1
|
Cui C, Lu C, Cai Y, Xiong Y, Duan Y, Lan K, Fan Y, Zhou X, Wei X. PTH1R Suppressed Apoptosis of Mesenchymal Progenitors in Mandibular Growth. Int J Mol Sci 2024; 25:12607. [PMID: 39684319 DOI: 10.3390/ijms252312607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic abnormalities of the parathyroid hormone 1 receptor (PTH1R) lead to profound craniomaxillofacial bone and dentition defects on account of inappropriate tissue metabolism and cellular differentiation. The coordinated activity of differentiation and viability in bone cells is indispensable for bone metabolism. Recent research demonstrates mesenchymal progenitors are responsive to PTH1R signaling for osteogenic differentiation, whereas the effect of PTH1R on cellular survival remains incompletely understood. Here, we report that mice with deletion of PTH1R in Prx1-positive mesenchymal cells (Prx1Cre;PTH1Rfl/fl) exhibit decreased alveolar bone mass due in part to apoptotic response activation. The exploration of oral bone-derived mesenchymal stem cells (OMSCs) with PTH1R deficiency suggests PTH1R signaling modulates OMSCs' apoptosis by interfering mitochondrial function and morphology. The underlying molecular mechanisms are studied by transcriptome sequencing analysis, finding that inositol trisphosphate receptor-3 (IP3R-3), an endoplasmic reticulum calcium channel protein, serves as a modulator of pro-apoptosis in OMSCs. Furthermore, we find PTH1R and its downstream protein kinase A (PKA) pathway dampen IP3R-3's expression. Of note, OMSCs with IP3R-3 overexpression recapitulate the PTH1R-deletion phenotypes, while IP3R-3 silence rescues mitochondrial dysfunction. Altogether, our study uncovers the anti-apoptotic function of PTH1R signaling in OMSCs and proves that excess apoptosis partly contributes to a weakening potential of osteogenic differentiation and aberrant mandibular development.
Collapse
Affiliation(s)
- Chen Cui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Chuang Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yanling Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yuhua Xiong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Kaiwen Lan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
2
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Li F, He M, Li S, Bai Y. Combination of parathyroid hormone pretreatment and mechanical stretch promotes osteogenesis of periodontal ligament fibroblasts. Am J Orthod Dentofacial Orthop 2021; 161:e62-e71. [PMID: 34663539 DOI: 10.1016/j.ajodo.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 11/01/2022]
Abstract
INTRODUCTION Parathyroid hormone (PTH) potentiates the mechanical loading induced bone formation in fracture healing and orthodontics. This study aimed to gain insight into the underlying mechanisms in periodontal ligament fibroblasts (PDLFs). METHODS Human PDLFs were cultured and subjected to uniaxial cyclic stretch at 0.5 Hz and 2000μ for 0, 6, 12, and 24 hours, respectively. 10 nM PTH was preadministered for 30 minutes before loading. The expression of PTH1R and osteogenic biomarkers Runx2, osteopontin, collagen type 1, alkaline phosphatase was assessed via immunofluorescence staining, quantitative polymerase chain reaction, or Western blot. Transfection of siPTH1R was applied, and alterations of osteogenic biomarkers were examined by Western blot. The expression of essential Wnt signal components Wnt3a, β-catenin, low-density lipoprotein receptor-related protein 5, Wnt5a, receptor tyrosine kinase-like orphan receptor 2 were examined, and the influence of dickkopf-related protein 1 on osteogenic biomarkers was evaluated. RESULTS The expression of PTH1R was instantaneously upregulated with PTH pretreatment and maintained a gradual increase until 24 hours. PTH synergistically enhanced the increase of Runx2, osteopontin, collagen type 1, and alkaline phosphatase under cyclic stretch, which was substantially attenuated by siPTH1R transfection. As for Wnt signal components, synergistic upregulation was detected on Wnt3a, β-catenin, and low-density lipoprotein receptor-related protein 5, whereas Wnt5a and receptor tyrosine kinase-like orphan receptor 2 increased relatively mildly. Blockage of the canonical Wnt/β-catenin pathway by dickkopf-related protein 1 impaired the boost of osteogenic biomarkers under the combined action of PTH and cyclic stretch. CONCLUSIONS The combination of PTH pretreatment and cyclic stretch promotes osteogenesis of PDLFs synergistically, and the canonical Wnt/β-catenin pathway is crucially involved in the underlying mechanism.
