1
|
Sagawa M, Namura Y, Uchida Y, Miyama W, Nishimura S, Yoneyama T, Takamizawa T, Motoyoshi M. Changes in enamel hardness, wear resistance, surface texture, and surface crystal structure with glass ionomer cement containing BioUnion fillers. Dent Mater J 2024; 43:247-254. [PMID: 38382940 DOI: 10.4012/dmj.2023-180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This study investigated the potential of BioUnion filler containing glass ionomer cement (GIC) to enhance the properties of enamel surrounding restorations, with a specific focus on the effect on hardness. The hardness of the bovine enamel immersed in the cement was measured using Vickers hardness numbers. Following sliding and impact wear simulations, the enamel facets were examined using confocal-laser-scanning microscopy and scanning-electron microscopy. Surface properties were further analyzed using energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). A significant increase in Vickers hardness numbers was observed in the BioUnion filler GIC after 2 days. Furthermore, the mean depth of enamel facets treated with BioUnion filler GIC was significantly less than that of untreated facets. Characteristic XRD peaks indicating the presence of hydroxyapatite were also observed. Our findings imply that GIC with BioUnion fillers enhances the mechanical properties of the tooth surface adjacent to the cement.
Collapse
Affiliation(s)
- Misuzu Sagawa
- Department of Orthodontics, Nihon University School of Dentistry
| | - Yasuhiro Namura
- Department of Orthodontics, Nihon University School of Dentistry
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| | - Yasuki Uchida
- Department of Orthodontics, Nihon University School of Dentistry
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| | - Wakako Miyama
- Department of Orthodontics, Nihon University School of Dentistry
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| | - Shirabe Nishimura
- Department of Orthodontics, Nihon University School of Dentistry
- Department of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry
| | - Toshihiro Yoneyama
- Department of Orthodontics, Nihon University School of Dentistry
- Department of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry
| | - Toshiki Takamizawa
- Department of Operative Dentistry, Nihon University School of Dentistry
- Division of Biomaterials Science, Dental Research Center, Nihon University School of Dentistry
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
2
|
Bathla S, Dutta SK, Bagchi A, Priya CVP, Raj RKS, Dubey A. Comparison of Antibacterial Activity of Various Additives to Glass Ionomer Restoration: An In Vitro Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S189-S191. [PMID: 38595391 PMCID: PMC11001053 DOI: 10.4103/jpbs.jpbs_450_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/06/2023] [Accepted: 08/29/2023] [Indexed: 04/11/2024] Open
Abstract
Introduction Glass-ionomer (GIC) cement was introduced in 1972 as a "new filling material of dentistry". It is bioactive and plays an important role in caries prevention due to its ability to release fluoride into the oral environment and remineralization of dental hard tissues. However, its properties such as moisture sensitivity, wear resistance, and bond strength are not sufficient to inflict the antimicrobial environment. This in vitro study aimed to evaluate the antibacterial property of four different GIC cements against S. mutans and L. acidophilus. Methodology This study was conducted on 120 disk-shaped samples (30 for antibacterial activity), which were placed in Petri dishes holding Müeller Hinton agar. Bacterial strains were overhauled in the brain heart infusion culture medium, and by utilizing disposable straps on blood agar medium, 100 ml of the strain inoculum was plated out. Through the diffusion method on the solid medium, the antibacterial activity of GIC was determined. Results The antibacterial activity was the highest for Riva silver and chemifill rock for 24 and 72 hours, respectively. For 48 hours, Equia forte and chemifill rock had the highest antibacterial activity, and there was a significant difference between the groups. Conclusion Ketac™ molar easymix inhibited the growth of S. mutans and L. acidophilus but had the lowest antibacterial effect compared to other GICs.
