1
|
Natsir Kalla DS, Alkaabi SA, Hendra FN, Nasrun NE, Ruslin M, Forouzanfar T, Helder MN. Stem Cell-Based Tissue Engineering for Cleft Defects: Systematic Review and Meta-Analysis. Cleft Palate Craniofac J 2024; 61:1439-1460. [PMID: 37203174 PMCID: PMC11323438 DOI: 10.1177/10556656231175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This study aimed to analyze the efficacy of stem cell-based tissue engineering for the treatment of alveolar cleft (AC) and cleft palate (CP) defects in animal models. Systematic review and meta-analysis. Preclinical studies on alveolar cleft repair in maxillofacial practice. Electronic search was performed using PubMed, Embase, and Cochrane databases. Pre-clinical studies, where stem cell-based tissue engineering was used in the reconstruction of AC and CP in animal models were included. Quality of the selected articles was evaluated using SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation). Review of alveolar cleft bone augmentation interventions in preclinical models. Outcome parameters registered were new bone formation (NBF) and/or bone mineral density (BMD). Thirteen large and twelve small animal studies on AC (21) and CP (4) reconstructions were included. Studies had an unclear-to-high risk of bias. Bone marrow mesenchymal stem cells were the most widely used cell source. Meta-analyses for AC indicated non-significant benefits in favor of: (1) scaffold + cells over scaffold-only (NBF P = .13); and (2) scaffold + cells over empty control (NBF P = .66; BMD P = .31). Interestingly, dog studies using regenerative grafts showed similar to superior bone formation compared to autografts. Meta analysis for the CP group was not possible. AC and CP reconstructions are enhanced by addition of osteogenic cells to biomaterials. Directions and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of bone tissue engineering.
Collapse
Affiliation(s)
- Diandra S. Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem A. Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, UAE
| | - Faqi N. Hendra
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nisrina E. Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Sharif H, Ziaei H, Rezaei N. Stem Cell-Based Regenerative Approaches for the Treatment of Cleft Lip and Palate: A Comprehensive Review. Stem Cell Rev Rep 2024; 20:637-655. [PMID: 38270744 DOI: 10.1007/s12015-024-10676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Cleft lip and/or palate (CLP) is a prevalent congenital craniofacial abnormality that can lead to difficulties in eating, speaking, hearing, and psychological distress. The traditional approach for treating CLP involves bone graft surgery, which has limitations, post-surgical complications, and donor site morbidity. However, regenerative medicine has emerged as a promising alternative, employing a combination of stem cells, growth factors, and scaffolds to promote tissue regeneration. This review aims to provide a comprehensive overview of stem cell-based regenerative approaches in the management of CLP. A thorough search was conducted in the Medline/PubMed and Scopus databases, including cohort studies, randomized controlled trials, case series, case controls, case reports, and animal studies. The identified studies were categorized into two main groups: clinical studies involving human subjects and in vivo studies using animal models. While there are only a limited number of studies investigating the combined use of stem cells and scaffolds for CLP treatment, they have shown promising results. Various types of stem cells have been utilized in conjunction with scaffolds. Importantly, regenerative methods have been successfully applied to patients across a broad range of age groups. The collective findings derived from the reviewed studies consistently support the notion that regenerative medicine holds potential advantages over conventional bone grafting and represents a promising therapeutic option for CLP. However, future well-designed clinical trials, encompassing diverse combinations of stem cells and scaffolds, are warranted to establish the clinical efficacy of these interventions with a larger number of patients.
