1
|
Song J, Ali A, Ma Y, Li Y. A graphene microelectrode array based microfluidic device for in situ continuous monitoring of biofilms. NANOSCALE ADVANCES 2023; 5:4681-4686. [PMID: 37705780 PMCID: PMC10496883 DOI: 10.1039/d3na00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
In situ continuous monitoring of bacterial biofilms has been a challenging job so far, but it is fundamental to the screening of novel anti-biofilm reagents. In this work, a microfluidic system utilizing a graphene-modified microelectrode array sensor was proposed to realize the dynamic state of bacterial biofilm monitoring by electrochemical impedance. The results illustrated that the observation window period of the biofilm state is significantly prolonged due to the increment of bacterial cell load on the sensing interface, thereby greatly improving the sensing signal quality. Simulation of anti-biofilm drug screening demonstrated that the performance of this method manifestly exceeded that of its endpoint counterparts.
Collapse
Affiliation(s)
- Jin Song
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
- Shandong Provincial Key Laboratory of Biosensors Jinan 250103 China
| | - Ashaq Ali
- Center of Excellence in Science & Applied Technologies (CESAT) Islamabad 75000 Pakistan
| | - Yaohong Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
- Shandong Provincial Key Laboratory of Biosensors Jinan 250103 China
| | - Yiwei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
- Shandong Provincial Key Laboratory of Biosensors Jinan 250103 China
| |
Collapse
|
2
|
Takenaka S, Sotozono M, Ohkura N, Noiri Y. Evidence on the Use of Mouthwash for the Control of Supragingival Biofilm and Its Potential Adverse Effects. Antibiotics (Basel) 2022; 11:727. [PMID: 35740134 PMCID: PMC9219991 DOI: 10.3390/antibiotics11060727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial mouthwash improves supragingival biofilm control when used in conjunction with mechanical removal as part of an oral hygiene routine. Mouthwash is intended to suppress bacterial adhesion during biofilm formation processes and is not aimed at mature biofilms. The most common evidence-based effects of mouthwash on the subgingival biofilm include the inhibition of biofilm accumulation and its anti-gingivitis property, followed by its cariostatic activities. There has been no significant change in the strength of the evidence over the last decade. A strategy for biofilm control that relies on the elimination of bacteria may cause a variety of side effects. The exposure of mature oral biofilms to mouthwash is associated with several possible adverse reactions, such as the emergence of resistant strains, the effects of the residual structure, enhanced pathogenicity following retarded penetration, and ecological changes to the microbiota. These concerns require further elucidation. This review aims to reconfirm the intended effects of mouthwash on oral biofilm control by summarizing systematic reviews from the last decade and to discuss the limitations of mouthwash and potential adverse reactions to its use. In the future, the strategy for oral biofilm control may shift to reducing the biofilm by detaching it or modulating its quality, rather than eliminating it, to preserve the benefits of the normal resident oral microflora.
Collapse
Affiliation(s)
- Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (M.S.); (N.O.); (Y.N.)
