 dentin blocks (4 × 8 × 2 mm) were produced, molded, and reproduced in type IV gypsum, on which 96 pressed ceramic blocks (Vita PM9, Vita Zahnfabrik; 4 × 8 × 2 mm) were produced via the lost wax technique. The dentin blocks and their respective ceramic blocks were cemented with a self-adhesive resin cement (RelyX U200, 3M ESPE), and cement excess was removed from the margin using four different techniques, followed or not by polishing with silicone rubber tips: MBr, removal with microbrush and photoactivation; MBr-Pol, MBr + polishing; Br, removal with brush and photoactivation; Br-Pol, Br + polishing; Photo-Expl, 5 seconds of initial photoactivation, removal with explorer, and final curing; Photo-Expl-Pol, Photo-Expl + polishing; Photo-SB, 5 seconds of initial photoactivation, removal with scalpel, and final curing; and Photo-SB-Pol, Photo-SB + polishing. After 24 hours, the roughness in the marginal region was analyzed using a profilometer (three measurements on each sample). Micromorphological analyses of the region were performed by stereomicroscope and scanning electron microscopy (SEM). Then the samples were contaminated with sucrose broth standardized suspension with Streptococcus mutans, Staphylococcus aureus, and Candida albicans and incubated for a period of 48 hours. The samples were quantitatively analyzed for bacterial adherence in the marginal region by confocal laser scanning microscopy and counting of colony-forming units (CFUs/mL) and qualitatively analyzed using SEM. Roughness data (Ra) were submitted to two-way analysis of variance, Tukey test at a confidence level of 95%, and Student t-tests. CFU, biomass, and biothickness data were analyzed by Kruskal-Wallis, Mann-Whitney, and Dunn tests. The removing technique statistically influenced Ra (MBr, p=0.0019; Br, p=0.002; Photo-Expl, p=0.0262; Photo-SB, p=0.0196) when comparing the polished and unpolished groups. The MBr and MBr-Pol technique differed significantly for CFU/mL values (p=0.010). There was no significant difference in the amounts of biomass and biothickness comparing polished and unpolished groups and when all groups were compared (p>0.05). Different morphological patterns were observed (more regular surface for polished groups). We conclude that margin polishing after cementation of feldspar/pressed ceramic restorations is decisive for achieving smoother surfaces, as the excess cement around the edges can increase the surface roughness in these areas, influencing bacterial adhesion.
Collapse
|
24
|
Effect of dimethylaminohexadecyl methacrylate mass fraction on fracture toughness and antibacterial properties of CaP nanocomposite. J Dent 2015; 43:1539-46. [PMID: 26404407 DOI: 10.1016/j.jdent.2015.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Biofilm acids contribute to secondary caries which is a reason for restoration failure. Previous studies synthesized nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM). The objectives of this study were to develop DMAHMD-NACP nanocomposite for double benefits of antibacterial and remineralization capabilities, and investigate the DMAHMD mass fraction effects on fracture toughness and biofilm response of NACP nanocomposite for the first time. METHODS DMAHDM was incorporated into NACP nanocomposite at mass fractions of 0% (control), 0.75%, 1.5%, 2.25% and 3%. A single edge V-notched beam method was used to measure fracture toughness K(IC). A dental plaque microcosm biofilm model using human saliva as inoculum was used to measure the antibacterial properties of composites. RESULTS K(IC) was about 1 MPa×m(1/2) for all composite (mean±sd; n=6). Adding DMAHDM from 0% to 3% did not affect K(IC) (p>0.1). Lactic acid production by biofilms on composite containing 3% DMAHDM was reduced to less than 1% of that on composite control. Metabolic activity of adherent biofilms on composite containing 3% DMAHDM was reduced to 4% of that on composite control. Biofilm colony-forming unit (CFU) counts were reduced by three orders of magnitude on NACP nanocomposite containing 3% DMAHDM. CONCLUSIONS DMAHDM-NACP nanocomposite had good fracture resistance, strong antibacterial potency, and NACP for remineralization (shown in previous studies). The DMAHDM-NACP nanocomposite may be promising for caries-inhibiting dental restorations, and the method of using double agents (DMAHDM and NACP) may have a wide applicability to other dental materials including bonding agents and cements.