Collapse
Affiliation(s)
- Fan Li
- Institute of Dental Research and Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Mengya He
- Institute of Dental Research and Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shengnan Li
- Institute of Dental Research and Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Institute of Dental Research and Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lu W, Li X, Yang Y, Yi J, Xie L, Zhao Z, Li Y. PTH/PTHrP in controlled release hydrogel enhances orthodontic tooth movement by regulating periodontal bone remodaling. J Periodontal Res 2021; 56:885-896. [PMID: 33856055 DOI: 10.1111/jre.12885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to evaluate the effects of local application of parathyroid hormone (PTH) or parathyroid hormone-related protein (PTHrP) on osteogenesis and osteoclastogenesis during orthodontic tooth movement (OTM). BACKGROUND Periodontal bone remodeling is the crucial biological process in the OTM that involves both bone resorption and formation, with the former more important as the initiator. PTH or PTHrP both play dual roles in bone remodeling regulation, and the balance may shift to the bone resorption side when they are given continuously, suggesting them as potential candidate medicine for OTM acceleration. METHODS A total of 40 rats underwent orthodontic mesialization of the maxillary first molars and received no micro-perforation (MOP), or MOP followed by injection of temperature-sensitive hydrogel containing PTH, PTHrP, or normal saline. The rats were sacrificed after 2-week OTM, except for the relapse groups, which had one more week of observation after removal of the force appliances. The amount of tooth movement, rate of relapse after OTM, and effects on the bone remodeling were assessed through micro-computed tomography (μCT) analysis, alkaline phosphatase (ALP) assay, alizarin red staining, tartrate-resistant acid phosphatase (TRAP) staining, immunohistochemistry (IHC) analysis, Western blot (WB), and quantitative real-time polymerase chain reaction (qRT-PCR). The effects of PTHrP on the osteogenic differentiation of human periodontal ligament cells (hPDLCs) were explored in vitro. RESULTS The cumulative release of PTH or PTHrP from PECE hydrogels was beyond 75% at 14 days in a sustained manner. After the intervention in vivo, the distance of OTM in the PTH (0.78 ± 0.06 mm) or PTHrP (0.81 ± 0.04 mm) group was significantly larger than that of the MOP only (0.51 ± 0.04 mm) or the no MOP (0.46 ± 0.05 mm) group. Moreover, PTH injection significantly reduced the rate of relapse after OTM (25.7 ± 4.3%) compared to the control (69.6 ± 6.1%). μCT analysis showed decreased BV/TV, BS/BV, and Tb.N, while increased Tb.Sp of alveolar bone in the PTH or PTHrP group. There were also more TRAP-positive osteoclasts in the PTH or PTHrP group with a significantly enhanced ratio of receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG). The protein expressions of PTH/PTHrP type 1 receptor (PTHR1), alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), and β-catenin were significantly increased in the PTH or PTHrP group, as well as the gene expressions of Pth1r, Bglap, and Alpl. There was no significant difference between the effects of PTH and PTHrP. Nevertheless, inhibition of PTHrP on the osteogenic differentiation of hPDLCs was detected in vitro with decreased expression of OCN, RUNX2, COL-1, and ALP. CONCLUSION Local injection of either PTH or PTHrP carried by controlled release PECE hydrogel similarly enhances OTM in rats through regulating periodontal bone remodeling, which deserves further study for potential clinical application.