Collapse
Affiliation(s)
- Helia Sharif
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Dental Society, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Heliya Ziaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, US
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
| |
Collapse
|
3
|
Kemper M, Kluge A, Ney M, Beleites T, Zeidler-Rentzsch I, Keil C, Zahnert T, Neudert M. Visualization of bone formation in sheep's middle ear by using fluorochrome sequential labelling (FSL). Sci Rep 2024; 14:7046. [PMID: 38528064 DOI: 10.1038/s41598-024-57630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
One factor for the lacking integration of the middle ear stapes footplate prosthesis or the missing healing of stapes footplate fractures could be the known osteogenic inactivity. In contrast, it was recently demonstrated that titanium prostheses with an applied collagen matrix and immobilised growth factors stimulate osteoblastic activation and differentiation on the stapes footplate. Regarding those findings, the aim of this study was to evaluate the potential of bone regeneration including bone remodeling in the middle ear. Ten one-year-old female merino sheep underwent a middle ear surgery without implantation of middle ear prostheses or any other component for activating bone formation. Post-operatively, four fluorochromes (tetracycline, alizarin complexion, calcein green and xylenol orange) were administered by subcutaneous injection at different time points after surgery (1 day: tetracycline, 7 days: alizarin, 14 days: calcein, 28 days: xylenol). After 12 weeks, the temporal bones including the lateral skull base were extracted and histologically analyzed. Fluorescence microscopy analysis of the entire stapes with the oval niche, but in particular stapes footplate and the Crura stapedis revealed evidence of new bone formation. Calcein was detected in all and xylenol in 60% of the animals. In contrast, tetracycline and alizarin could only be verified in two animals. The authors were able to demonstrate the osseoregenerative potential of the middle ear, in particular of the stapes footplate, using fluorescence sequence labelling.
Collapse
Affiliation(s)
- Max Kemper
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine (and University Hospital) Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Anne Kluge
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine (and University Hospital) Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Michael Ney
- Department of Audiology and Phoniatrics, Charité - University Medicine Berlin, Berlin, Germany
| | - Thomas Beleites
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine (and University Hospital) Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ines Zeidler-Rentzsch
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine (and University Hospital) Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Faculty of Medicine (and University Hospital) Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thomas Zahnert
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine (and University Hospital) Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Marcus Neudert
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine (and University Hospital) Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
4
|
Richter RF, Vater C, Korn M, Ahlfeld T, Rauner M, Pradel W, Stadlinger B, Gelinsky M, Lode A, Korn P. Treatment of critical bone defects using calcium phosphate cement and mesoporous bioactive glass providing spatiotemporal drug delivery. Bioact Mater 2023; 28:402-419. [PMID: 37361564 PMCID: PMC10285454 DOI: 10.1016/j.bioactmat.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an improved degradation is essential to match the tissue regeneration, especially in younger patients who are still growing. We demonstrate that a combination of CPC with mesoporous bioactive glass (MBG) particles led to an enhanced degradation in vitro and in a critical alveolar cleft defect in rats. Additionally, to support new bone formation the MBG was functionalized with hypoxia conditioned medium (HCM) derived from rat bone marrow stromal cells. HCM-functionalized scaffolds showed an improved cell proliferation and the highest formation of new bone volume. This highly flexible material system together with the drug delivery capacity is adaptable to patient specific needs and has great potential for clinical translation.
Collapse
Affiliation(s)
- Richard Frank Richter
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Corina Vater
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Margarete Korn
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Winnie Pradel
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Switzerland
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Paula Korn
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
5
|
Tahmasebi E, Mohammadi M, Alam M, Abbasi K, Gharibian Bajestani S, Khanmohammad R, Haseli M, Yazdanian M, Esmaeili Fard Barzegar P, Tebyaniyan H. The current regenerative medicine approaches of craniofacial diseases: A narrative review. Front Cell Dev Biol 2023; 11:1112378. [PMID: 36926524 PMCID: PMC10011176 DOI: 10.3389/fcell.2023.1112378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Craniofacial deformities (CFDs) develop following oncological resection, trauma, or congenital disorders. Trauma is one of the top five causes of death globally, with rates varying from country to country. They result in a non-healing composite tissue wound as they degenerate in soft or hard tissues. Approximately one-third of oral diseases are caused by gum disease. Due to the complexity of anatomical structures in the region and the variety of tissue-specific requirements, CFD treatments present many challenges. Many treatment methods for CFDs are available today, such as drugs, regenerative medicine (RM), surgery, and tissue engineering. Functional restoration of a tissue or an organ after trauma or other chronic diseases is the focus of this emerging field of science. The materials and methodologies used in craniofacial reconstruction have significantly improved in the last few years. A facial fracture requires bone preservation as much as possible, so tiny fragments are removed initially. It is possible to replace bone marrow stem cells with oral stem cells for CFDs due to their excellent potential for bone formation. This review article discusses regenerative approaches for different types of craniofacial diseases.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Gharibian Bajestani