| | | | | | | |
Collapse
|
3
|
Gedam KY, Katre AN. Efficacy of Probiotic, Chlorhexidine, and Sodium Fluoride Mouthrinses on Mutans Streptococci in 8- to 12-Year-Old Children: A Crossover Randomized Trial. Lifestyle Genom 2022; 15:35-44. [PMID: 35021171 DOI: 10.1159/000519916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The oral cavity is home to a diverse and distinct microbiome. While the role of oral bacteria in cariogenic and other dental diseases is irrefutable, their beneficial effects in the form of probiotics (PB) has been less studied, especially pertaining to oral diseases in children. This study compares the efficacy of a PB mouthrinse with 0.12% chlorhexidine (CHX) and 0.05% sodium fluoride (NaF) mouthrinse on the colony counts of mutans streptococci (MS) in children. METHODS A triple-blind crossover randomized trial between interventional groups was planned. Fifty-one children between 8 to 12 years of age were divided into three groups (I, II, and III) and were exposed to all three mouthrinses (A, B, and C) by randomized allocation for a period of two weeks with an inter-phase washout period of four weeks. Pre- and post-interventional MS counts (CFU/mL) were assessed, and the mean change was analysed using the t test (intragroup) and ANOVA (intergroup and crossover). RESULTS The mean changes in the colony counts obtained with the use of PB, CHX, and NaF mouthrinses were -1.0223 (-1.2201 to -0.8246), -0.9564 (-1.1503 to -0.7626), and -0.9511 (-1.1554 to -0.7467), respectively, which were statistically significant (p < 0.0001). However, the intergroup comparison for the mean change in colony counts revealed no statistically significant differences (p > 0.05). CONCLUSION The study concluded that the PB mouthrinse was equally efficacious as compared to CHX and NaF mouthrinses against MS in 8- to 12-year-old children. However, further studies are recommended to strengthen the evidence.
Collapse
Affiliation(s)
- Krutika Y Gedam
- Department of Pediatric and Preventive Dentistry, YMT Dental College and Hospital, Navi Mumbai, India
| | - Amar N Katre
- Department of Pediatric and Preventive Dentistry, YMT Dental College and Hospital, Navi Mumbai, India
| |
Collapse
|
4
|
Hara T, Sonoi A, Handa T, Okamoto M, Kaneko E, Ikeda R, Habe T, Fujinaka H, Inoue S, Ichikawa T. Unsaturated fatty acid salts remove biofilms on dentures. Sci Rep 2021; 11:12524. [PMID: 34131212 PMCID: PMC8206114 DOI: 10.1038/s41598-021-92044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022] Open
Abstract
Candidiasis-causing Candida sp. forms biofilms with various oral bacteria in the dentures of the elderly, making it harder to kill and remove the microorganism due to the extracellular polymeric substances. We found that biofilms on dentures can effectively be removed by immersion in an unsaturated fatty acid salt solution. Using optical coherence tomography to observe the progression of biofilm removal by the fatty acid salt solution, we were able to determine that the removal was accompanied by the production of gaps at the interface between the biofilm and denture resin. Furthermore, microstructural electron microscopy observations and time-of-flight secondary ion mass spectrometry elucidated the site of action, revealing that localization of the fatty acid salt at the biofilm/denture-resin interface is an important factor.
Collapse
Affiliation(s)
- Teruyuki Hara
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Atsunori Sonoi
- Personal Health Care Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Takuya Handa
- Personal Health Care Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Masayuki Okamoto
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Eri Kaneko
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Reiko Ikeda
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Taichi Habe
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan
| | - Hidetake Fujinaka
- Personal Health Care Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Shigeto Inoue
- Analytical Science Research Laboratories, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama, 640-8580, Japan.
| | - Tetsuo Ichikawa
- Department of Prosthodontics and Oral Rehabilitation, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.
| |
Collapse
|
5
|
Dimou I, Dritsas S, Aggelopoulou P, Vassilatou K, Damianaki S, Giaouris E. Development of a herbal mouthwash containing a mixture of essential oils and plant extracts and in vitro testing of its antimicrobial efficiency against the planktonic and biofilm-enclosed cariogenic bacterium Streptococcus mutans. BIOFOULING 2021; 37:397-409. [PMID: 34027763 DOI: 10.1080/08927014.2021.1924693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
A herbal mouthwash containing essential oils of holy basil and mountain tea, extracts of St John's wort and European goldenrod (Bucovia™) and cetylpyridinium chloride, was developed and in vitro tested for its efficiency against biofilm formation by Streptococcus mutans, together with its eradicating activity against already preformed (48 h with saccharose) streptococcal biofilm. The minimum inhibitory (MIC) and bactericidal concentrations (MBC) of the final formulation, as well as of its individual components, were initially determined. The results revealed that the mouthwash needed to be applied at two-times its MIC (0.63% v.v-1) to completely inhibit biofilm formation by S. mutans, which was otherwise capable of developing a robust biofilm on the tested surface. Once fully developed, the matrix of the biofilm was found to contain a significant amount of exopolysaccharides protecting the cells, being impossible to eradicate even when exposed to pure mouthwash for 15 min, highlighting the great recalcitrance of biofilm-embedded S. mutans.
