1
|
Zhang H, Li L, Sun X, Hou B, Luo C. Research and development of microenvironment's influence on stem cells from the apical papilla - construction of novel research microdevices: tooth-on-a-chip. Biomed Microdevices 2024; 26:33. [PMID: 39023652 DOI: 10.1007/s10544-024-00715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Stem cells are crucial in tissue engineering, and their microenvironment greatly influences their behavior. Among the various dental stem cell types, stem cells from the apical papilla (SCAPs) have shown great potential for regenerating the pulp-dentin complex. Microenvironmental cues that affect SCAPs include physical and biochemical factors. To research optimal pulp-dentin complex regeneration, researchers have developed several models of controlled biomimetic microenvironments, ranging from in vivo animal models to in vitro models, including two-dimensional cultures and three-dimensional devices. Among these models, the most powerful tool is a microfluidic microdevice, a tooth-on-a-chip with high spatial resolution of microstructures and precise microenvironment control. In this review, we start with the SCAP microenvironment in the regeneration of pulp-dentin complexes and discuss research models and studies related to the biological process.
Collapse
Affiliation(s)
- Hexuan Zhang
- Center for Microscope Enhanced Dentistry, School of Stomatology, Capital Medical University, Beijing, China
- Department of Endodontics and Operative Dentistry, School of Stomatology, Capital Medical University, Beijing, China
| | - Lingjun Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaoqiang Sun
- Department of Endodontics and Operative Dentistry, School of Stomatology, Capital Medical University, Beijing, China.
| | - Benxiang Hou
- Center for Microscope Enhanced Dentistry, School of Stomatology, Capital Medical University, Beijing, China.
| | - Chunxiong Luo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
| |
Collapse
|
2
|
Duncan HF, Kobayashi Y, Yamauchi Y, Shimizu E. The Reparative Function of MMP13 in Tertiary Reactionary Dentinogenesis after Tooth Injury. Int J Mol Sci 2024; 25:875. [PMID: 38255947 PMCID: PMC10815342 DOI: 10.3390/ijms25020875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
MMP13 gene expression increases up to 2000-fold in mineralizing dental pulp cells (DPCs), with research previously demonstrating that global MMP13 deletion resulted in critical alterations in the dentine phenotype, affecting dentine-tubule regularity, the odontoblast palisade, and significantly reducing the dentine volume. Global MMP13-KO and wild-type mice of a range of ages had their molar teeth injured to stimulate reactionary tertiary dentinogenesis. The response was measured qualitatively and quantitatively using histology, immunohistochemistry, micro-CT, and qRT-PCR in order to assess changes in the nature and volume of dentine deposited as well as mechanistic links. MMP13 loss affected the reactionary tertiary dentine quality and volume after cuspal injury and reduced Nestin expression in a non-exposure injury model, as well as mechanistic links between MMP13 and the Wnt-responsive gene Axin2. Acute pulpal injury and pulp exposure to oral fluids in mice teeth showed upregulation of the MMP13 in vivo, with an increase in the gene expression of Mmp8, Mmp9, and Mmp13 evident. These results indicate that MMP13 is involved in tertiary reactionary dentine formation after tooth injury in vivo, potentially acting as a key molecule in the dental pulp during dentine-pulp repair processes.