- Student Research Committee, Dentistry Research Center, Research Institute of Dental Sciences, Dental School, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Rojin Khanmohammad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Haseli
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
6
|
Combining Bone Collagen Matrix with hUC-MSCs for Application to Alveolar Process Cleft in a Rabbit Model. Stem Cell Rev Rep 2023; 19:133-154. [PMID: 34420159 DOI: 10.1007/s12015-021-10221-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Most materials used clinically for filling severe bone defects either cannot induce bone re-generation or exhibit low bone conversion, therefore, their therapeutic effects are limited. Human umbilical cord mesenchymal stem cells (hUC-MSCs) exhibit good osteoinduction. However, the mechanism by which combining a heterogeneous bone collagen matrix with hUC-MSCs to repair the bone defects of alveolar process clefts remains unclear. METHODS A rabbit alveolar process cleft model was established by removing the bone tissue from the left maxillary bone. Forty-eight young Japanese white rabbits (JWRs) were divided into normal, control, material and MSCs groups. An equal volume of a bone collagen matrix alone or combined with hUC-MSCs was implanted in the defect. X-ray, micro-focus computerized tomography (micro-CT), blood analysis, histochemical staining and TUNEL were used to detect the newly formed bone in the defect area at 3 and 6 months after the surgery. RESULTS The bone formation rate obtained from the skull tissue in MSCs group was significantly higher than that in control group at 3 months (P < 0.01) and 6 months (P < 0.05) after the surgery. The apoptosis rate in the MSCs group was significantly higher at 3 months after the surgery (P < 0.05) and lower at 6 months after the surgery (P < 0.01) than those in the normal group. CONCLUSIONS Combining bone collagen matrix with hUC-MSCs promoted the new bone regeneration in the rabbit alveolar process cleft model through promoting osteoblasts formations and chondrocyte growth, and inducing type I collagen formation and BMP-2 generation.
Collapse
|
7
|
Amiri MA, Lavaee F, Danesteh H. Use of stem cells in bone regeneration in cleft palate patients: review and recommendations. J Korean Assoc Oral Maxillofac Surg 2022; 48:71-78. [PMID: 35491137 PMCID: PMC9065639 DOI: 10.5125/jkaoms.2022.48.2.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
This study was conducted to review the efficacy of different sources of stem cells in bone regeneration of cleft palate patients. The majority of previous studies focused on the transplantation of bone marrow mesenchymal stem cells. However, other sources of stem cells have also gained considerable attention, and dental stem cells have shown especially favorable outcomes. Additionally, approaches that apply the co-culture and co-transplantation of stem cells have shown promising results. The use of different types of stem cells, based on their accessibility and efficacy in bone regeneration, is a promising method in cleft palate bone regeneration. In this regard, dental stem cells may be an ideal choice due to their efficacy and accessibility. In conclusion, stem cells, despite the lengthy procedures required for culture and preparation, are a suitable alternative to conventional bone grafting techniques.
Collapse
Affiliation(s)
- Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Danesteh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Almotawah FN, AlNamasy R, Alhamazani B, Almohsen S, AlNamasy RE. Alveolar Reconstruction Using Stem Cells in Patients with Cleft Lip and Palate: A Systematic Review. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/iobhdehrqo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Liu A, Huang J. Mechanical Tension-Stress in Alveolar Cleft Repaired With Autogenous Bone in Canine Models. Cleft Palate Craniofac J 2021; 59:442-452. [PMID: 34098764 DOI: 10.1177/10556656211018950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cleft lip and/or palate is a common birth defect worldwide, always accompanied by alveolar cleft. However, the success rate of secondary alveolar bone grafting is unsatisfactory. Rapid maxillary expansion (RME) often used after bone transplantation provides functional stimulation for bone graft area. This study aimed to investigate the effect of RME force on the bone graft area and midpalatal suture, and screen out the most suitable loaded force and loaded teeth, so as to provide a reference for clinical treatment. METHODS Fourteen 24-week-old male beagles were assigned randomly to 3 groups: blank control, autogenous, and autogenous with RME. Three-dimensional finite element analysis was conducted to evaluate the distribution and value of the stress in the model. The maxillae were collected and subjected to radiography and helical computed tomography to evaluate new bone formation in the graft area. Van Gieson's Picrofuchsin staining was performed for histomorphological observation. RESULTS After 8 weeks of RME treatment, new bone formation of the dogs was markedly accelerated, and bone resorption was significantly reduced compared with the untreated dogs or those only treated with autogenous iliac bone. The treatment with RME evidently made the bone trabecula more abundant and the area of bone formation larger. Three-dimensional finite element analysis showed that the clinical effect can be achieved by using canine teeth as the loaded teeth and applying force of 10 MPa. CONCLUSION Rapid maxillary expansion after bone grafting had a positive effect on osteogenesis in a canine model of alveolar cleft.