Collapse
Affiliation(s)
- Ioanna Dimou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stavros Dritsas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Paraskevi Aggelopoulou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
- The NuCLab, Nutrition and Cosmetics R&D Laboratory, Athens, Greece
| | | | | | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
6
|
Walsh DJ, Livinghouse T, Durling GM, Arnold AD, Brasier W, Berry L, Goeres DM, Stewart PS. Novel phenolic antimicrobials enhanced activity of iminodiacetate prodrugs against biofilm and planktonic bacteria. Chem Biol Drug Des 2021; 97:134-147. [PMID: 32844569 PMCID: PMC7821224 DOI: 10.1111/cbdd.13768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022]
Abstract
Prodrugs are pharmacologically attenuated derivatives of drugs that undergo bioconversion into the active compound once reaching the targeted site, thereby maximizing their efficiency. This strategy has been implemented in pharmaceuticals to overcome obstacles related to absorption, distribution, and metabolism, as well as with intracellular dyes to ensure concentration within cells. In this study, we provide the first examples of a prodrug strategy that can be applied to simple phenolic antimicrobials to increase their potency against mature biofilms. The addition of (acetoxy)methyl iminodiacetate groups increases the otherwise modest potency of simple phenols. Biofilm-forming bacteria exhibit a heightened tolerance toward antimicrobial agents, thereby accentuating the need for new antibiotics as well as those, which incorporate novel delivery strategies to enhance activity toward biofilms.
Collapse
Affiliation(s)
- Danica J. Walsh
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | - Tom Livinghouse
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Greg M. Durling
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Adrienne D. Arnold
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
- Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Whitney Brasier
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | - Luke Berry
- Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Darla M. Goeres
- Center for Biofilm EngineeringMontana State UniversityBozemanMTUSA
| | | |
Collapse
|
7
|
Ohsumi T, Takenaka S, Sakaue Y, Suzuki Y, Nagata R, Hasegawa T, Ohshima H, Terao Y, Noiri Y. Adjunct use of mouth rinses with a sonic toothbrush accelerates the detachment of a Streptococcus mutans biofilm: an in vitro study. BMC Oral Health 2020; 20:161. [PMID: 32493283 PMCID: PMC7268619 DOI: 10.1186/s12903-020-01144-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this in vitro study was to examine the possible enhancement of the biofilm peeling effect of a sonic toothbrush following the use of an antimicrobial mouth rinse. METHODS The biofilm at a noncontact site in the interdental area was treated by sound wave convection with the test solution or by immersion in the solution. The biofilm peeling effect was evaluated by determining the bacterial counts and performing morphological observations. A Streptococcus mutans biofilm was allowed to develop on composite resin discs by cultivation with stirring at 50 rpm for 72 h. The specimens were then placed in recesses located between plastic teeth and divided into an immersion group and a combination group. The immersion group was treated with phosphate buffer, chlorhexidine digluconate Peridex™ (CHX) mouth rinse or Listerine® Fresh Mint (EO) mouth rinse. The combination group was treated with CHX or EO and a sonic toothbrush. RESULTS The biofilm thickness was reduced by approximately one-half compared with the control group. The combination treatment produced a 1 log reduction in the number of bacteria compared to the EO immersion treatment. No significant difference was observed in the biofilm peeling effect of the immersion group compared to the control group. CONCLUSIONS The combined use of a sonic toothbrush and a mouth rinse enhanced the peeling of the biofilm that proliferates in places that are difficult to reach using mechanical stress.