Collapse
|
25
|
Biofilms in restorative dentistry: A clinical report. J Prosthet Dent 2015; 113:524-7. [DOI: 10.1016/j.prosdent.2015.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 11/21/2022]
|
26
|
Luo W, Huang Q, Liu F, Lin Z, He J. Synthesis of antibacterial methacrylate monomer derived from thiazole and its application in dental resin. J Mech Behav Biomed Mater 2015; 49:61-8. [PMID: 25988792 DOI: 10.1016/j.jmbbm.2015.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022]
Abstract
A non-quaternary ammonium antibacterial methacrylate monomer MEMT derived from thiazole was synthesized and applied into UDMA/TEGDMA dental resin with a series of mass fraction (10 wt%, 20 wt%, and 30 wt%). Double bond conversion, polymerization shrinkage, water sorption, solubility, flexural strength and modulus, and antibacterial activity of MEMT containing resin formulations were investigated with UDMA/TEGDMA as control resin. The results showed that MEMT containing dental resin had higher double bond conversion than control resin. Compared with control polymer, all MEMT containing polymer had comparable or lower polymerization shrinkage, water sorption and solubility, except for the polymer with 30 wt% of MEMT which had higher water sorption and solubility than control polymer. The MEMT had no influence on flexural strength and modulus before water immersion, but all MEMT containing polymers had lower flexural strength and modulus than control polymer after water immersion. The MEMT could endow dental polymer with obvious antibacterial activity by immobilizing MEMT into the polymeric network.
Collapse
Affiliation(s)
- Weixun Luo
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qiting Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhengmei Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
27
|
He J, Söderling E, Lassila LVJ, Vallittu PK. Preparation of antibacterial and radio-opaque dental resin with new polymerizable quaternary ammonium monomer. Dent Mater 2015; 31:575-82. [PMID: 25743040 DOI: 10.1016/j.dental.2015.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/03/2014] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE A new polymerizable quaternary ammonium monomer (IPhene) with iodine anion was synthesized and incorporated into Bis-GMA/TEGDMA (50/50, wt/wt) to prepare antibacterial and radio-opaque dental resin. METHODS IPhene was synthesized through a 2-steps reaction route, and its structure was confirmed by FT-IR and (1)H-NMR spectra. IPhene was incorporated into Bis-GMA/TEGDMA (50/50, wt/wt) with a series of mass fraction (from 10 wt.% to 40 wt.%). Degree of monomer conversion (DC) was determined by FT-IR analysis. Polymerization shrinkage was determined according to the variation of density before and after polymerization. The flexural strength, modulus of elasticity, and fracture energy were measured using a three-point bending set up. Radiograph was taken to evaluate the radio-opacity of the polymer. A single-species biofilm model with Streptococcus mutans (S. mutans) as the tests organism was used to evaluate the antibacterial activity of the polymer. Bis-GMA/TEGDMA resin system without IPhene was used as a control group. RESULTS FT-IR and (1)H-NMR spectra of IPhene revealed that IPhene was the same as the designed structure. ANOVA analysis showed that when mass fraction of IPhene was more than 10 wt.%, the obtained resin formulation had lower DC, polymerization shrinkage, FS, and FM than control resin (p<0.05). Polymers with 20 wt.% and 30 wt.% IPhene had higher fracture energies than control polymer (p<0.05). IPhene containing samples had higher radio-opacity than control group (p<0.05), and radio-opacity of IPhene containing sample increased with the increasing of IPhene mass fraction (p<0.05). Only polymers with 30 wt.% and 40 wt.% of IPhene showed antibacterial activity (p<0.05). SIGNIFICANCE IPhene could endow dental resin with both antibacterial and radio-opaque activity when IPhene reached 30 wt.% or more. Though sample with 30 wt.% of IPhene had lower FS and FM than control group, its lower volumetric shrinkage, higher fracture energy, higher radio-opacity, and antibacterial activity still made it having potential to be used in dentistry.
Collapse
Affiliation(s)
- Jingwei He
- Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program, University of Turku, Lemminkäisenkatu 2, Turku 20520, Finland; Turku Clinical Biomaterials Centre-TCBC, University of Turku, Itäinen Pitkäkatu 4 B, Turku FI-20520, Finland; College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Turku 20520, Finland
| | - Lippo V J Lassila
- Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program, University of Turku, Lemminkäisenkatu 2, Turku 20520, Finland; Turku Clinical Biomaterials Centre-TCBC, University of Turku, Itäinen Pitkäkatu 4 B, Turku FI-20520, Finland; Institute of Dentistry, University of Turku, Turku 20520, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program, University of Turku, Lemminkäisenkatu 2, Turku 20520, Finland; Turku Clinical Biomaterials Centre-TCBC, University of Turku, Itäinen Pitkäkatu 4 B, Turku FI-20520, Finland; Institute of Dentistry, University of Turku, Turku 20520, Finland; City of Turku Welfare Division, Oral Health Care, Turku 20101, Finland
| |
Collapse
|
28
|
Wu J, Weir MD, Melo MAS, Xu HHK. Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles. J Dent 2015; 43:317-26. [PMID: 25625674 DOI: 10.1016/j.jdent.2015.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/06/2015] [Accepted: 01/19/2015] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Fracture and secondary caries are the primary reasons for dental restoration failure. The objective of this study was to develop a self-healing composite to heal cracks, while containing dimethylaminohexadecyl methacrylate (DMAHDM) for antibacterial function and nanoparticles of amorphous calcium phosphate (NACP) for remineralization. METHODS Microcapsules were synthesized with poly(urea-formaldehyde) (PUF) shells containing triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid. Composite contained 20 mass% of NACP and 35% glass fillers. In addition, composite contained 0%, 2.5%, 5%, 7.5%, or 10% of microcapsules. A single edge V-notched beam method measured fracture toughness (KIC) and self-healing efficiency. A dental plaque microcosm biofilm model was used to test the antibacterial properties. RESULTS Incorporation of microcapsules up to 7.5% into the composite did not adversely affect the mechanical properties (p > 0.1). Successful self-healing was achieved, with KIC recovery of 65-81% (mean ± sd; n = 6) to regain the load-bearing capability after composite fracture. The self-healing DMAHDM-NACP composite displayed a strong antibacterial potency, inhibiting biofilm viability and lactic acid production, and reducing colony-forming units by 3-4 orders of magnitude, compared to control composite without DMAHDM. CONCLUSIONS A dental composite was developed with triple benefits of self-healing after fracture, antibacterial activity, and remineralization capability for the first time. CLINICAL SIGNIFICANCE The self-healing, antibacterial and remineralizing composite may be promising for tooth cavity restorations to combat bulk fracture and secondary caries. The method of using triple agents (self-healing microcapsules, DMAHDM, and NACP) may have wide applicability to other dental composites, adhesives, sealants and cements.