Collapse
Affiliation(s)
- Anqi Liu
- Department of Oral & Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Jialiang Huang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Ahlfeld T, Lode A, Richter RF, Pradel W, Franke A, Rauner M, Stadlinger B, Lauer G, Gelinsky M, Korn P. Toward Biofabrication of Resorbable Implants Consisting of a Calcium Phosphate Cement and Fibrin-A Characterization In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22031218. [PMID: 33530649 PMCID: PMC7865817 DOI: 10.3390/ijms22031218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cleft alveolar bone defects can be treated potentially with tissue engineered bone grafts. Herein, we developed novel biphasic bone constructs consisting of two clinically certified materials, a calcium phosphate cement (CPC) and a fibrin gel that were biofabricated using 3D plotting. The fibrin gel was loaded with mesenchymal stromal cells (MSC) derived from bone marrow. Firstly, the degradation of fibrin as well as the behavior of cells in the biphasic system were evaluated in vitro. Fibrin degraded quickly in presence of MSC. Our results showed that the plotted CPC structure acted slightly stabilizing for the fibrin gel. However, with passing time and fibrin degradation, MSC migrated to the CPC surface. Thus, the fibrin gel could be identified as cell delivery system. A pilot study in vivo was conducted in artificial craniofacial defects in Lewis rats. Ongoing bone formation could be evidenced over 12 weeks but the biphasic constructs were not completely osseous integrated. Nevertheless, our results show that the combination of 3D plotted CPC constructs and fibrin as suitable cell delivery system enables the fabrication of novel regenerative implants for the treatment of alveolar bone defects.
Collapse
Affiliation(s)
- Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Richard Frank Richter
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Winnie Pradel
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Adrian Franke
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III and Center for Healthy Aging, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany;
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstr 11, 8032 Zurich, Switzerland;
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
11
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
12
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
13
|
Functional Validation of a New Alginate-based Hydrogel Scaffold Combined with Mesenchymal Stem Cells in a Rat Hard Palate Cleft Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2743. [PMID: 32440413 PMCID: PMC7209877 DOI: 10.1097/gox.0000000000002743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/05/2020] [Indexed: 12/27/2022]
Abstract
Background: One of the major difficulties in cleft palate repair is the requirement for several surgical procedures and autologous bone grafting to form a bony bridge across the cleft defect. Engineered tissue, composed of a biomaterial scaffold and multipotent stem cells, may be a useful alternative for minimizing the non-negligible risk of donor site morbidity. The present study was designed to confirm the healing and osteogenic properties of a novel alginate-based hydrogel in palate repair. Methods: Matrix constructs, seeded with allogeneic bone marrow–derived mesenchymal stem cells (BM-MSCs) or not, were incorporated into a surgically created, critical-sized cleft palate defect in the rat. Control with no scaffold was also tested. Bone formation was assessed using microcomputed tomography at weeks 2, 4, 8, and 12 and a histologic analysis at week 12. Results: At 12 weeks, the proportion of bone filling associated with the use of hydrogel scaffold alone did not differ significantly from the values observed in the scaffold-free experiment (61.01% ± 5.288% versus 36.91% ± 5.132%; p = 0.1620). The addition of BM-MSCs stimulated bone formation not only at the margin of the defect but also in the center of the implant. Conclusions: In a relevant in vivo model of cleft palate in the rat, we confirmed the alginate-based hydrogel’s biocompatibility and real advantages for tissue healing. Addition of BM-MSCs stimulated bone formation in the center of the implant, demonstrating the new biomaterial’s potential for use as a bone substitute grafting material for cleft palate repair.