Collapse
Affiliation(s)
- Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan.
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuuki Sakaue
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuki Suzuki
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Taisuke Hasegawa
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
8
|
Hasegawa T, Takenaka S, Ohsumi T, Ida T, Ohshima H, Terao Y, Naksagoon T, Maeda T, Noiri Y. Effect of a novel glass ionomer cement containing fluoro-zinc-silicate fillers on biofilm formation and dentin ion incorporation. Clin Oral Investig 2019; 24:963-970. [PMID: 31273528 DOI: 10.1007/s00784-019-02991-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study is aimed at evaluating the effect of a new glass ionomer cement (GIC) containing fluoro-zinc-silicate fillers on biofilm formation and ion incorporation. MATERIALS AND METHODS Streptococcus mutans biofilms were developed on two GIC materials: Caredyne Restore (CD) and Fuji VII (FJ); and hydroxyapatite (HA) for 24 h at 37 °C using a flow cell system. The morphological structure and bacterial viability were analyzed using a confocal laser scanning microscopy. Bacterial adhesion during the initial 2 h was also assessed by viable cell counting. To study the ion incorporation, restored cavities prepared on the root surfaces of human incisors were subjected to the elemental mapping of the zinc and fluoride ions in the GIC-dentin interface using a wavelength-dispersive X-ray spectroscopy electron probe microanalyzer. RESULTS Morphological observations revealed that biofilm formation in the CD group was remarkably inhibited compared with the HA and FJ groups, exhibiting sparse, thinner biofilm clusters. The microorganisms adhering to the CD group were significantly inhibited, revealing 2.9 ± 0.4 for CD, 4.9 ± 0.2 for FJ, and 5.4 ± 0.4 log colony-forming units (CFU) for HA. The CD zinc ion incorporation depth was 72.2 ± 8.0 μm. The fluoride penetration of CD was three times deeper than that of FJ; this difference was statistically significant (p < 0.05). CONCLUSIONS Enhanced by the incorporation of zinc and fluoride ions, the new GIC inhibited biofilm formation by interfering with bacterial adhesion. CLINICAL RELEVANCE A novel GIC comprised of fluoro-zinc-silicate fillers may improve clinical outcomes, such as root caries and minimally invasive dentistry.
Collapse
Affiliation(s)
- Taisuke Hasegawa
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takako Ida
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of Hard Tissue, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Traithawit Naksagoon
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.,Research Centre for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takeyasu Maeda
- Research Centre for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
9
|
ARAÚJO IJDS, CARVALHO MSD, OLIVEIRA TRD, PUPPIN-RONTANI RM, HÖFLING JF, MATTOS-GRANER RDO, STIPP RN. Antimicrobial activity of mouth rinses against bacteria that initially colonizes dental’s surface. REVISTA DE ODONTOLOGIA DA UNESP 2019. [DOI: 10.1590/1807-2577.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction Much advertising in mouthwash is conveyed in all media appealing to the anti-plaque effect and rendering a disservice to the community. Mouth rinses are available over-the-count and differ on their compositions and antimicrobial effectiveness. Objective In this study, we evaluated the antimicrobial activity of 35 widely available mouth rinses against bacterial species involved in initiation of dental biofilm – Streptococcus gordonii, Streptococcus mitis, Streptococcus oralis, Streptococcus salivarius, and Streptococcus sanguinis. Material and method The Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC) of the evaluated mouth rinses were determined according to the Clinical & Laboratory Standards Institute protocols. Data were submitted to Kruskal-Wallis test and Mann-Whitney post hoc (α=0.05). Result About 70% of the mouth rinses achieved high antibacterial activity and 30%, a low antibacterial activity against all the species tested. The most ineffective mouth rinse showed antibacterial activity (MIC) at 1:1 dilution, while the most effective showed activity even at 1:2048 dilution, which may imply prolonged effect in the mouth. About 51% of mouth rinses showed bactericidal activity, and it was verified that cetylpyridinium chloride or chlorhexidine digluconate containing in the formulation were associated with the highest activity. Conclusion Most - but not all - mouth rinses commercially available are effective in inhibiting in vitro initial colonizers of dental surfaces.
