1
|
Dong L, Huang W, Wu H, Yu S, Zheng Y, Zhang Q, Ren D, Wu W, Yan X, Lv T, Yuan X. Evaluating stress and displacement in the craniomandibular complex using Twin Block appliances at varied angles: A finite element study. J Mech Behav Biomed Mater 2024; 156:106603. [PMID: 38815434 DOI: 10.1016/j.jmbbm.2024.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES The objective of this investigation was to assess the stress and displacement pattern of the craniomandibular complex by employing finite element methodology to simulate diverse angulations of inclined planes that are incorporated in the Twin Block appliance. METHODS A 3D finite element representation was established by use of Cone Beam Computed Tomography (CBCT) scans. This comprehensive structure included craniofacial skeletal components, the articular disc, a posterior disc elastic layer, dental elements, periodontal ligaments, and a Twin Block appliance. This investigation is the first to incorporated inclined planes featuring three distinct angulations (45, 60, and 70°) as the study models. Mechanical impacts were evaluated within the glenoid fossa, tooth, condylar, and articular disc regions. RESULTS In all simulations, the stress generated by the Twin Block appliance was distributed across teeth and periodontal ligament, facilitating the anterior movement of mandibular teeth and the posterior displacement of maxillary teeth. Within the temporomandibular joint region, compressive forces on the superior and posterior facets of the condyle diminished, coinciding with the stress configuration that fosters condylar and mandibular growth. Stress dispersion homogenized in the condylar anterior facet and articular disc, with considerable tensile stress in the glenoid fossa's posterior aspect conforming to stress distribution that promote fossa reconfiguration. The 70° inclined plane exerts the highest force on the tissues. The condyle's maximum and minimum principal stresses are 0.36 MPa and -0.15 MPa, respectively, while those of the glenoid fossa are 0.54 MPa and -0.23 MPa. CONCLUSION Three angled appliances serve the purpose of advancing the mandible. A 45° inclined plane relative to the occlusal plane exerts balanced anteroposterior and vertical forces on the mandibular arch. Steeper angles yield greater horizontal forces, which may enhance forward growth and efficient repositioning.
Collapse
Affiliation(s)
- Lirong Dong
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wenli Huang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Haoting Wu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Shaoyang Yu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yao Zheng
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - DaPeng Ren
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Wu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Tao Lv
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266023, China.
| |
Collapse
|
2
|
Clemente-Napimoga JT, Mendes V, Trindade-da-Silva CA, Carvalho GD, Paranhos ACGA, Andrade E Silva F, Buarque E Silva WA, Napimoga MH, Abdalla HB. Experimental traumatic occlusion drives immune changes in trigeminal ganglion. Int Immunopharmacol 2023; 122:110674. [PMID: 37481846 DOI: 10.1016/j.intimp.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
We previously demonstrated that experimental traumatic occlusion (ETO) induces a long-lasting nociceptive response. These findings were associated with altered neuronal patterns and suggestive satellite glial cell activation. This study aimed to elucidate the activation of satellite glial cells following ETO in the trigeminal ganglion. Moreover, we explored the involvement of resident and infiltrating cells in trigeminal ganglion in ETO. Finally, we investigated the overexpression of purinergic signaling and the CX3CL1/CX3CR1 axis. RT-qPCR and electrophoresis showed overexpression of GFAP in the trigeminal ganglion (TG), and immunohistochemistry corroborated these findings, demonstrating SGCs activation. ELISA reveals enhanced levels of TNF-α and IL-1β in TG after 28 d of ETO. In trigeminal ganglia, ETO groups improved the release of CX3CL1, and immunohistochemistry showed higher CX3CR1+ -immunoreactive cells in ETO groups. Immunohistochemistry and electrophoresis of the P2X7 receptor were found in ETO groups. The mRNA levels of IBA1 are upregulated in the 0.7-mm ETO group, while immunohistochemistry showed higher IBA1+ -immunoreactive cells in both ETO groups. The expression of CD68 by electrophoresis and immunohistochemistry was observed in the ETO groups. For last, ELISA revealed increased levels of IL-6, IL-12, and CCL2 in the TG of ETO groups. Furthermore, the mRNA expression revealed augmented transcription factors and cytokines associated with lymphocyte activation, such as RORγt, IL-17, Tbet, IFNγ, FOXP3, and IL-10. The findings of this study suggested that ETO activates SGCs in TG, and purinergic signaling and CX3CL1/CX3CR1 axis were upregulated. We uncovered the involvement of a distinct subtype of macrophages, named sensory neuron-associated macrophage activation (sNMAs), and detected an expanded number of infiltrated macrophages onto TG. These findings indicate that ETO induces chronic/persistent immune response.