Collapse
Affiliation(s)
- Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, D02 F859 Dublin, Ireland;
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07193, USA;
| | - Yukako Yamauchi
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, D02 F859 Dublin, Ireland;
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07193, USA;
| |
Collapse
|
3
|
Fernandes LDO, Mendes Soares IP, Anselmi C, Pires MLBA, Ribeiro RADO, Peruchi V, de Souza Costa CA, Hebling J. Pulp cell response to the application of silver diamine fluoride and potassium iodide on caries-like demineralized dentin. Clin Oral Investig 2023; 27:7295-7306. [PMID: 37853265 DOI: 10.1007/s00784-023-05320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To investigate the response of pulp cells to the application of silver diamine fluoride (SDF) and potassium iodide (KI) on demineralized dentin. MATERIALS AND METHODS The occlusal surfaces of human dentin discs (0.4 mm thick) with similar permeability were subjected to an artificial caries protocol, and then the discs were adapted into artificial pulp chambers. MDPC-23 cells were seeded on the healthy pulp dentin surface, while the demineralized surface was treated with SDF, KI, SDF + KI, or hydrogen peroxide (positive control-PC) (n = 8). The negative control (NC) received ultrapure water. After 24 h, cell viability (alamarBlue) and morphology (SEM) were evaluated. The extracts were then applied to new MDPC-23 cells seeded in culture plates to assess their viability and the formation of mineralized nodules (MN; Alizarin Red) after seven days. The data were analyzed using one-way analysis of variance/Tukey or Games-Howell tests (α = 5%). RESULTS SDF and PC significantly reduced the viability of cells seeded on discs (45.6% and 71.0%, respectively). Only cells treated with SDF or PC detached from the dentin substrate, while the remaining cells showed altered morphology. Cells in contact with extracts showed less reduction in viability, but it was still more toxic compared to NC. Only PC reduced MN deposition. SDF + KI or KI alone did not affect the cell response. CONCLUSIONS SDF applied alone showed a mild to moderate transdentinal cytotoxic effect on pulp cells. However, the combination of SDF + KI reduced the cytotoxic effects. Both materials used alone or in combination did not affect the mineralization ability of pulp cells. CLINICAL RELEVANCE Besides improving esthetic results, associating potassium iodide with silver diamine fluoride may reduce the transdentinal cytotoxic effects of this cariostatic agent on pulp cells.
Collapse
Affiliation(s)
- Lídia de Oliveira Fernandes
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Igor Paulino Mendes Soares
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Caroline Anselmi
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, 14801-903, Brazil
| | - Maria Luiza Barucci Araujo Pires
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, 14801-903, Brazil
| | | | - Victória Peruchi
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Josimeri Hebling
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, 14801-903, Brazil.
| |
Collapse
|
4
|
Leite ML, Anselmi C, Soares IPM, Manso AP, Hebling J, Carvalho RM, de Souza Costa CA. Calcium silicate-coated porous chitosan scaffold as a cell-free tissue engineering system for direct pulp capping. Dent Mater 2022; 38:1763-1776. [DOI: 10.1016/j.dental.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
|
5
|
Influence of ceramic veneer on the transdentinal cytotoxicity, degree of conversion and bond strength of light-cured resin cements to dentin. Dent Mater 2022; 38:e160-e173. [DOI: 10.1016/j.dental.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
|
6
|
Leite ML, Soares DG, Anovazzi G, Filipe Koon Wu M, Bordini EAF, Hebling J, DE Souza Costa CA. Bioactivity effects of extracellular matrix proteins on apical papilla cells. J Appl Oral Sci 2021; 29:e20210038. [PMID: 34495108 PMCID: PMC8425894 DOI: 10.1590/1678-7757-2021-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Potent signaling agents stimulate and guide pulp tissue regeneration, especially in endodontic treatment of teeth with incomplete root formation.