Collapse
Affiliation(s)
- Junling Wu
- Department of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan 250012, China; Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA.
| |
Collapse
|
29
|
Hamanaka I, Iwamoto M, Lassila L, Vallittu P, Shimizu H, Takahashi Y. Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand 2014; 72:859-65. [PMID: 24850507 DOI: 10.3109/00016357.2014.919662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study investigated the influence of water sorption on certain mechanical properties of injection-molded thermoplastic denture base resins. MATERIALS AND METHODS Six thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethylmethacrylate) and a polymethylmethacrylate (PMMA) conventional heat-polymerized denture-based polymer, selected as a control, were tested. Specimens of each denture base material were fabricated according to ISO 1567 specifications and were either dry or water-immersed for 30 days (n = 10). The ultimate flexural strength, the flexural strength at the proportional limit and the elastic modulus of the denture base materials were calculated. RESULTS Water sorption significantly decreased the ultimate flexural strength, the flexural strength at the proportional limit and the elastic modulus of one of the polyamides and the PMMAs. It also significantly increased the ultimate flexural strength of the polycarbonate. CONCLUSION The mechanical properties of some injection-molded thermoplastic denture base resins changed after water sorption.
Collapse
Affiliation(s)
- Ippei Hamanaka
- Division of Removable Prosthodontics, Fukuoka Dental College , Fukuoka , Japan
| | | | | | | | | | | |
Collapse
|
30
|
He J, Söderling E, Lassila LVJ, Vallittu PK. Synthesis of antibacterial and radio-opaque dimethacrylate monomers and their potential application in dental resin. Dent Mater 2014; 30:968-76. [PMID: 24938926 DOI: 10.1016/j.dental.2014.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/22/2013] [Accepted: 05/21/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE In this study, three dimethacrylate quaternary ammonium compounds N,N-bis[2-(3-(methacryloyloxy)propanamido)ethyl]-N-methyldodecyl ammonium iodide (QADMAI-12), N,N-bis[2-(3-(methacryloyloxy)propanamido)ethyl]-N-methylhexadecyl-ammonium iodide (QADMAI-16), and N,N-bis[2-(3-(methacryloyloxy)propanamido)ethyl]-N-methyloctadectyl ammonium iodide (QADMAI-18) were synthesized and proposed to be used as antibacterial and radio-opaque agents in dental resin. METHODS All QADMAIs were synthesized through a 2-steps reaction route, and their structures were confirmed by FT-IR and 1H NMR spectra. Antibacterial activities against Streptococcus mutans (S. mutans) of QADMAIs were measured by agar diffusion test. Each QADMAI was mixed with TEGDMA (50/50, w/w) and photoinitiation system (0.7 wt% of CQ and 0.7 wt% of DMAEMA) to form resin system. Degree of monomer conversion (DC) was determined by FT-IR analysis. The flexural strength (FS) and modulus (FM) of the polymer were measured using a three-point bending set up. Radiograph was taken to determine the radio-opacity of the polymer, and aluminum step-wedge (0.5-4 mm) was used as calibration standard. Surface charge density was measured using fluorescein binding. A single-species biofilm model with S. mutans as the tests organism was used to evaluate the antibacterial property of the polymer. Bis-GMA/TEGDMA resin system was used as control material in all of the tests. RESULTS FT-IR and 1H NMR spectra showed that the structures of QADMAIs were the same as designed. ANOVA analysis revealed that antibacterial activity of QADMAI decreased with the increasing of alkyl chain length (p<0.05). QADMAI containing polymers had higher DC (p<0.05) but lower FS and FM (p<0.05) than control polymer. Alkyl chain length had no influence on DC (p>0.05), but FS and FM of QADMAI-12 containing polymer were better than those of QADMAI-16 and QADMAI-18 containing polymers (p<0.05). QADMAI containing polymers had much better radio-opacity than control polymer (p<0.05), and the radio-opacity of polymer decreased with the increasing of alkyl chain length (p<0.05). All of QADMAIs containing polymers had higher surface charge density than control polymer (p<0.05), and surface charge densities of QADMAI-12 and QADMAI-16 containing polymers were nearly the same (p>0.05) which were higher than that of QADMAI-18 containing polymer (p<0.05). All of QADMAI containing polymers had good inhibitory effect on biofilm formation. SIGNIFICANCE QADMAIs had no miscibility problem with TEGDMA, and QADMAIs could endow dental resin with both antibacterial activity and radio-opacity. Formulation of QADMAI containing resin should be optimized in terms of mechanical stregth to satisfy the requirements of dental resin for clinical application.