Collapse
Affiliation(s)
| | - Vagner Mendes
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | | | - Gustavo de Carvalho
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, SP, Brazil
| | | | - Frederico Andrade E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Wilkens Aurélio Buarque E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Zhu XR, Wang CX, Chen C, Wang RY, Zhang Y. Cytokine expression in gingival crevicular fluid around teeth opposing dental implants and 3-unit fixed partial dentures in a cross-sectional study. Head Face Med 2023; 19:14. [PMID: 37038160 PMCID: PMC10088209 DOI: 10.1186/s13005-023-00359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
OBJECTIVE This study aimed to study the cytokines in gingival crevicular fluid (GCF) of the teeth opposing to dental implants and 3-unit fixed partial dentures (FPDs). MATERIALS AND METHODS A total of 74 participants were recruited for this cross-sectional study. Based on the status of lower first molars, the participants were divided into dental implants group and 3-unit FPDs group. Social index and oral hygiene were recorded. Occlusal loading was evaluated with a T-scan. GCF was sampled from the upper first molar and assessed with a commercial cytokine assay kit. RESULTS Forty three dental implants patients and 31 3-unit FPDs patients received all of the clinical and laboratory evaluation. The dental implants group had a higher occlusion force distribution on first molars region. IL-10, IL-17, RANK had a higher mean in dental implants group and was associated with occlusion force of first molar. There was a weakly association between IL-10 and dental implants in the binary logistic regression analyses. CONCLUSIONS In this study, the teeth opposing implants have a higher level of cytokines in the GCF than teeth opposing to 3-unit FPDs in periodontal healthy participants because of the poor osseoperception of dental implants. IL-10 might reflect a higher occlusion force in dental implants region. CLINICAL RELEVANCE This study provided that different tooth restoration methods could influence the periodontal status of the contact teeth.
Collapse
Affiliation(s)
- Xin-Rui Zhu
- Department of Stomatology, Beijing Haidian Hospital, Beijing, 100080, China
| | - Chen-Xi Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Chang Chen
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine & National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Rui-Yong Wang
- Department of Stomatology, Beijing Haidian Hospital, Beijing, 100080, China.
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
4
|
In vivo evaluation of the reliability and validity of three digital occlusion analysis methods. J Dent 2022; 127:104355. [PMID: 36332701 DOI: 10.1016/j.jdent.2022.104355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The reliability and validity of three digital occlusion analysis methods was evaluated in vivo. METHODS The three method evalueated were:scanning of articulating paper marks (SA), dental prescale occlusal analysis system (DP) and a virtual occlusion constructed method (VO). A conventional silicone transmission method (ST) was used as the standard for comparison. Each of the 20 enroled human subjects was tested with the four methods. Retest of each method was performed at 2-week intervals. Occlusal contact area (OCA) and occlusal contact numbers (OCN) were calculated for analyses. For reliability evaluation, intraclass correlation coefficients (ICC) of the OCA and OCN values obtained from each method were compared. For validity evaluation, Pearson correlations coefficients, paired t-tests, regression analysis and Bland-Altman analysis were examined. RESULTS The ICC values of OCA and OCN were in the order: ST>SA>DP>VO. The highest OCA and OCN values were found ST while the lowest values were obtained from DP. Paired t-test identified a significant difference when OCA values obtained from the three digital methods were compared with ST, and between the OCN values of DP and ST. Pearson correlation showed high coefficients between ST and three digital methods (0.583-0.885 for OCA; 0.779-0.836 for OCN). A significant linear correlation was found between the results from ST and those from SA or VO. Bland-Altman analysis showed good agreement between OCN values of SA and ST, and between those of VO and ST. CONCLUSIONS The three digital occlusal analysis methods showed good reliability and validity for in vivo clinical application. CLINICAL SIGNIFICANCE The three digital occlusion analysis systems examined demonstrate good potential in in vivo quantitative analysis, with good reliability and validity. The use of these analytical methods should facilitate digital workflow in clinical practice.