Collapse
|
10
|
Serbiak B, Fourre T, Geonnotti AR, Gambogi RJ. In vitro efficacy of essential oil mouthrinse versus dentifrices. J Dent 2017; 69:49-54. [PMID: 28863962 DOI: 10.1016/j.jdent.2017.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To compare the antimicrobial efficacy and kill penetration of essential oils (EO) mouthrinse versus stannous fluoride, and triclosan dentifrice slurries on saliva-derived biofilms using confocal laser scanning microscopy (CLSM). METHODS Saliva-derived biofilms were grown for 48h on hydroxyapatite discs using pooled, homogenized saliva from 8 healthy volunteers as the inoculum. The mean thickness of these biofilms was 84μm (range, 23-241μm). CLSM with viability mapping was used to visualize the antimicrobial kill penetration of each treatment regime within a biofilm. RESULTS At 30s treatment durations, CLSM imaging revealed greater antimicrobial activity and kill penetration of EO mouthrinse compared to sodium fluoride-, stannous fluoride-, and triclosan-containing dentifrice slurries. Quantification of biovolume revealed that EO mouthrinse treatment at 30s resulted in a greater non-viable biovolume proportion (84.6%±15.0%) than other treatment groups. Increasing the treatment duration of the triclosan dentifrice (to 60 and 120s) resulted in better penetration and an increased reduction of viable cells, comparable to EO mouthrinse treatment at 30s duration. Further, CLSM imaging showed that the combined treatment of a non-antimicrobial dentifrice (45s) with EO mouthrinse (30s) showed superior antimicrobial activity (96.2%±3.7%) compared to the antimicrobial triclosan-containing dentifrice used without a mouthrinse step (26.0%±32.0%). CONCLUSIONS Within typical exposure times, the EO-containing mouthrinse can penetrate deep into the accumulating plaque biofilm compared to the chemotherapeutic dentifrice slurries, and may provide an efficacious alternative to triclosan, when used as an adjunct with a mechanical oral care regimen. CLINICAL SIGNIFICANCE Using viability mapping and CLSM, this study demonstrated that EO-containing mouthrinse penetrates and kills microorganisms deeper and more effectively in plaque biofilm in typical exposure times when compared to dentifrice chemotherapeutic agents, providing an efficacious alternative to triclosan or stannous fluoride when used as an adjunct to mechanical oral care.
Collapse
Affiliation(s)
- Benjamin Serbiak
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Tara Fourre
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Anthony R Geonnotti
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Robert J Gambogi
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| |
Collapse
|
11
|
Herzog D, Hosny N, Niazi S, Koller G, Cook R, Foschi F, Watson T, Mannocci F, Festy F. Rapid Bacterial Detection during Endodontic Treatment. J Dent Res 2017; 96:626-632. [DOI: 10.1177/0022034517691723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria present in the root canal (RC) space following an RC treatment (RCT) can lead to persistent infections, resulting in treatment failure and the need for reintervention or extraction. Currently, there are no standardized methods in use to clinically detect bacterial presence within RC spaces. The use of paper point sampling and fluorescence staining was shown to be a rapid method, able to detect residual bacteria following treatment. The study demonstrated that Calcein acetoxymethyl (AM) proved to be a suitable dye for detecting vital bacteria within mature endodontic biofilms, with an improved sensitivity over colony-forming unit counting in a stressed biofilm model. Furthermore, in a clinical trial with primary RCTs, 53 infected teeth were sampled in vivo, and increased detection of vital cells was found when compared with colony-forming unit counting, highlighting the sensitivity of the technique in detecting low cell numbers. By combining fluorescent staining and microspectroscopy with software-based spectral analysis, successful detection of vital cells from RCs was possible after 5 min of Calcein AM incubation. Application of this technology during RCT has the potential to reduce persistent infections through vital cell detection and additional treatment. Furthermore, this technique could be applied to antimicrobial research and disinfection control in clinical settings ( ClinicalTrials.gov NCT03055975).