Collapse
Affiliation(s)
- Saurav Bathla
- Post Graduate Student, Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| | - Saurav Kumar Dutta
- Post Graduate Student, Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| | - Anandamoy Bagchi
- Post Graduate Student, Department of Pediatric and Preventive Dentistry, Kalinga Institute of Dental Sciences (KIDS), Campus 5, KIIT (DU), Patia, Bhubaneswar, Odisha, India
| | - C V Padma Priya
- Department of Orthodontics and Dentofacial Orthopedics, Vishnu Dental College, Kovvada, Andhra Pradesh, India
| | | | - Alok Dubey
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Potiprapanpong W, Naruphontjirakul P, Khamsuk C, Channasanon S, Toneluck A, Tanodekaew S, Monmaturapoj N, Young AM, Panpisut P. Assessment of Mechanical/Chemical Properties and Cytotoxicity of Resin-Modified Glass Ionomer Cements Containing Sr/F-Bioactive Glass Nanoparticles and Methacrylate Functionalized Polyacids. Int J Mol Sci 2023; 24:10231. [PMID: 37373383 DOI: 10.3390/ijms241210231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study prepared low-toxicity, elemental-releasing resin-modified glass ionomer cements (RMGICs). The effect of 2-hydroxyethyl methacrylate (HEMA, 0 or 5 wt%) and Sr/F-bioactive glass nanoparticles (Sr/F-BGNPs, 5 or 10 wt%) on chemical/mechanical properties and cytotoxicity were examined. Commercial RMGIC (Vitrebond, VB) and calcium silicate cement (Theracal LC, TC) were used as comparisons. Adding HEMA and increasing Sr/F-BGNPs concentration decreased monomer conversion and enhanced elemental release but without significant effect on cytotoxicity. Rising Sr/F-BGNPs reduced the strength of the materials. The degree of monomer conversion of VB (96%) was much higher than that of the experimental RMGICs (21-51%) and TC (28%). The highest biaxial flexural strength of experimental materials (31 MPa) was significantly lower than VB (46 MPa) (p < 0.01) but higher than TC (24 MPa). The RMGICs with 5 wt% HEMA showed higher cumulative fluoride release (137 ppm) than VB (88 ppm) (p < 0.01). Unlike VB, all experimental RMGICs showed Ca, P, and Sr release. Cell viability in the presence of extracts from experimental RMGICs (89-98%) and TC (93%) was significantly higher than for VB (4%). Experimental RMGICs showed desirable physical/mechanical properties with lower toxicity than the commercial material.
Collapse
Affiliation(s)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Chutikarn Khamsuk
- Assistive Technology and Medical Devices Research Center (A-MED), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Somruethai Channasanon
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Arnit Toneluck
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
| | - Siriporn Tanodekaew
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Naruporn Monmaturapoj
- Assistive Technology and Medical Devices Research Center (A-MED), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
4
|
Franzin NRS, Sostena MMDS, Santos ADD, Moura MR, Camargo ERD, Hosida TY, Delbem ACB, Moraes JCS. Novel pulp capping material based on sodium trimetaphosphate: synthesis, characterization, and antimicrobial properties. J Appl Oral Sci 2022; 30:e20210483. [PMID: 35352770 PMCID: PMC8963389 DOI: 10.1590/1678-7757-2021-0483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES To evaluate the mechanical, physicochemical, and antimicrobial properties of four different formulations containing micro- or nanoparticles of sodium trimetaphosphate (mTMP and nTMP, respectively). METHODOLOGY Four experimental groups were used in this investigation: two mTMP groups and two nTMP groups, each containing zirconium oxide (ZrO2), and solution containing either chitosan or titanium oxide (TiO2) nanoparticles (NPs). Setting time, compression resistance, and radiopacity were estimated. The agar diffusion test was used to assess the antimicrobial activity of the formulations against five different microbial strains: Streptococcus mutans, Lactobacillus casei, Actinomyces israelii, Candida albicans, and Enterococcus faecalis. Parametric and nonparametric tests were performed after evaluating homoscedasticity data (p<0.05). RESULTS From the properties evaluated, nTMP cements required less setting time and showed greater resistance to compression. Cements containing TiO2 showed greater radiopacity for both nTMP and mTMP. All four cement formulations showed antimicrobial activity against S. mutans and L. casei. CONCLUSION Formulations containing nTMP have shorter setting times and higher compressive strength, and those with TiO2 nanoparticles showed antimicrobial activities. Clinical relevance: The cement containing nTMP, ZrO2, and TiO2 could be an alternative material for protecting the pulp complex.