Collapse
|
5
|
Zhang R, Peng S, Zhu G. The role of secreted osteoclastogenic factor of activated T cells in bone remodeling. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:227-232. [PMID: 35898473 PMCID: PMC9309401 DOI: 10.1016/j.jdsr.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 12/23/2022] Open
Abstract
The process of bone remodeling is connected with the regulated balance between bone cell populations (including bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte). And the mechanism of bone remodeling activity is related to the major pathway, receptor activator of nuclear factor kappaB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) signaling axis. Recently, researchers have found a novel cytokine secreted by activated T cells, which is related to osteoclastogenesis in the absence of osteoblasts or RANKL, leading to bone destruction. They name it the secreted osteoclastogenic factor of activated T cells (SOFAT). SOFAT has been proven to play an essential role in bone remodeling, like mediating the bone resorption in rheumatoid arthritis (RA) and periodontitis. In this review, we outline the latest research concerning SOFAT and discuss the characteristics, location, and regulation of SOFAT. We also summarize the clinical progress of SOFAT and assume the future therapeutic target in some diseases related to bone remodeling.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Peng
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Leitão AWA, Borges MMF, Martins JODL, Coelho AA, Carlos ACAM, Alves APNN, Silva PGDB, Sousa FB. Celecoxib in the treatment of orofacial pain and discomfort in rats subjected to a dental occlusal interference model. Acta Cir Bras 2022; 37:e370506. [PMID: 35976283 PMCID: PMC9377653 DOI: 10.1590/acb370506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose: To evaluate the effect of a selective cyclooxygenase 2 (COX-2) inhibitor on trigeminal ganglion changes and orofacial discomfort/nociception in rats submitted to an experimental model of dental occlusal interference (DOI). Methods: Female Wistar rats (180-200 g) were divided into five groups: a sham group (without DOI) (n=15); and four experimental groups with DOI treated daily with 0.1 mL/kg saline (DOI+SAL), 8, 16, or 32 mg/kg celecoxib (DOI+cel -8, -16, -32) (n=30/group). The animals were euthanized after one, three, and seven days. The bilateral trigeminal ganglia were analyzed histomorphometrically (neuron cell body area) and immunohistochemically (COX-2, nuclear factor-kappa B [NFkB], and peroxisome proliferator-activated receptor-y [PPARy]). A bilateral nociception assay of the masseter muscle was performed. The number of bites/scratches, weight, and grimace scale scores were determined daily. One-way/two-way analysis of variance (ANOVA)/Bonferroni post hoc tests were used (P < .05, GraphPad Prism 5.0). Results: DOI+SAL showed a reduction in neuron cell body area bilaterally, whereas DOI+cel-32 exhibited a significative increase in neuron cell body area compared with DOI+SAL group (P < 0.05). The ipsilateral (P=0.007 and P=0.039) and contralateral (P < 0.001 and P=0.005) overexpression of COX-2 and NFkB and downregulation of PPARy (P=0.016 and P < 0.001) occurred in DOI+SAL, but DOI+cel-32 reverted this alteration. DOI+SAL showed increase in isplateral (P < 0.001) and contralateral (P < 0.001) nociception, an increased number of bites (P=0.010), scratches (P < 0.001), and grimace scores (P=0.032). In the group of DOI+cel-32, these parameters were reduced. Conclusions: Celecoxib attenuated DOI-induced transitory nociception/orofacial discomfort resulting from trigeminal COX-2 overexpression.