Collapse
Affiliation(s)
- D.B. Herzog
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - N.A. Hosny
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - S.A. Niazi
- Department of Restorative Dentistry, Dental Institute, King’s College London, London, UK
| | - G. Koller
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - R.J. Cook
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - F. Foschi
- Department of Restorative Dentistry, Dental Institute, King’s College London, London, UK
| | - T.F. Watson
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| | - F. Mannocci
- Department of Restorative Dentistry, Dental Institute, King’s College London, London, UK
| | - F. Festy
- Tissue Engineering and Biophotonics, Dental Institute, King’s College London, London, UK
| |
Collapse
|
12
|
Takenaka S, Oda M, Domon H, Ohsumi T, Suzuki Y, Ohshima H, Yamamoto H, Terao Y, Noiri Y. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture. Biochem Biophys Res Commun 2016; 480:173-179. [PMID: 27742478 DOI: 10.1016/j.bbrc.2016.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/09/2016] [Indexed: 12/14/2022]
Abstract
An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans.
Collapse
Affiliation(s)
- Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Masataka Oda
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuki Suzuki
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of Hard Tissue, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hirofumi Yamamoto
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
13
|
Chlorhexidine-induced elastic and adhesive changes of Escherichia coli cells within a biofilm. Biointerphases 2016; 11:031011. [PMID: 27604079 DOI: 10.1116/1.4962265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chlorhexidine is a widely used, commercially available cationic antiseptic. Although its mechanism of action on planktonic bacteria has been well explored, far fewer studies have examined its interaction with an established biofilm. The physical effects of chlorhexidine on a biofilm are particularly unknown. Here, the authors report the first observations of chlorhexidine-induced elastic and adhesive changes to single cells within a biofilm. The elastic changes are consistent with the proposed mechanism of action of chlorhexidine. Atomic force microscopy and force spectroscopy techniques were used to determine spring constants and adhesion energy of the individual bacteria within an Escherichia coli biofilm. Medically relevant concentrations of chlorhexidine were tested, and cells exposed to 1% (w/v) and 0.1% more than doubled in stiffness, while those exposed to 0.01% showed no change in elasticity. Adhesion to the biofilm also increased with exposure to 1% chlorhexidine, but not for the lower concentrations tested. Given the prevalence of chlorhexidine in clinical and commercial applications, these results have important ramifications on biofilm removal techniques.
Collapse
|
14
|
Ohsumi T, Takenaka S, Wakamatsu R, Sakaue Y, Narisawa N, Senpuku H, Ohshima H, Terao Y, Okiji T. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development. PLoS One 2015; 10:e0116647. [PMID: 25635770 PMCID: PMC4312048 DOI: 10.1371/journal.pone.0116647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/11/2014] [Indexed: 01/21/2023] Open
Abstract
Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.