Collapse
Affiliation(s)
- Jingwei He
- Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program, University of Turku, Turku 20520, Finland; Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland; College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Turku 20520, Finland
| | - Lippo V J Lassila
- Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland; College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; Institute of Dentistry, University of Turku, Turku 20520, Finland
| | - Pekka K Vallittu
- Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland; College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; Institute of Dentistry, University of Turku, Turku 20520, Finland
| |
Collapse
|
31
|
Liang X, Söderling E, Liu F, He J, Lassila LVJ, Vallittu PK. Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1387-1393. [PMID: 24449028 DOI: 10.1007/s10856-014-5156-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/12/2014] [Indexed: 06/03/2023]
Abstract
Four novel quaternary ammonium dimethacrylate monomers named IMQ (side alkyl chain length from 12 to 18) were synthesized with the aim to synthesize dental resin with antibacterial activity. All of IMQs were added into bis-GMA/TEGDMA dental resin system with a series of mass ratio (5, 10, and 20 wt%), double bond conversion (DC), flexural strength (FS), modulus of elasticity (FM) and biofilm formation inhibitory effect were studied. According to the results of DC, FS, FM, and the biofilm inhibitory effect, IMQ-16 containing polymer had the best comprehensive properties, and the optimal concentration of IMQ-16 in bis-GMA/TEGDMA dental resin would be in the range of 5-10 wt%.
Collapse
Affiliation(s)
- Xiaoxu Liang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | | | | | | | | | | |
Collapse
|
32
|
Sfondrini MF, Fraticelli D, Castellazzi L, Scribante A, Gandini P. Clinical evaluation of bond failures and survival between mandibular canine-to-canine retainers made of flexible spiral wire and fiber-reinforced composite. J Clin Exp Dent 2014; 6:e145-9. [PMID: 24790714 PMCID: PMC4002344 DOI: 10.4317/jced.51379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/23/2013] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The purpose of this longitudinal prospective randomized study was to evaluate the clinical reliability of two different types of postorthodontic treatment retainers: a silanised-treated glass fibers-reinforced resin composite (FRC) and a directly bonded multistranded stainless steel wire. The hypothesis of the study was to assess if significant differences are present between failure rates of the two retainers. STUDY DESIGN This prospective study was based on an assessment of 87 patients (35 men and 52 women),with an average age of 24 years who required a lower arch fixed retainer after orthodontic treatment. Patients were divided in two groups. Assignment was carried out with random tables. A follow-up examination was carried out once a month. The number, cause, and date of single bond adhesive failures were recorded for both retainers over 12 months. Teeth that were rebonded after failure were not included in the success analysis. Statistical analysis was performed by means of a Fisher's exact test, Kaplan-Meier survival estimates, and log rank test. RESULTS Bond failure rate was significantly higher (P=0.0392) for multistranded metallic wire than for FRC. CONCLUSIONS Glass fiber-reinforced resin composite retainers and multistranded metallic wires showed no significant difference in single bond failure rates over a one-year follow up. Key words:Fiber reinforced composite, fixed retention, multistranded wire, orthodontics, retainer, splint.