Collapse
Affiliation(s)
- Andrea Whitehurst Ary Leitão
- Master. Centro Univeristário Christus - Department of Dentistry - Laboratory of Oral Pathology - Fortaleza (CE), Brazil
| | - Marcela Maria Fontes Borges
- Fellow Master degree. Universidade Federal do Ceará - Faculty of Pharmacy, Dentistry and Nursing - Division of Oral Pathology - Fortaleza (CE), Brazil
| | - Joyce Ohana de Lima Martins
- Fellow Master degree. Universidade Federal do Ceará - Faculty of Pharmacy, Dentistry and Nursing - Division of Oral Pathology - Fortaleza (CE), Brazil
| | - Antônio Alexandre Coelho
- Graduate student. Centro Univeristário Christus - Department of Dentistry - Fortaleza (CE), Brazil
| | | | - Ana Paula Negreiros Nunes Alves
- PhD, Full Professor. Universidade Federal do Ceará - Faculty of Pharmacy, Dentistry and Nursing - Division of Oral Pathology - Fortaleza (CE), Brazil
| | - Paulo Goberlânio de Barros Silva
- PhD, Full Professor. Centro Univeristário Christus - Department of Dentistry - Laboratory of Oral Pathology - Fortaleza (CE), Brazil
| | - Fabrício Bitu Sousa
- PhD, Full Professor. Centro Univeristário Christus - Department of Dentistry - Laboratory of Oral Pathology - Fortaleza (CE), Brazil
| |
Collapse
|
7
|
Abdalla HB, Napimoga MH, Trindade-da-Silva CA, Guimarães M, Lopes M, Dos Santos PCV, Buarque E Silva WA, Andrade E Silva F, Clemente-Napimoga JT. Occlusal Trauma Induces Neuroimmune Crosstalk for a Pain State. J Dent Res 2021; 101:339-347. [PMID: 34596449 DOI: 10.1177/00220345211039482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint (TMJ) disorder caused by occlusal trauma is one of the most controversial topics in dentistry. Experimental traumatic occlusion (ETO) induced by metal crowns cemented to mandibular first molars in rats causes a long-lasting nociceptive response. This study aimed to elucidate whether ETO generates an increase in inflammatory mediators in the TMJ. In addition, the impact of ETO on trigeminal ganglia, neurotransmitter release, and satellite glial cell (SGC) activation was investigated. ELISA revealed enhanced inflammatory mediators, including TNF-α, IL-1β, IL-6, CX3CL1, and ADAM-17 by Western blotting, in periarticular TMJ tissue after 28 d of ETO. In the trigeminal ganglia, ETO groups increased the release of the neurotransmitters substance P and glutamate. Overexpression of the AMPA receptor and upregulation of NMDA were observed in the 0.4- and 0.7-mm ETO groups, respectively, highlighting enhanced neuronal excitation. Increased IL-1β and COX-2 mRNA levels in the 0.7-mm ETO group confirmed trigeminal ganglia SGC activation. Immunofluorescence and electrophoresis of SGC revealed increased pERK expression in the 0.7-mm ETO group. ERK phosphorylation was shown to be nociceptive specific, with its upregulation occurring in cases of chronic inflammatory pain. Increased PKA mRNA levels were observed in the 0.4-mm ETO group, while CREB mRNA levels were upregulated for both ETO groups. Electrophoresis showed overexpression of sodium channel Nav 1.7 in the 0.7-mm ETO group, while immunofluorescence revealed that Nav 1.7 is expressed in sensory trigeminal ganglia cells. The results of this study suggest that occlusal trauma induces neuroimmune crosstalk, with synthesis of proinflammatory/pronociceptive mediators, which increases neuronal activity in trigeminal ganglia via the activation of an inflammatory response cascade to develop a persistent neuroinflammatory state that leads to central sensitization.
Collapse
Affiliation(s)
- H B Abdalla
- Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - M H Napimoga
- Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - C A Trindade-da-Silva
- Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - M Guimarães
- Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - M Lopes
- Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - P C V Dos Santos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - W A Buarque E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - F Andrade E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - J T Clemente-Napimoga
- Faculdade São Leopoldo Mandic, Instituto e Centro de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| |
Collapse
|
8
|
Bozhkova T. Comparison of Two Generations of Systems for Digital Occlusion Examination. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The modern concept of occlusion includes the relationship between teeth, masticatory muscles, and temporomandibular joints in function and dysfunction. Occlusion can be defined very simply: it means the contacts between teeth. Qualitative and quantitative methods are used to register and evaluate occlusal contacts. The T-Scan handpiece model was updated in 2015 as T-Scan Novus (software version 9.1) and the latest updated one being the T-Scan version 10 software introduced in 2018.
AIM: The purpose of this study is to demonstrate the capabilities and results of two generations of systems - T-Scan III and T-Scan Novus.