Collapse
Affiliation(s)
- Maria Luísa Leite
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Diana Gabriela Soares
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Giovana Anovazzi
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Mon Filipe Koon Wu
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| | - Ester Alves Ferreira Bordini
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Josimeri Hebling
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Carlos Alberto DE Souza Costa
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| |
Collapse
|
7
|
Soares DG, Bordini EAF, Bronze-Uhle ES, Cassiano FB, Silva ISP, Gallinari MO, Matheus HR, Almeida JM, Cintra LTA, Hebling J, de Souza Costa CA. Chitosan-Calcium-Simvastatin Scaffold as an Inductive Cell-Free Platform. J Dent Res 2021; 100:1118-1126. [PMID: 34315311 DOI: 10.1177/00220345211024207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of biomaterials based on the combination of biopolymers with bioactive compounds to develop delivery systems capable of modulating dentin regeneration mediated by resident cells is the goal of current biology-based strategies for regenerative dentistry. In this article, the bioactive potential of a simvastatin (SV)-releasing chitosan-calcium-hydroxide (CH-Ca) scaffold was assessed. After the incorporation of SV into CH-Ca, characterization of the scaffold was performed. Dental pulp cells (DPCs) were seeded onto scaffolds for the assessment of cytocompatibility, and odontoblastic differentiation was evaluated in a microenvironment surrounded by dentin. Thereafter, the cell-free scaffold was adapted to dentin discs positioned in artificial pulp chambers in direct contact with a 3-dimensional (3D) culture of DPCs, and the system was sealed to simulate internal pressure at 20 cm/H2O. In vivo experiments with cell-free scaffolds were performed in rats' calvaria defects. Fourier-transform infrared spectroscopy spectra proved incorporation of Ca and SV into the scaffold structure. Ca and SV were released upon immersion in a neutral environment. Viable DPCs were able to spread and proliferate on the scaffold over 14 d. Odontoblastic differentiation occurred in the DPC/scaffold constructs in contact with dentin, in which SV supplementation promoted odontoblastic marker overexpression and enhanced mineralized matrix deposition. The chemoattractant potential of the CH-Ca scaffold was improved by SV, with numerous viable and dentin sialoprotein-positive cells from the 3D culture being observed on its surface. Cells at 3D culture featured increased gene expression of odontoblastic markers in contact with the SV-enriched CH-Ca scaffold. CH-Ca-SV led to intense mineralization in vivo, presenting mineralization foci inside its structure. In conclusion, the CH-Ca-SV scaffold induces differentiation of DPCs into a highly mineralizing phenotype in the presence of dentin, creating a microenvironment capable of attracting pulp cells to its surface and inducing the overexpression of odontoblastic markers in a cell-homing strategy.
Collapse
Affiliation(s)
- D G Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - E A F Bordini
- Department of Physiology and Pathology, University of Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, SP, Brazil
| | - E S Bronze-Uhle
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - F B Cassiano
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - I S P Silva
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - M O Gallinari
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - H R Matheus
- Department of Diagnosis and Surgery-Periodontics Division. São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - J M Almeida
- Department of Diagnosis and Surgery-Periodontics Division. São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - L T A Cintra
- Department of Preventive and Operative Dentistry, University of Estadual Paulista-UNESP, Araçatuba School of Dentistry, Araçatuba, SP, Brazil
| | - J Hebling
- Department of Orthodontics and Pediatric Dentistry, University of Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, SP, Brazil
| | - C A de Souza Costa
- Department of Physiology and Pathology, University of Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, SP, Brazil
| |
Collapse
|
8
|
Platform technologies for regenerative endodontics from multifunctional biomaterials to tooth-on-a-chip strategies. Clin Oral Investig 2021; 25:4749-4779. [PMID: 34181097 DOI: 10.1007/s00784-021-04013-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this review is to highlight recent progress in the field of biomaterials-mediated dental pulp tissue engineering. Specifically, we aim to underscore the critical design criteria of biomaterial platforms that are advantageous for pulp tissue engineering, discuss models for preclinical evaluation, and present new and innovative multifunctional strategies that hold promise for clinical translation. MATERIALS AND METHODS The current article is a comprehensive overview of recent progress over the last 5 years. In detail, we surveyed the literature in regenerative pulp biology, including novel biologic and biomaterials approaches, and those that combined multiple strategies, towards more clinically relevant models. PubMed searches were performed using the keywords: "regenerative dentistry," "dental pulp regeneration," "regenerative endodontics," and "dental pulp therapy." RESULTS Significant contributions to the field of regenerative dentistry have been made in the last 5 years, as evidenced by a significant body of publications. We chose exemplary studies that we believe are progressive towards clinically translatable solutions. We close this review with an outlook towards the future of pulp regeneration strategies and their clinical translation. CONCLUSIONS Current clinical treatments lack functional and predictable pulp regeneration and are more focused on the treatment of the consequences of pulp exposure, rather than the restoration of healthy dental pulp. CLINICAL RELEVANCE Clinically, there is great demand for bioinspired biomaterial strategies that are safe, efficacious, and easy to use, and clinicians are eager for their clinical translation. In particular, we place emphasis on strategies that combine favorable angiogenesis, mineralization, and functional tissue formation, while limiting immune reaction, risk of microbial infection, and pulp necrosis.
Collapse
|