Collapse
Affiliation(s)
- Maria F Sfondrini
- MD, DDS, PhD. Università degli Studi di Pavia - Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Sezione di Odontoiatria, UDA di Ortognatodonzia e Odontoiatria Infantile. Italy
| | - Danilo Fraticelli
- MD, PhD. Università degli Studi di Pavia - Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Sezione di Odontoiatria, UDA di Ortognatodonzia e Odontoiatria Infantile. Italy
| | - Linda Castellazzi
- DDS. Università degli Studi di Pavia - Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Sezione di Odontoiatria, UDA di Ortognatodonzia e Odontoiatria Infantile. Italy
| | - Andrea Scribante
- DDS, PhD. Università degli Studi di Pavia - Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Sezione di Odontoiatria, UDA di Ortognatodonzia e Odontoiatria Infantile. Italy
| | - Paola Gandini
- MD, DDS. Università degli Studi di Pavia - Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Sezione di Odontoiatria, UDA di Ortognatodonzia e Odontoiatria Infantile. Italy
| |
Collapse
|
33
|
He J, Söderling E, Vallittu PK, Lassila LVJ. Preparation and evaluation of dental resin with antibacterial and radio-opaque functions. Int J Mol Sci 2013; 14:5445-60. [PMID: 23470923 PMCID: PMC3634471 DOI: 10.3390/ijms14035445] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 11/16/2022] Open
Abstract
In order to prepare antibacterial and radio-opaque dental resin, a methacrylate monomer named 2-Dimethyl-2-dodecyl-1-methacryloxyethyl ammonium iodine (DDMAI) with both antibacterial and radio-opaque activities was added into a 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropyl)-phenyl]propane (Bis-GMA)/methyl methacrylate (MMA) dental resin system. Degree of conversion (DC), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (WSL), antibacterial activity, and radio-opacity (ROX) of the obtained dental resin system were investigated. Bis-GMA/MMA resin system without DDMAI was used as a control. The results showed that DDMAI could endow BIS-GMA/MMA resin system with good antibacterial (p < 0.05) and radio-opaque function without influencing the DC (p > 0.05). However, incorporating DDMAI into Bis-GMA/MMA resin could reduce mechanical properties (p < 0.05) and increase WS and WSL (p < 0.05), thus further work is needed in order to optimize the resin formulation.
Collapse
Affiliation(s)
- Jingwei He
- Department of Biomaterials Science, Institute of Dentistry and BioCity Turku Biomaterial Research Program, University of Turku, Turku 20520, Finland; E-Mails: (P.K.V.); (L.V.J.L.)
- Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Turku 20520, Finland; E-Mail:
| | - Pekka K. Vallittu
- Department of Biomaterials Science, Institute of Dentistry and BioCity Turku Biomaterial Research Program, University of Turku, Turku 20520, Finland; E-Mails: (P.K.V.); (L.V.J.L.)
- Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland
- Institute of Dentistry, University of Turku, Turku 20520, Finland; E-Mail:
| | - Lippo V. J. Lassila
- Department of Biomaterials Science, Institute of Dentistry and BioCity Turku Biomaterial Research Program, University of Turku, Turku 20520, Finland; E-Mails: (P.K.V.); (L.V.J.L.)
- Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku 20520, Finland
- Institute of Dentistry, University of Turku, Turku 20520, Finland; E-Mail:
| |
Collapse
|
34
|
Liang X, Huang Q, Liu F, He J, Lin Z. Synthesis of novel antibacterial monomers (UDMQA) and their potential application in dental resin. J Appl Polym Sci 2013. [DOI: 10.1002/app.39113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
He J, Söderling E, Vallittu PK, Lassila LV. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:565-73. [DOI: 10.1080/09205063.2012.699709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jingwei He
- a Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program , University of Turku , Turku , 20520 , Finland
- b Turku Clinical Biomaterials Centre-TCBC , University of Turku , Turku , 20520 , Finland
- c College of Materials Science and Engineering , South China University of Technology , Guangzhou , 510641 , China
| | - Eva Söderling
- d Institute of Dentistry , University of Turku , Turku , 20520 , Finland
| | - Pekka K. Vallittu
- a Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program , University of Turku , Turku , 20520 , Finland
- b Turku Clinical Biomaterials Centre-TCBC , University of Turku , Turku , 20520 , Finland
| | - Lippo V.J. Lassila
- a Department of Biomaterials Science, Institute of Dentistry and Biocity Turku Biomaterial Research Program , University of Turku , Turku , 20520 , Finland
- b Turku Clinical Biomaterials Centre-TCBC , University of Turku , Turku , 20520 , Finland
| |
Collapse
|
36
|
He J, Söderling E, Lassila LV, Vallittu PK. Incorporation of an antibacterial and radiopaque monomer in to dental resin system. Dent Mater 2012; 28:e110-7. [DOI: 10.1016/j.dental.2012.04.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/05/2012] [Accepted: 04/16/2012] [Indexed: 11/27/2022]
|
37
|
Närhi TO, Leminen H, Haukioja A, Söderling E. Adhesion ofAggregatibacter actinomycetemcomitansandFusobacterium nucleatumon bioactive TiO2surfaces. Clin Oral Implants Res 2012; 24:45-9. [DOI: 10.1111/j.1600-0501.2011.02399.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2011] [Indexed: 11/27/2022]
Affiliation(s)
| | - Heidi Leminen
- Clinic of Oral Diseases; Turku University Central Hospital; Turku; Finland
| | - Anna Haukioja
- Institute of Dentistry; University of Turku; Turku; Finland and National Institute of Health and Welfare, Helsinki, Finland
| | | |
Collapse
|
38
|
Claro-Pereira D, Sampaio-Maia B, Ferreira C, Rodrigues A, Melo LF, Vasconcelos MR. In situ evaluation of a new silorane-based composite resin's bioadhesion properties. Dent Mater 2011; 27:1238-45. [DOI: 10.1016/j.dental.2011.08.401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/24/2011] [Accepted: 08/24/2011] [Indexed: 11/27/2022]
|
39
|