MATERIALS AND METHODS: For the realization of the set goal, the occlusion of a patient with the initials S.K. is examined with two systems. The patient is 43 years old with intact teeth, Angle’s class I jaw relation. The study with T-Scan III was conducted in 2015 and with T-Scan Novus in 2019.
RESULTS: The software of both systems uses a graphical interface, which transforms the data obtained during the recording of the occlusion as the model of the upper dentition of the patient in T-Scan III and the upper and lower dentition in T-Scan Novus. Registered occlusal contacts are illustrated as 2D and 3D images of different colors. The graph force/time shows the power versus time from the first contact to the end of the movie. The timing table displays the patient’s total occlusal bite timing, and the force applied. T-Scan Novus software allows you to import digital fingerprint files of the upper and lower dentition in.stl format.
CONCLUSION: The software program of the system version 9.1 provides better visualization of dental arches making it much more informative than other versions. The T-Scan system allows fast and accurate registration and analysis of occlusion.
Collapse
|
9
|
Li Y, Wang Z, Liu Y, Zhang H, Huang Y, Gao P, Hu Y, Xu Q. Influence of hyperocclusion on the remodeling of gingival tissues. Int Immunopharmacol 2021; 98:107885. [PMID: 34153669 DOI: 10.1016/j.intimp.2021.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of this study was to observe the effect of hyperocclusion on the remodeling of gingival tissues and detect the related signaling pathways. DESIGN Hyperocclusion models were established by tooth extraction in mice. The mice were sacrificed at 3, 7, 14, 28, or 56 days after the surgery, and the left mandibular first molars with gingival tissues were isolated and examinations were focused on the gingival tissues. Apoptotic cells were examined using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technology. Proliferating cells, p65, inflammatory cytokines, and β-catenin were detected using immunohistochemical methods. RESULTS A series of apoptosis and proliferation responses were triggered in stressed gingival tissues. It was observed that the levels of p65, proinflammatory factors including interleukin-1β and tumor necrosis factor-α in extraction group were higher compared with those from mice with intact dentition, and peaked on days 14, 14 and 7 respectively. The expression of β-catenin was increased under hyperocclusion situations, peaked on day 14, and declined to the initial levels over time. CONCLUSIONS The results of this study suggest that hyperocclusion causes remodeling of the gingival tissues by activating a series of adaptive responses. Both nuclear factor kappa B and Wnt/β-catenin signaling pathways may be responsible for those adaptive responses though the exact mechanism is not clear.
Collapse
Affiliation(s)
- Yan Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Zhiguo Wang
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| | - Ye Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Hui Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yan Huang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Pengyu Gao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yingzhe Hu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
10
|
Fast and accurate protocol for histology and immunohistochemistry reactions in temporomandibular joint of rats. Arch Oral Biol 2021; 126:105115. [PMID: 33819835 DOI: 10.1016/j.archoralbio.2021.105115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Propose a standard, fast and accurate protocol for the processing of the temporomandibular joint (TMJ) of adults' rats for histology and immunohistochemistry reactions. DESIGN Wistar male rats were perfused with paraformaldehyde (4 %). The heads were fixed in formaldehyde 10 % solution for 48 h. After that, the heads were sectioned in a sagittal plane and fixed for plus 48 h. Decalcification was performed using 20 % formic acid for 96 h and delimitation of TMJ area was done. Detailed methodology to a standard extraction and processing of TMJ to histological sections is described. Different buffers, equipment, temperature and time were tested to optimize immunostaining. Morphological preservation and antigenicity were evaluated by hematoxylin and eosin staining and immunohistochemistry reaction. RESULTS The current findings demonstrated that TMJ fixed in 10 % formaldehyde and decalcified in 20 % formic acid optimized decalcification processing time with preservation of cell morphology. Antigen retrieval with citrate buffer in pressure cooker (2 min at 100 °C and 5 min at room temperature) demonstrated the best protocol to preservation of the structures of TMJ. CONCLUSIONS This work demonstrates in detail a methodology of a fast and accurate TMJ processing for histology and immunohistochemistry reactions that guarantee tissue integrity and quality of staining.