Collapse
Affiliation(s)
- Wenxin Lu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue Li
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Yang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianru Yi
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wu W, Fan H, Jiang Y, Liao L, Li L, Zhao J, Zhang H, Shrestha C, Xie Z. Regulation of 25-hydroxyvitamin D-1-hydroxylase and 24-hydroxylase in keratinocytes by PTH and FGF23. Exp Dermatol 2018; 27:1201-1209. [PMID: 30066343 DOI: 10.1111/exd.13760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Wenlin Wu
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Hong Fan
- Department of Endocrinology and Metabolism; The Peace Hospital Attached to Chang-Zhi Medical College; Chang-Zhi China
| | - Yi Jiang
- Department of Pathology; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Liyan Liao
- Department of Pathology; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Lusha Li
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Juan Zhao
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Huiling Zhang
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Chandrama Shrestha
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Zhongjian Xie
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| |
Collapse
|
6
|
Wolf M, Lossdörfer S, Marciniak J, Römer P, Kirschneck C, Craveiro R, Deschner J, Jäger A. CD8+ T cells mediate the regenerative PTH effect in hPDL cells via Wnt10b signaling. Innate Immun 2017; 22:674-681. [PMID: 28071181 DOI: 10.1177/1753425916669417] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It was the aim of the present investigation to examine whether the stimulating effect of parathyroid hormone (PTH) on human periodontal ligament (hPDL) cell proliferation and differentiation would be enhanced by hPDL/T-cell interaction involving Wnt10b signaling as a mediating pathway. hPDL cells were cultured from healthy premolar tissues of three adolescent orthodontic patients and exposed to PTH(1-34) in monocultures or co-cultures with CD8+ T cells. At harvest, proliferation, alkaline phosphatase-specific activity (ALP), and osteocalcin production were determined by immunofluorescence cytochemistry, real-time PCR, biochemical assay, and ELISA. Wnt10b signaling was analyzed by the use of a specific WNT10b neutralizing antibody. PTH(1-34) stimulation of T cells significantly increased Wnt10b expression and production. Wnt10b exposure of hPDL cells enhanced proliferation and differentiation. PDL cells co-cultured with T cells showed a Wnt10b-dependent regulation of proliferation and differentiation parameters. The addition of a Wnt10b-neutralizing Ab to the co-culture medium resulted in a significant inhibition of the PTH(1-34) effect on proliferation, ALP-specific activity, and osteocalcin protein expression. Our findings provide novel insight into the mechanism of action of PTH on hPDL cells and establish the interplay of T cells and hPDL cells via the Wnt10b pathway as a modulating factor for the anabolic properties of the hormone in periodontal regeneration.
Collapse
Affiliation(s)
- Michael Wolf
- 1 Department of Orthodontics, University of Bonn, Germany.,2 Department of Orthodontics, University of Jena, Germany
| | | | - Jana Marciniak
- 1 Department of Orthodontics, University of Bonn, Germany
| | - Piero Römer
- 3 Department of Orthodontics, University of Regensburg, Germany
| | | | - Rogerio Craveiro
- 4 Clinic for Pediatric Hematology and Oncology, University of Bonn, Germany
| | - James Deschner
- 5 Experimental Dento-Maxillo-Facial Medicine, University of Bonn, Germany
| | - Andreas Jäger
- 1 Department of Orthodontics, University of Bonn, Germany
| |
Collapse
|
7
|
Silva M, Vasconcelos D, Marques M, Barros S. Parathyroid hormone intermittent administration promotes delay on rat incisor eruption. Arch Oral Biol 2016; 69:102-8. [DOI: 10.1016/j.archoralbio.2016.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/02/2016] [Accepted: 05/25/2016] [Indexed: 11/24/2022]
|
8
|
Effects of Intermittent Administration of Parathyroid Hormone (1-34) on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells. Stem Cells Int 2016; 2016:4027542. [PMID: 27069479 PMCID: PMC4812479 DOI: 10.1155/2016/4027542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs) may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1) has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH) has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+) and STRO-1(-) hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+) hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+) hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R) than STRO-1(-) hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+) hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+) hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+) hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis.
Collapse
|
9
|
Vasconcelos DFP, Vasconcelos ACCG. PTH intermittent administration may be a useful therapeutic agent to avoid premature eruption of the tooth. Med Hypotheses 2016; 88:27-9. [DOI: 10.1016/j.mehy.2015.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/28/2015] [Indexed: 11/15/2022]
|
10
|
Anabolic properties of high mobility group box protein-1 in human periodontal ligament cells in vitro. Mediators Inflamm 2014; 2014:347585. [PMID: 25525297 PMCID: PMC4265691 DOI: 10.1155/2014/347585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023] Open
Abstract
High mobility group box protein-1 (HMGB1) is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immune response and subsequent regenerative processes. Here, we examined potential anabolic effects of HMGB1 on human periodontal ligament (PDL) cells in the regulation of periodontal remodelling, for example, during orthodontic tooth movement. Preconfluent human PDL cells (hPDL) were exposed to HMGB1 protein and the influence on proliferation, migration, osteogenic differentiation, and biomineralization was determined by MTS assay, real time PCR, immunofluorescence cytochemistry, ELISA, and von Kossa staining. HMGB1 protein increased hPDL cell proliferation, migration, osteoblastic marker gene expression, and protein production as well as mineralized nodule formation significantly. The present findings support the dual character of HMGB1 with anabolic therapeutic potential that might support the reestablishment of the structural and functional integrity of the periodontium following periodontal trauma such as orthodontic tooth movement.
Collapse
|