Scribante A, Sfondrini MF, Broggini S, D'Allocco M, Gandini P. Efficacy of Esthetic Retainers: Clinical Comparison between Multistranded Wires and Direct-Bond Glass Fiber-Reinforced Composite Splints. Int J Dent 2011; 2011:548356. [PMID: 22114597 PMCID: PMC3205661 DOI: 10.1155/2011/548356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/25/2011] [Indexed: 11/17/2022] Open
Abstract
THE PURPOSE OF THIS LONGITUDINAL PROSPECTIVE RANDOMIZED STUDY WAS TO EVALUATE THE RELIABILITY OF TWO DIFFERENT TYPES OF ORTHODONTIC RETAINERS IN CLINICAL USE: a multistrand stainless steel wire and a polyethylene ribbon-reinforced resin composite. Moreover the level of satisfaction of the patient about the esthetic result was also analyzed by means of a Visual Analogue Scale (VAS). 34 patients (9 boys and 25 girls, mean age 14.3), in the finishing phase of orthodontic treatment, were selected for the study. Since splints were applied the number, cause, and date of splint failures were recorded for each single tooth over 12 months. Statistical analysis was performed using a paired t-test, Kaplan Meier survival estimates, and the log-rank test. Kruskal Wallis test was performed to analyze VAS recordings. Differences between the bond failure rates were not statistically significant. Esthetic result of VAS was significantly higher for polyethylene ribbon-reinforced resin retainers than for stainless steel wires.
Collapse
Affiliation(s)
- Andrea Scribante
- Department of Orthodontics and Department of Surgical Sciences, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | | | - Simona Broggini
- Department of Orthodontics, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Marina D'Allocco
- Department of Orthodontics, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Paola Gandini
- Department of Orthodontics, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| |
Collapse
|
40
|
|
41
|
Tanaka Y, Matin K, Gyo M, Okada A, Tsutsumi Y, Doi H, Nomura N, Tagami J, Hanawa T. Effects of electrodeposited poly(ethylene glycol) on biofilm adherence to titanium. J Biomed Mater Res A 2010; 95:1105-13. [PMID: 20878986 DOI: 10.1002/jbm.a.32932] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/19/2010] [Accepted: 05/21/2010] [Indexed: 11/07/2022]
Abstract
Protein-resistant coatings have been studied for inhibiting biofilm formation on implant devices. In this study, titanium (Ti) surfaces were biofunctionalized with poly(ethylene glycol) (PEG) by electrodeposition and were evaluated as biofilm substrates under an oral simulated environment. Streptococcus gordonii, an early colonizer of oral biofilms, was inoculated on Ti and PEG-electrodeposited Ti (PEG-Ti) surfaces and was analyzed quantitatively and topographically. Streptococcus mutans supplemented with sucrose, a late colonizer mainly found in dental plaque, was also used to form biofilms on the surfaces of Ti and PEG-Ti for 20 h followed by sonication as a means of detaching the biofilms. The results indicated that the attachment of S. gordonii on PEG-Ti surfaces was inhibited compared with Ti, and the S. mutans biofilm was easier to be detached from the surface of PEG-Ti than that of Ti. Moreover, the presence of PEG electrodeposited on Ti surface inhibited salivary protein adsorption. The degree of detachment of biofilms from PEG-Ti was associated with the inhibition of the salivary protein adsorption, suggesting weak basal attachment of the biofilms to the electrodeposited surfaces. Therefore, controlling protein adsorption at the initial stage of biofilm formation may be an effective strategy to protect metal surfaces from bacterial contamination not only in dental manipulations but also in orthopedic applications.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Metals, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lassila LVJ, Garoushi S, Tanner J, Vallittu PK, Söderling E. Adherence of Streptococcus mutans to Fiber-Reinforced Filling Composite and Conventional Restorative Materials. Open Dent J 2009; 3:227-32. [PMID: 20148170 PMCID: PMC2817876 DOI: 10.2174/1874210600903010227] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/04/2009] [Accepted: 09/04/2009] [Indexed: 11/22/2022] Open
Abstract
Objectives. The aim was to investigate the adhesion of Streptococcus mutans (S. mutans) to a short glass fibers reinforced semi-IPN polymer matrix composite resin. The effect of surface roughness on adhesion was also studied. For comparison, different commercial restorative materials were also evaluated. Materials and Methods. Experimental composite FC resin was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of IPN-resin and 55 wt% of silane treated silica fillers using high speed mixing machine. Three direct composite resins (Z250, Grandio and Nulite), resin-modified glass ionomers (Fuji II LC), amalgam (ANA 2000), fiber-reinforced composite (FRC) (everStick and Ribbond), and pre-fabricated ceramic filling insert (Cerana class 1) were tested in this study. Enamel and dentin were used as controls. The specimens (n=3/group) with or without saliva were incubated in a suspension of S. mutans allowing initial adhesion to occur. For the enumeration of cells on the disc surfaces as colony forming units (CFU) the vials with the microbe samples were thoroughly Vortex-treated and after serial dilutions grown anaerobically for 2 days at +37°C on Mitis salivarius agars (Difco) containing bacitracin. Bacterial adhesion was also evaluated by using scanning electron microscopy. Surface roughness (Ra) of the materials was also determined using a surface profilometer. All results were statistically analyzed with one-way analysis of variance (ANOVA). Results. Composite FC resin and other commercial restorative materials showed similar adhesion of S. mutans, while adhesion to dentin and enamel was significantly higher (p<0.05). Surface roughness had no effect on bacterial adhesion. Saliva coating significantly decreased the adhesion for all materials (p<0.05). Composite FC resin had a significantly higher Ra value than control groups (p<0.05). Conclusions. Short fiber-reinforced composite with semi-IPN polymer matrix revealed similar S. mutans adhesion than commercial restorative materials.