Collapse
Affiliation(s)
| | | | | | - Marcia Regina Moura
- Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteira, SP, Brasil
| | | | - Thayse Yumi Hosida
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araçatuba, SP, Brasil
| | | | | |
Collapse
|
5
|
Antibacterial Activity and Biofilm Inhibition of New-Generation Hybrid/Fluoride-Releasing Restorative Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The antibacterial activity, and the effect of the application of additional topical fluoride on the bacterial activity, biofilm formation, and surface roughness of new-generation hybrid/fluoride-releasing materials were investigated. Two hundred and forty specimens were prepared in split Teflon molds (8 × 2 mm) from a resin composite (as negative control: G-aenial A’Chord/GC), Equia Forte HT Fil(GC), Equia Forte HT Fil+Equia Forte Coat, Riva Self-Cure (SDI), Riva Self-Cure+Equia Forte Coat, Zirconomer (Shofu), Beautifil II (Shofu), and Riva Silver (Shofu). Penicillin G,1U was used as positive control. The antibacterial activity was evaluated by the agar diffusion test immediately after the materials set using Streptococcus mutans (S. mutans) and Lactobacillus casei (L. casei), and repeated after application of 0.20% w/w (900 ppm) topical fluoride. The biofilm formation of S. mutans on each material was quantified by crystal violet staining. Surface roughness of the specimens was measured by a profilometer. The data were analyzed by Kruskal–Wallis, Dunn’s, one-way ANOVA, and Tukey’s HSD tests (p < 0.05). None of the tested restorative materials showed antibacterial activity and no inhibition zones were observed after treatment of the restoratives with additional topical fluoride. There were significant differences among the groups in terms of biofilm formation (p < 0.005). Equia Forte HT Fil with and without coating showed the lowest, while Riva self-cure without coating and Zirconomer showed the highest biofilm accumulation. None of the new-generation hybrid/fluoride-releasing materials demonstrated antibacterial activity and additional topical fluoride application did not make any change. Biofilm formation of the tested materials differed. All tested materials showed different surface roughness values (p < 0.005). Characteristics and compositions of the materials seemed to be more effective than the surface roughness.
Collapse
|
6
|
Amin F, Rahman S, Khurshid Z, Zafar MS, Sefat F, Kumar N. Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6260. [PMID: 34771787 PMCID: PMC8584882 DOI: 10.3390/ma14216260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022]
Abstract
Overall perspective of nanotechnology and reinforcement of dental biomaterials by nanoparticles has been reported in the literature. However, the literature regarding the reinforcement of dental biomaterials after incorporating various nanostructures is sparse. The present review addresses current developments of glass ionomer cements (GICs) after incorporating various metallic, polymeric, inorganic and carbon-based nanostructures. In addition, types, applications, and implications of various nanostructures incorporated in GICs are discussed. Most of the attempts by researchers are based on the laboratory-based studies; hence, it warrants long-term clinical trials to aid the development of suitable materials for the load bearing posterior dentition. Nevertheless, a few meaningful conclusions are drawn from this substantial piece of work; they are as follows: (1) most of the nanostructures are likely to enhance the mechanical strength of GICs; (2) certain nanostructures improve the antibacterial activity of GICs against the cariogenic bacteria; (3) clinical translation of these promising outcomes are completely missing, and (4) the nanostructured modified GICs could perform better than their conventional counterparts in the load bearing posterior dentition.
Collapse
Affiliation(s)
- Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Sehrish Rahman
- Science of Dental Materials Department, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan; (S.R.); (N.K.)
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK;
| | - Naresh Kumar
- Science of Dental Materials Department, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan; (S.R.); (N.K.)
| |
Collapse
|
7
|
Hosida TY, Pessan JP, Cavazana TP, Sampaio C, Monteiro DR, Botazzo Delbem AC. Effect of sodium hexametaphosphate and fluoride on dual-species biofilms of Candida albicans and Streptococcus mutans. BIOFOULING 2021; 37:939-948. [PMID: 34789045 DOI: 10.1080/08927014.2021.1916816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the effect of sodium hexametaphosphate (HMP), administered alone or in combination with fluoride (F), on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were treated with HMP solutions at 0.25%, 0.5% and 1%, alone or combined with F (0.05%), and compared by evaluating their structure and quantifying the colony-forming units (CFUs), metabolic activity, production of biomass and extracellular matrix components. All HMP-containing solutions were capable of reducing metabolic activity, the biofilm biomass, and the extracellular matrix components. Furthermore, the treatment with 1% HMP/F significantly reduced the CFUs of S. mutans, although it showed no effect on the CFUs of C. albicans, in the dual-species biofilms. In general, the combination of HMP and F influenced all the parameters analyzed from dual-species biofilms, except the CFUs of C. albicans.