Collapse
|
11
|
Abdalla HB, Clemente-Napimoga JT, Trindade-da-Silva CA, Alves LJ, Prats RDS, Youssef A, Vieira Dos Santos PC, Buarque E Silva WA, Andrade E Silva F, Napimoga MH. Occlusion Heightened by Metal Crown Cementation is Aggressive for Periodontal Tissues. J Prosthodont 2020; 30:142-149. [PMID: 32783328 DOI: 10.1111/jopr.13235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To investigate the effect of experimental traumatic occlusion (ETO) induced by metal crowns on alveolar bone loss. MATERIALS AND METHODS Metal crowns were custom-made for the lower first molars with occlusal discrepancy of 0.4 and 0.7 mm from the maximum intercuspation. Thirty-six animals were randomly divided into three groups (n = 12 animals per group): 0.4-mm hyperocclusion group, 0.7-mm hyperocclusion group and the sham group (no metal crown). Twenty-eight days after crown cementation, the animals were euthanized and gingival tissue was collected to assess cytokine levels of IL-17, IL-6, and TNF-α using enzyme-linked immunosorbent assay (ELISA). Mandibles were stained with 1% methylene blue and alveolar bone levels were quantified. Western blotting was used to quantify the expression of receptor activator of nuclear factor κ B (RANK), and its ligand (RANKL), secreted osteoclastogenic factor of activated T cells (SOFAT) and TNF-α-converting enzyme (TACE). Also, mandibles were histologically processed and stained with hematoxylin and eosin, from which the presence of osteoclast-like cells, multinucleated cells containing ≥3 nuclei was counted at 100× magnification. The data were analyzed using one-way ANOVA and Tukey tests. RESULTS Experimental occlusal trauma for 28 consecutive days significantly increased alveolar bone loss and multinucleated cell counts (p < 0.05). RANK, RANKL, SOFAT, TACE, IL-6, and TNF-α were significantly higher in gingival tissues of ETO groups (p < 0.05). IL-17 titers were unchanged among the groups (p > 0.05). CONCLUSION Experimental traumatic occlusion activates and sustains bone resorption pathways in the periodontium inducing alveolar bone resorption. As the intensity of occlusal trauma increased, alternative osteoclastic pathways were activated, such as TACE and SOFAT.
Collapse
Affiliation(s)
- Henrique Ballassini Abdalla
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - Carlos Antônio Trindade-da-Silva
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - Luciane Jorge Alves
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Immunology, Campinas, SP, Brazil
| | - Roberta da Silva Prats
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Immunology, Campinas, SP, Brazil
| | - Alexandre Youssef
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Immunology, Campinas, SP, Brazil
| | - Paulo César Vieira Dos Santos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Wilkens Aurélio Buarque E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Frederico Andrade E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Marcelo Henrique Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil.,Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Immunology, Campinas, SP, Brazil
| |
Collapse
|
12
|
Arita Y, Yoshinaga Y, Kaneko T, Kawahara Y, Nakamura K, Ohgi K, Arita S, Ryu T, Takase M, Sakagami R. Glyburide inhibits the bone resorption induced by traumatic occlusion in rats. J Periodontal Res 2020; 55:464-471. [PMID: 32153049 DOI: 10.1111/jre.12731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To examine whether glyburide inhibits bone destruction caused by traumatic occlusion in a rat occlusal trauma model. BACKGROUND Excessive mechanical stress, such as traumatic occlusion, induces expression of IL-1β and may be involved in bone resorption. NLRP3 inflammasomes have been linked to IL-1β expression, but it is currently unclear whether glyburide, the inhibiter of NLRP3 inflammasome, suppresses occlusal trauma in rats. METHODS Male SD rats aged 7 weeks were used. In the trauma group, the occlusal surface of the maxillary first right molar was raised by attaching a metal wire to apply occlusal trauma to the mandibular first right molar. In the trauma + glyburide group, the NLRP3 inhibitor glyburide was administered orally every 24 hours from 1 day before induction of occlusal trauma. Rats were euthanized after 5 or 10 days, and the maxillary first molars were harvested with the adjacent tissues for histopathological investigation. Immunohistochemical expression of IL-1β, NLRP3, and RANKL was also assessed. RESULTS On day 5, bone resorption was significantly greater in the trauma group compared with the control group or the trauma + glyburide group, and there were significantly higher numbers of osteoclasts and cells positive for IL-1β, NLRP3, and RANKL in the trauma group. CONCLUSION In this study, glyburide inhibits bone resorption by traumatic occlusion in rats. It suggests that the NLRP3/IL-1β pathway might be associated with bone resorption induced by traumatic occlusion.