Collapse
Affiliation(s)
- Lippo V J Lassila
- Department of Prosthetic Dentistry & Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
43
|
Adhesion of Streptococcus mutans NCTC 10449 to artificial teeth: An in vitro study. J Prosthet Dent 2008; 100:309-15. [PMID: 18922260 DOI: 10.1016/s0022-3913(08)60212-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Surface response of fluorine polymer-incorporated resin composites to cariogenic biofilm adherence. Appl Environ Microbiol 2008; 74:1428-35. [PMID: 18192415 DOI: 10.1128/aem.02039-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental resin composites with incorporated polytetrafluoroethylene (PTFE) particles were developed, which theoretically could improve the surface properties of the materials, including the inhibition of bacterial adherence. To assess the surface properties in relation to biofilm formation and detachment, 23.1% (wt/wt) linear PTFE particles (FL-30) and cross-linked PTFE particles (FC-30) were incorporated into pure resin composites. Pure PTFE plates and pure resin composites without PTFE (F-0) were used as control specimens. Sucrose-dependent Streptococcus mutans biofilms were formed on the specimen blocks inside an oral biofilm reactor for various time periods and analyzed with or without application of driving forces. In addition, water contact angles and surface roughness were measured. The water contact angles of FL-30 (61.2 degrees ) and FC-30 (65.8 degrees ) were larger than that of F-0 (48.5 degrees ). The largest contact angle (107 degrees ) was detected on pure PTFE plates. However, the surfaces of FL-30, FC-30, and pure PTFE plates were rougher than that of F-0. Although the surface properties of the materials differed in terms of contact angles and roughness, these factors seemed not to affect biofilm formation on the surfaces within 5 h. Pure PTFE plates harbored almost the same amounts of biofilm as F-0. However, when a very strong driving force was applied, it was clear that there were significantly smaller amounts of biofilms retained on pure PTFE plates, which showed contact angles much higher than those of the other materials. Hydrophobicity of the resin composite was improved by incorporation of PTFE fillers. However, surface resistance against biofilm formation was not improved.
Collapse
|
45
|
Eberhard J, Menzel N, Dommisch H, Winter J, Jepsen S, Mutters R. The stage of native biofilm formation determines the gene expression of human β-defensin-2, psoriasin, ribonuclease 7 and inflammatory mediators: a novel approach for stimulation of keratinocytes with in situ formed biofilms. ACTA ACUST UNITED AC 2007; 23:21-8. [DOI: 10.1111/j.1399-302x.2007.00385.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006; 17 Suppl 2:68-81. [PMID: 16968383 DOI: 10.1111/j.1600-0501.2006.01353.x] [Citation(s) in RCA: 770] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND From an ecological viewpoint, the oral cavity, in fact the oro-pharynx, is an 'open growth system'. It undergoes an uninterrupted introduction and removal of both microorganisms and nutrients. In order to survive within the oro-pharyngeal area, bacteria need to adhere either to the soft or hard tissues in order to resist shear forces. The fast turn-over of the oral lining epithelia (shedding 3 x/day) is an efficient defence mechanism as it prevents the accumulation of large masses of microorganisms. Teeth, dentures, or endosseous implants, however, providing non-shedding surfaces, allow the formation of thick biofilms. In general, the established biofilm maintains an equilibrium with the host. An uncontrolled accumulation and/or metabolism of bacteria on the hard surfaces forms, however, the primary cause of dental caries, gingivitis, periodontitis, peri-implantitis, and stomatitis. OBJECTIVES This systematic review aimed to evaluate critically the impact of surface characteristics (free energy, roughness, chemistry) on the de novo biofilm formation, especially in the supragingival and to a lesser extent in the subgingival areas. METHODS An electronic Medline search (from 1966 until July 2005) was conducted applying the following search items: 'biofilm formation and dental/oral implants/surface characteristics', 'surface characteristics and implants', 'biofilm formation and oral', 'plaque/biofilm and roughness', 'plaque/biofilm and surface free energy', and 'plaque formation and implants'. Only clinical studies within the oro-pharyngeal area were included. RESULTS From a series of split-mouth studies, it could be concluded that both an increase in surface roughness above the R(a) threshold of 0.2 microm and/or of the surface-free energy facilitates biofilm formation on restorative materials. When both surface characteristics interact with each other, surface roughness was found to be predominant. The biofilm formation is also influenced by the type (chemical composition) of biomaterial or the type of coating. Direct comparisons in biofilm formation on different transmucosal implant surfaces are scars. CONCLUSIONS Extrapolation of data from studies on different restorative materials seems to indicate that transmucosal implant surfaces with a higher surface roughness/surface free energy facilitate biofilm formation.