Collapse
Affiliation(s)
- Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Thamires Priscila Cavazana
- Department of Preventive and Restorative Dentistry, School of Dentistry Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), Presidente Prudente, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
8
|
Naguib GH, Nassar HM, Hamed MT. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioact Mater 2021; 8:49-56. [PMID: 34541386 PMCID: PMC8424389 DOI: 10.1016/j.bioactmat.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to test the antimicrobial properties of dental cements modified with magnesium oxide (MgO) nanoparticles. Zein-modified MgO nanoparticles (zMgO) in concentrations (0.0, 0.3, 0.5, and 1.0%) were mixed with dental cements (Fuji II, Rely X Temp E, Ionoglass Cem, Es Temp NE, and System P link). Eight discs were fabricated from each zMgO-cement pair for a total of 32 specimens for each cement. Characterization of the dental cements incorporating zMgO was done by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The antimicrobial properties of the mixtures were tested using direct contact and agar diffusion assays against Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Data was analyzed using two-way analysis of variance and LSD post hoc test at 0.05 significance level. XRD spectra showed sharp peaks of zMgO indicating its high crystalline nature, while the amorphous dental cements with zMgO had broad peaks. FESEM analysis showed a uniform distribution of the zMgO nanoparticles in the cement. There were significant inhibition zone values associated with all concentrations of zMgO-cement mixtures tested compared to controls (p < 0.001) with a dose-response recorded only with Fuji II. Optical density values were significantly lower in zMgO groups compared to controls for all microorganisms. The effect was most prominent with Rely X against C. albicans and S. aureus. Dental cements containing zMgO showed significant antimicrobial properties that were dependent on the specific initial cement substrate. Antimicrobial nanoparticles (NPs) are widely used in dental materials to improve their biological properties. Magnesium Oxide (MgO) NPs are novel antimicrobial agents. Incorporation of MgO NPs in dental cements aids in minimizing bacterial colonization at the restoration margin. Zein polymer facilitates the dispersion of MgO NPs and avoid its agglomeration. Zein polymer effectively enhances the performance of MgO NPs.
Collapse
Affiliation(s)
- Ghada H. Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Corresponding author. Dr. Ghada Naguib Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, P.O.Box 80209, Jeddah, 21589, Saudi Arabia.
| | - Hani M. Nassar
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T. Hamed
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Faculty of Dentistry, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Singer L, Bourauel CP. Shear Bond Strength and Film Thickness of a Naturally Antimicrobial Modified Dental Luting Cement. Molecules 2021; 26:molecules26051276. [PMID: 33652887 PMCID: PMC7956618 DOI: 10.3390/molecules26051276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Although several natural plants and mixtures have been known and used over the centuries for their antibacterial activity, few have been thoroughly explored in the field of dentistry. Thus, the aim of this study was to enhance the antimicrobial activity of a conventional glass ionomer cement (GIC) with natural plant extracts. The effect of this alteration on the bond strength and film thickness of glass ionomer cement was evaluated and related to an 0.5% chlorohexidine modified GIC. Olive leaves (Olea europaea), Fig tree (Ficus carica), and the leaves and roots of Miswak (Salvadora persica) were used to prepare an alcoholic extract mixture. The prepared extract mixture after the evaporation of the solvent was used to modify a freeze-dried glass ionomer cement at three different extracts: water mass ratios 1:2, 1:1, and 2:1. An 0.5% chlorhexidine diacetate powder was added to a conventional GIC for the preparation of a positive control group (CHX-GIC) for comparison. The bond strength to dentine was assessed using a material-testing machine at a cross head speed of 0.5 mm/min. Failure mode was analyzed using a stereomicroscope at 12× magnification. The cement film thickness was evaluated in accordance with ISO standard 9917-1. The minimum number of samples in each group was n = 10. Statistical analysis was performed using a Kruskal–Wallis test followed by Dunn’s post hoc test for pairwise comparison. There was a statistically insignificant difference between the median shear bond strength (p = 0.046) of the control group (M = 3.4 MPa), and each of the CHX-GIC (M = 1.7 MPa), and the three plant modified groups of 1:2, 1:1, 2:1 (M = 5.1, 3.2, and 4.3 MPa, respectively). The CHX-GIC group showed statistically significant lower median values compared to the three plant-modified groups. Mixed and cohesive failure modes were predominant among all the tested groups. All the tested groups (p < 0.001) met the ISO standard of having less than 25 µm film thickness, with the 2:1 group (M = 24 µm) being statistically the highest among all the other groups. The plant extracts did not alter either the shear bond strength or the film thickness of the GIC and thus might represent a promising additive to GICs.
