1
|
Banaszak A, Terefinko D, Motyka‐Pomagruk A, Grzebieluch W, Wdowiak J, Pohl P, Sledz W, Malicka B, Jamroz P, Skoskiewicz‐Malinowska K, Dzimitrowicz A. Possibilities of Application of Cold Atmospheric Pressure Plasmas in Dentistry—A Narrative Review. PLASMA PROCESSES AND POLYMERS 2024. [DOI: 10.1002/ppap.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/16/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACTAccording to the World Human Organization (WHO), dental and periodontal diseases are common among the human population. Traditional dentistry offers a wide range of methods for treating oral diseases and performing esthetic procedures. In contrast, cold atmospheric pressure plasma (CAPP) has been found to be a promising technology in multiple fields, particularly in medical sciences such as dentistry. In this study, CAPP might be a promising adjunct to conventional dental treatments. A substantial number of studies have confirmed the effectiveness of both direct and indirect CAPP applications in dentistry. Because CAPP technology is fast, inexpensive, and noninvasive, we aim to review recent literature focused on the application of this methodology in dentistry.
Collapse
Affiliation(s)
- Angelika Banaszak
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| | - Dominik Terefinko
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| | - Agata Motyka‐Pomagruk
- Laboratory of Plant Protection and Biotechnology University of Gdansk, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk Gdansk Poland
- Research & Development Laboratory University of Gdansk, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk Gdansk Poland
| | - Wojciech Grzebieluch
- Department of Conservative Dentistry With Endodontics Laboratory for Digital Dentistry Wroclaw Medical University Wroclaw Poland
| | - Justyna Wdowiak
- Department of Conservative Dentistry With Endodontics Laboratory for Digital Dentistry Wroclaw Medical University Wroclaw Poland
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| | - Wojciech Sledz
- Laboratory of Plant Protection and Biotechnology University of Gdansk, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk Gdansk Poland
- Research & Development Laboratory University of Gdansk, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk Gdansk Poland
| | - Barbara Malicka
- Department of Conservative Dentistry With Endodontics Laboratory for Digital Dentistry Wroclaw Medical University Wroclaw Poland
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| | - Katarzyna Skoskiewicz‐Malinowska
- Department of Conservative Dentistry With Endodontics Laboratory for Digital Dentistry Wroclaw Medical University Wroclaw Poland
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
2
|
Miura S, Fujisawa M, Vallittu P, Lassila L. Effects of plasma surface treatment on the bond strength of zirconia with an adhesive resin luting agent. Dent Mater J 2024; 43:582-590. [PMID: 38960667 DOI: 10.4012/dmj.2024-051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The purpose of this study was to evaluate the effect of the atmospheric pressure plasma treatment as a surface treatment method on the contact angle and shear bond strength (SBS) of zirconia ceramics and the failure mode between the self-adhesive resin luting agent and zirconia. The zirconia specimens were divided into eight groups based on the surface treatment method: alumina blasting, air plasma, argon plasma (AP), Katana cleaner, ozonated water, ozonated water+AP, Katana cleaner+AP, and tap water+AP. The contact angles, SBS, and fracture modes were tested. AP treatment significantly reduced the contact angle (p<0.0001). The combination of AP and other cleaning methods showed a higher bond strength and more mixed fractures. Our findings indicate that using atmospheric pressure plasma with argon gas, combined with other cleaning methods, results in a stronger bond than when using alumina blasting alone.