Collapse
Affiliation(s)
- Wim Teughels
- Department of Periodontology, Faculty of Medicine, School of Dentistry, Oral Pathology & Maxillo-facial Surgery, Catholic University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
47
|
Konradsson K, Claesson R, van Dijken JWV. Mutans streptococci and lactobacilli in plaque on a leucite-reinforced dental ceramic and on a calcium aluminate cement. Clin Oral Investig 2006; 10:175-80. [PMID: 16642391 DOI: 10.1007/s00784-006-0045-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 03/28/2006] [Indexed: 11/26/2022]
Abstract
In this in vivo study, the proportions of mutans streptococci and lactobacilli in plaque were examined (1) on proximal surfaces of bonded, leucite-reinforced ceramic crowns and (2) on class V restorations of calcium aluminate cement (CAC). The examined proportions were intraindividually compared with those of resin composite and enamel. Mutans streptococci and lactobacilli in samples from plaque that was accumulated for 10 days on the following surfaces were determined by cultivation on blood agar plates and species-selective plates: (1) proximal leucite-reinforced ceramic crown, class II composite and enamel (n=11); and (2) class V restoration of CAC and composite, and enamel (n=17). Mutans streptococci and lactobacilli in the samples were distributed in three groups: 0, >0-1, and >1% of total bacteria. The surfaces with detected mutans streptococci were similarly distributed between the materials and enamel. The highest proportion of mutans streptococci and lactobacilli were observed on ceramic followed by composite and enamel. A higher proportion of lactobacilli, but not of mutans streptococci, was detected on enamel compared to CAC and composite. However, no significant differences were found between the surfaces. Conclusively, the materials investigated did not show different relative proportions of mutans streptococci and lactobacilli in plaque, compared to enamel.
Collapse
Affiliation(s)
- Katarina Konradsson
- Department of Odontology, Dental Hygienist Education, Dental School, Umeå University, 901 87, Umeå, Sweden.
| | | | | |
Collapse
|
48
|
Ohlmann B, Dreyhaupt J, Schmitter M, Gabbert O, Hassel A, Rammelsberg P. Clinical performance of posterior metal-free polymer crowns with and without fiber reinforcement: one-year results of a randomised clinical trial. J Dent 2006; 34:757-62. [PMID: 16567032 DOI: 10.1016/j.jdent.2006.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 02/12/2006] [Accepted: 02/15/2006] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the clinical performance of posterior, metal-free polymer crowns with and without a glass-fiber framework, in comparison to metal-ceramic crowns. METHODS After randomisation, 80 single crowns, manufactured from a newly designed polymer composite, were set in posterior teeth. Half of these received a glass-fiber framework, while half were prepared without any framework stabilisation. All polymer crowns were adhesively luted with resin cement. As the control group, 40 conventional metal-ceramic crowns were inserted with hybrid cement. Documentation included failures and other complications, as well as gingival/plaque status and aesthetic performance. RESULTS During the 12-month observation period, eight polymer crowns and three metal-ceramic crowns showed clinically relevant complications. The most frequent complications were root canal treatments (n=4) and decementation (n=4) of the crowns. A total of two crowns (one polymer crown with fiber network and one crown of the control group) had to be replaced. After 12 months, polymer crowns with glass-fiber framework exhibited significantly higher plaque accumulation (p=0.005) and gingival index (p=0.04) than metal-ceramic crowns, while no significant differences could be demonstrated for polymer crowns without fiber reinforcement. Postoperative sensibility and aesthetic performance did not differ significantly between the groups. CONCLUSIONS Within a 12-month observation period, posterior polymer crowns with and without glass-fiber framework demonstrated acceptable stability and aesthetic performance. Polymer crowns with fiber framework showed significant higher plaque accumulation and gingival index than metal-ceramic crowns.
Collapse
Affiliation(s)
- Brigitte Ohlmann
- Department of Prosthodontics, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|