Collapse
|
10
|
Tu Y, Wang Y, Su L, Shao B, Duan Z, Deng S. In vivo Microbial Diversity Analysis on Different Surfaces of Dental Restorative Materials via 16S rDNA Sequencing. Med Sci Monit 2020; 26:e923509. [PMID: 32627765 PMCID: PMC7362708 DOI: 10.12659/msm.923509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study aimed to provide precise material selection guidance for proper clinical restoration and treatment of plaque-related oral diseases, such as dental caries and periodontal diseases. Material/Methods Four groups (n=24) of restorative material sheets (n=24) were prepared using 3M Z350 composite resin (ZR), zinc phosphate cement (ZPC), glass-ionomer (GI), and ICON permeable resin (IPR). Six volunteers wore a plaque-collection device equipped with the 4 restorative material sheets for 48 hours. Plaque samples were collected, and Miseq sequencing was applied to obtain template DNA fragments for microbial diversity analysis. The data were analyzed with nonparametric tests. Results The microbial diversity on the ZPC surface was significantly lower than that on GI and IPR surfaces. The abundance of Firmicutes and Streptococcus on the ZPC surface was significantly higher than on the surfaces of GI and IPR. In contrast, the abundance of Porphyromonas on the surface of ZPC was significantly lower than that on GI and IPR surfaces. (P<0.05). Conclusions The results of the present study might serve as a basis for material selection under different oral microbial conditions to provide more accurate treatments and restorative procedures in the oral cavity.
Collapse
Affiliation(s)
- Yan Tu
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland)
| | - Yuan Wang
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland)
| | - Lingkai Su
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland)
| | - Beibei Shao
- Department of Stomatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China (mainland)
| | - Zhuhui Duan
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland).,Department of Stomatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China (mainland)
| | - Shuli Deng
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
11
|
An in vitro evaluation of the effects of nanoparticles on shear bond strength and antimicrobial properties of orthodontic adhesives: A systematic review and meta-analysis study. Int Orthod 2020; 18:203-213. [DOI: 10.1016/j.ortho.2020.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/23/2023]
|
12
|
Song W, Ge S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules 2019; 24:E1033. [PMID: 30875929 PMCID: PMC6470852 DOI: 10.3390/molecules24061033] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023] Open
Abstract
Oral cavity incessantly encounters a plethora of microorganisms. Plaque biofilm-a major cause of caries, periodontitis and other dental diseases-is a complex community of bacteria or fungi that causes infection by protecting pathogenic microorganisms from external drug agents and escaping the host defense mechanisms. Antimicrobial nanoparticles are promising because of several advantages such as ultra-small sizes, large surface-area-to-mass ratio and special physical and chemical properties. To better summarize explorations of antimicrobial nanoparticles and provide directions for future studies, we present the following critical review. The keywords "nanoparticle," "anti-infective or antibacterial or antimicrobial" and "dentistry" were retrieved from Pubmed, Scopus, Embase and Web of Science databases in the last five years. A total of 172 articles met the requirements were included and discussed in this review. The results show that superior antibacterial properties of nanoparticle biomaterials bring broad prospects in the oral field. This review presents the development, applications and underneath mechanisms of antibacterial nanoparticles in dentistry including restorative dentistry, endodontics, implantology, orthodontics, dental prostheses and periodontal field.
Collapse
Affiliation(s)
- Wenjing Song
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China.
- Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China.
- Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| |
Collapse
|