Collapse
|
14
|
Korn P, Ahlfeld T, Lahmeyer F, Kilian D, Sembdner P, Stelzer R, Pradel W, Franke A, Rauner M, Range U, Stadlinger B, Lode A, Lauer G, Gelinsky M. 3D Printing of Bone Grafts for Cleft Alveolar Osteoplasty - In vivo Evaluation in a Preclinical Model. Front Bioeng Biotechnol 2020; 8:217. [PMID: 32269989 PMCID: PMC7109264 DOI: 10.3389/fbioe.2020.00217] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
One of the most common hereditary craniofacial anomalies in humans are cleft lip and cleft alveolar bone with or without cleft palate. Current clinical practice, the augmentation of the persisting alveolar bone defect by using autologous bone grafts, has considerable disadvantages motivating to an intensive search for alternatives. We developed a novel therapy concept based on 3D printing of biodegradable calcium phosphate-based materials and integration of osteogenic cells allowing fabrication of patient-specific, tissue-engineered bone grafts. Objective of the present study was the in vivo evaluation of implants in a rat alveolar cleft model. Scaffolds were designed according to the defect's geometry with two different pore designs (60° and 30° rotated layer orientation) and produced by extrusion-based 3D plotting of a pasty calcium phosphate cement. The scaffolds filled into the artificial bone defect in the palate of adult Lewis rats, showing a good support. Half of the scaffolds were colonized with rat mesenchymal stromal cells (rMSC) prior to implantation. After 6 and 12 weeks, remaining defect width and bone formation were quantified histologically and by microCT. The results revealed excellent osteoconductive properties of the scaffolds, a significant influence of the pore geometry (60° > 30°), but no enhanced defect healing by pre-colonization with rMSC.
Collapse
Affiliation(s)
- Paula Korn
- Department of Oral and Maxillofacial Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Franziska Lahmeyer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Philipp Sembdner
- Institute of Machine Elements and Machine Design, Technische Universität Dresden, Dresden, Germany
| | - Ralph Stelzer
- Institute of Machine Elements and Machine Design, Technische Universität Dresden, Dresden, Germany
| | - Winnie Pradel
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Adrian Franke
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Ursula Range
- Institute for Medical Informatics and Biometry, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Sun XC, Zhang ZB, Wang H, Li JH, Ma X, Xia HF. Comparison of three surgical models of bone tissue defects in cleft palate in rabbits. Int J Pediatr Otorhinolaryngol 2019; 124:164-172. [PMID: 31200319 DOI: 10.1016/j.ijporl.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cleft palate is one of the most common craniofacial birth defects in the maxillofacial region. There is an urgent need in tissue regeneration research to establish animal models that faithfully mimic human diseases. Here, we compared three surgical models of bone tissue defects in cleft palate in rabbits in order to screen for the biomaterials that induced optimal bone regeneration. DESIGN Rabbits were used to establish the models of hard palate cleft, alveolar cleft, and alveolar process cleft. Eight weeks following surgery, bone tissue self-healing capacity was estimated by macroscopic appearance and calculating the area of defective bone tissue. The dimensions of the upper jaw in left and right sides were measured at zero and eight weeks. RESULTS Bone defects in three types of cleft palate models were made at the positions of the hard palate, alveoli and alveolar process. After 8 weeks, when the hard palate was partially excised, it underwent self-healing. When the hard palate was completely excised, it underwent partial self-healing. However, in the models of alveolar cleft and alveolar process cleft, there was no significant self-healing in the bone tissues. The dimensions of the upper jaw in left and right sides were no significant differences in three types of cleft palate models. CONCLUSIONS Bone defects in the alveolar and alveolar process clefts exhibit a diminished capability for self-healing. This study may provide valuable information for the screening of materials that induce bone regeneration.
Collapse
Affiliation(s)
- Xue-Cheng Sun
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China
| | - Ze-Biao Zhang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China
| | - Hu Wang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China
| | - Jian-Hui Li
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China.
| | - Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China.
| |
Collapse
|
16
|
Martín-Del-Campo M, Rosales-Ibañez R, Rojo L. Biomaterials for Cleft Lip and Palate Regeneration. Int J Mol Sci 2019; 20:E2176. [PMID: 31052503 PMCID: PMC6540257 DOI: 10.3390/ijms20092176] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Craniofacial bone defect anomalies affect both soft and hard tissues and can be caused by trauma, bone recessions from tumors and cysts, or even from congenital disorders. On this note, cleft/lip palate is the most prevalent congenital craniofacial defect caused by disturbed embryonic development of soft and hard tissues around the oral cavity and face area, resulting in most cases, of severe limitations with chewing, swallowing, and talking as well as problems of insufficient space for teeth, proper breathing, and self-esteem problems as a consequence of facial appearance. Spectacular advances in regenerative medicine have arrived, giving new hope to patients that can benefit from new tissue engineering therapies based on the supportive action of 3D biomaterials together with the synergic action of osteo-inductive molecules and recruited stem cells that can be driven to the process of bone regeneration. However, few studies have focused on the application of tissue engineering to the regeneration of the cleft/lip and only a few have reported significant advances to offer real clinical solutions. This review provides an updated and deep analysis of the studies that have reported on the use of advanced biomaterials and cell therapies for the regeneration of cleft lip and palate regeneration.