Collapse
Affiliation(s)
- Yoichi Arita
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Yasunori Yoshinaga
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Takashi Kaneko
- Center for Oral Diseases, Fukuoka Dental College, Fukuoka, Japan
| | - Yuri Kawahara
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Keiko Nakamura
- Center for Oral Diseases, Fukuoka Dental College, Fukuoka, Japan
| | - Kimiko Ohgi
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Seiichi Arita
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Takanori Ryu
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Minoru Takase
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Ryuji Sakagami
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
13
|
王 云, 钱 金, 顾 亚, 陈 传, 汪 萌. [Electrophysiological monitoring of pain afferent pathway of the trigeminal nerve and its functional plasticity in response to occlusal interference in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1160-1165. [PMID: 31801715 PMCID: PMC6867951 DOI: 10.12122/j.issn.1673-4254.2019.10.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To observe the effect of occlusal interference on the afferent pathway of the trigeminal nerve and neuronal excitability in the trigeminal subnucleus caudalis (SPVC) of rats by electrical stimulation of the trigeminal ganglion (TG) and extracellular recordings of SPVC activities. METHODS Twenty male Wistar rats were randomly divided into control group and model group (n=10). In the model group, occlusal interference for 30 consecutive days was induced using light-cured flowable resin on the right maxillary molars. During occlusal interference, the pain sensitivity was scored with von Frey Fibers in the masseter. Simultaneous recordings of electrical activities from the SPVC, electrocardiogram, body temperature and electromyogram of the breath muscles of the anesthetized rats were performed, and the responses evoked by electrical stimulation of the TG were analyzed. RESULTS Compared with the control rats, the rats in the model group showed significantly increased pain sensitivity scores (P < 0.05) and increased spontaneous discharge frequency of the SPVC (P < 0.05). The amplitude of the SPVC responses induced by electrical stimulation of the TG showed stimulus intensity-dependent changes (P < 0.05), and the amplitude evoked by 4 mA and 8 mA stimulation was similar between the model group and the control group (P>0.05). Train stimulation (0.2 ms, 1 mA, 30 s, 100 Hz) of the TG significantly increased the discharge frequency of the SPVC only in the rats in the model group (P < 0.05). CONCLUSIONS The functional activities of the pain afferent pathway of the trigeminal nerve can be electrophysiologically monitored by electrical stimulation of the TG and extracellular recordings of SPVC activities in rats. Occlusal interference can increase the excitability of the neurons in the SPVC and enhance their sensitivities to TG afferent activation, suggesting the neural plasticity of the pain afferent pathway.
Collapse
Affiliation(s)
- 云 王
- 皖南医学院 口腔医学院,安徽 芜湖 241002School of Stomatology, Wannan Medical College, Wuhu 241002, China
- 皖南医学院 细胞电生理研究室,安徽 芜湖 241002Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| | - 金萍 钱
- 皖南医学院 口腔医学院,安徽 芜湖 241002School of Stomatology, Wannan Medical College, Wuhu 241002, China
- 皖南医学院 细胞电生理研究室,安徽 芜湖 241002Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
- 皖南医学院 启明星小组,安徽 芜湖 241002Rising-Star Group, Wannan Medical College, Wuhu 241002, China
| | - 亚茹 顾
- 皖南医学院 口腔医学院,安徽 芜湖 241002School of Stomatology, Wannan Medical College, Wuhu 241002, China
- 皖南医学院 细胞电生理研究室,安徽 芜湖 241002Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
- 皖南医学院 启明星小组,安徽 芜湖 241002Rising-Star Group, Wannan Medical College, Wuhu 241002, China
| | - 传俊 陈
- 皖南医学院 口腔医学院,安徽 芜湖 241002School of Stomatology, Wannan Medical College, Wuhu 241002, China
| | - 萌芽 汪
- 皖南医学院 细胞电生理研究室,安徽 芜湖 241002Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|