Collapse
Affiliation(s)
- Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| | - Rika Wakamatsu
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuuki Sakaue
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Narisawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Okiji
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
15
|
Jung GB, Nam SW, Choi S, Lee GJ, Park HK. Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis. BIOMEDICAL OPTICS EXPRESS 2014; 5:3238-51. [PMID: 25401035 PMCID: PMC4230853 DOI: 10.1364/boe.5.003238] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/08/2014] [Accepted: 08/19/2014] [Indexed: 05/22/2023]
Abstract
We investigate the mode of action and classification of antibiotic agents (ceftazidime, patulin, and epigallocatechin gallate; EGCG) on Pseudomonas aeruginosa (P. aeruginosa) biofilm using Raman spectroscopy with multivariate analysis, including support vector machine (SVM) and principal component analysis (PCA). This method allows for quantitative, label-free, non-invasive and rapid monitoring of biochemical changes in complex biofilm matrices with high sensitivity and specificity. In this study, the biofilms were grown and treated with various agents in the microfluidic device, and then transferred onto gold-coated substrates for Raman measurement. Here, we show changes in biochemical properties, and this technology can be used to distinguish between changes induced in P. aeruginosa biofilms using three antibiotic agents. The Raman band intensities associated with DNA and proteins were decreased, compared to control biofilms, when the biofilms were treated with antibiotics. Unlike with exposure to ceftazidime and patulin, the Raman spectrum of biofilms exposed to EGCG showed a shift in the spectral position of the CH deformation stretch band from 1313 cm(-1) to 1333 cm(-1), and there was no difference in the band intensity at 1530 cm(-1) (C = C stretching, carotenoids). The PCA-SVM analysis results show that antibiotic-treated biofilms can be detected with high sensitivity of 93.33%, a specificity of 100% and an accuracy of 98.33%. This method also discriminated the three antibiotic agents based on the cellular biochemical and structural changes induced by antibiotics with high sensitivity and specificity of 100%. This study suggests that Raman spectroscopy with PCA-SVM is potentially useful for the rapid identification and classification of clinically-relevant antibiotics of bacteria biofilm. Furthermore, this method could be a powerful approach for the development and screening of new antibiotics.
Collapse
Affiliation(s)
- Gyeong Bok Jung
- Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
- These authors contributed equally to this work
| | - Seong Won Nam
- Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
- These authors contributed equally to this work
| | - Samjin Choi
- Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
- Program of Medical Engineering, Kyung Hee University, Seoul 130-701, South Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
- Program of Medical Engineering, Kyung Hee University, Seoul 130-701, South Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
- Program of Medical Engineering, Kyung Hee University, Seoul 130-701, South Korea
| |
Collapse
|
16
|
Yang SJ, Han SH, Lee AR, Jun JH, Son MW, Oh SH, Kim J, Paik SY. Evaluation of antimicrobial effects of commercial mouthwashes utilized in South Korea. BMB Rep 2014; 48:42-7. [PMID: 24856826 PMCID: PMC4345641 DOI: 10.5483/bmbrep.2015.48.1.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 11/25/2022] Open
Abstract
Streptococcus mutans is frequently associated with dental caries. Bacterial fermentation of food debris generates an acidic environment on the tooth surface, ultimately resulting in tooth deterioration. Therefore, various mouthwashes have been used to reduce and prevent Streptococcus mutans. The aim of this study was to evaluate the antimicrobial activities of 4 commercial mouthwashes and those of 10% and 20% ethanol solutions (formula A, B, C, D, E and F) against Streptococcus mutans using biofilm and planktonic methods. The range of reduction in the viable cell count of Streptococcus mutans as estimated by the biofilm and planktonic methods was 0.05-5.51 log (P ≤ 0.01) and 1.23-7.51 log (P ≤ 0.001) compared with the negative control, respectively, indicating that the planktonic method had a stronger antibacterial effect against S. mutans. Among the tested formulations, formula A(Garglin regularⓇ mouthwash) was the most effective against Streptococcus mutans (P ≤ 0.001). [BMB Reports 2015; 48(1): 42-47]
Collapse
Affiliation(s)
- Su-Jeong Yang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Sang-Ha Han
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Ah-Ra Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Joon-Ho Jun
- Pharmaceutical Product Research Aboratories, Dong-A ST Research Institute, Yonin 449-905, Korea
| | - Mi-Won Son
- Pharmaceutical Product Research Aboratories, Dong-A ST Research Institute, Yonin 449-905, Korea
| | - Se-Hwan Oh
- Apgugeong St. Mary's Eye Center, Seoul 135-894, Korea
| | - Jaehong Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-799, Korea
| | - Soon-Young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|