Collapse
Affiliation(s)
- Marcela Martín-Del-Campo
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, Av. Dr. Salvador Nava No. 2, Zona Universitaria, San Luis Potosí (S.L.P.) 78290, Mexico.
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencia y Tecnología de Polímeros, Calle Juan de la Cierva, 3, 28006 Madrid, Spain.
| | - Raúl Rosales-Ibañez
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios N 1, Iztacala Tlalnepantla, Estado de Mexico 54090, Mexico.
| | - Luis Rojo
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencia y Tecnología de Polímeros, Calle Juan de la Cierva, 3, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red CIBER-BBN, Calle Monforte de Lemos S/N, 28029 Madrid, Spain.
| |
Collapse
|
17
|
Mu S, Tee BC, Emam H, Zhou Y, Sun Z. Culture-expanded mesenchymal stem cell sheets enhance extraction-site alveolar bone growth: An animal study. J Periodontal Res 2018; 53:514-524. [DOI: 10.1111/jre.12541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2018] [Indexed: 12/25/2022]
Affiliation(s)
- S. Mu
- Department of Periodontology and Oral Mucosa; The Second Affiliated Hospital of Harbin Medical University; Harbin China
| | - B. C. Tee
- Division of Biosciences; College of Dentistry; The Ohio State University; Columbus OH USA
| | - H. Emam
- Division of Oral and Maxillofacial Surgery; College of Dentistry; The Ohio State University; Columbus OH USA
| | - Y. Zhou
- Department of Chemistry and Biochemistry; The Ohio State University; Columbus OH USA
| | - Z. Sun
- Division of Orthodontics; College of Dentistry; The Ohio State University; Columbus OH USA
| |
Collapse
|
18
|
Custom-milled individual allogeneic bone grafts for alveolar cleft osteoplasty-A technical note. J Craniomaxillofac Surg 2017; 45:1955-1961. [PMID: 29066039 DOI: 10.1016/j.jcms.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Bone grafts from the iliac crest are most commonly used for osteoplasties of the cleft alveolus. To preclude undue donoresite morbidity custom-milled allogeneic bone grafts might be an appropriate choice. MATERIAL AND METHODS This technical note showcases the repair of an alveolar cleft using an individualized allogeneic bone graft in a 36-year old female patient. She was asking for an alternative to the iliac crest bone grafting. Her alveolus was successfully build up by a custom-milled cancellous bone block allograft (maxgraft® 80 bonebuilder). RESULTS Custom-milled cancellous bone block allografts can greatly facilitate alveolar cleft repair and may present an effective treatment option under the premise that resorption resistance corresponds to autografts. CONCLUSION Further clinical studies are needed to explore the potential of bone block allografts for alveolar cleft osteoplasty.
Collapse
|
19
|
Elschner C, Korn P, Hauptstock M, Schulz MC, Range U, Jünger D, Scheler U. Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results. PLoS One 2017; 12:e0179249. [PMID: 28666026 PMCID: PMC5493293 DOI: 10.1371/journal.pone.0179249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/28/2017] [Indexed: 11/19/2022] Open
Abstract
One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of non-destructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume [Formula: see text] and a clearly significant deviation for the remaining defect width [Formula: see text] But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally.
Collapse
Affiliation(s)
- Cindy Elschner
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine »Carl Gustav Carus«, Technische Universität Dresden, Dresden, Germany
| | - Maria Hauptstock
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine »Carl Gustav Carus«, Technische Universität Dresden, Dresden, Germany
| | - Matthias C. Schulz
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine »Carl Gustav Carus«, Technische Universität Dresden, Dresden, Germany
| | - Ursula Range
- Institute for Medical Informatics and Biometry, Faculty of Medicine »Carl Gustav Carus«, Technische Universität Dresden, Dresden, Germany
| | - Diana Jünger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine »Carl Gustav Carus«, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Scheler
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| |
Collapse
|