Collapse
Affiliation(s)
- Shoko Miura
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
| | - Masanori Fujisawa
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku
- Welfare District of County of Southwest Finland
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
| |
Collapse
|
3
|
Zheng M, Ma X, Tan J, Zhao H, Yang Y, Ye X, Liu M, Li H. Enhancement of Biocompatibility of High-Transparency Zirconia Abutments with Human Gingival Fibroblasts via Cold Atmospheric Plasma Treatment: An In Vitro Study. J Funct Biomater 2024; 15:200. [PMID: 39057321 PMCID: PMC11277629 DOI: 10.3390/jfb15070200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this study was to explore the effects of cold atmospheric plasma (CAP) treatment on the biological behavior of human gingival fibroblasts (HGFs) cultured on the surface of high-transparency zirconia. Two types of zirconia, 3Y-ZTP and 4Y-PSZ, were subjected to a CAP treatment for various treatment durations. Analyses of the physical and chemical properties of 3Y-ZTP and 4Y-PSZ were conducted using scanning electron microscopy, contact angle measurements, and X-ray photoelectron spectroscopy, both before and after CAP treatment. The biological responses of HGFs on both surfaces were assessed using CCK-8 assay, confocal laser scanning microscopy, and real-time PCR. Initially, the oxygen and hydroxyl contents on the surface of 4Y-PSZ exceeded those on 3Y-ZTP. CAP treatment enhanced the surface hydrophilicity and the reactive oxygen species (ROS) content of 4Y-PSZ, while not altering the surface morphology. After CAP treatment, HGFs' adhesion on 4Y-PSZ was superior, with more pronounced effects compared to 3Y-ZTP. Notably, HGFs counts and the expression of adhesion-related genes on 4Y-PSZ peaked following the CAP exposures for 30 s and 60 s. Consequently, this study demonstrates that, following identical CAP treatments, 4Y-PSZ is more effective in promoting HGFs adhesion compared to traditional 3Y-ZTP zirconia.
Collapse
Affiliation(s)
- Miao Zheng
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (X.M.)
| | - Xinrong Ma
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (X.M.)
| | - Jianguo Tan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Hengxin Zhao
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
| | - Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Xinyi Ye
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Mingyue Liu
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100034, China
| | - Heping Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
4
|
Palkowitz AL, Rüger S, Ziegler M, Buhl EM, Fischer H. Transglutaminase enables highly hydrolytically and proteolytically stable crosslinking of collagen on titanium surfaces and promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2024; 112:812-824. [PMID: 38146594 DOI: 10.1002/jbm.a.37661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Collagen with its bioactive ligand motives would be predestined as coating on bone implant surfaces like titanium hip stems to facilitate receptor-mediated cell adhesion and thereby improve early osseointegration. Unfortunately, collagen as coating exhibits very low proteolytic resistance in vivo. To overcome this limitation, different crosslinking methods of collagen (transglutaminase, GTA, EDC/NHS, riboflavin, and lysyl oxidase) with silanized titanium alloy (Ti6Al4V) were investigated in terms of degradation resistance, hydrolysis stability, tensile strength, and metabolic cell activity. The in vitro osteogenic differentiation ability of human mesenchymal stem cells (hMSCs) induced by the surface modification was evaluated by immunofluorescence of early osteogenic markers, Alizarin red staining, and energy dispersive X-ray spectroscopy. The expression of the adhesion-related protein vinculin was analyzed on the different functionalized surfaces. The results revealed that the enzymatic crosslinker transglutaminase offered high degradation resistance, tensile strength, and hydrolysis stability compared to the other crosslinking reagents tested. Remarkably, the adhesion sequences within the collagen were accessible to the hMSCs despite the transglutaminase crosslinking procedure. In conclusion, the organochemical functionalization of Ti6Al4V surfaces with collagen using transglutaminase holds great potential to facilitate an enhanced interaction with attached bone cells and thereby could potentially improve and accelerate osseointegration of a titanium-based bone implant in vivo.
Collapse
Affiliation(s)
- Alena L Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Sascha Rüger
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Maximilian Ziegler
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
5
|
Schafer S, Swain T, Parra M, Slavin BV, Mirsky NA, Nayak VV, Witek L, Coelho PG. Nonthermal Atmospheric Pressure Plasma Treatment of Endosteal Implants for Osseointegration and Antimicrobial Efficacy: A Comprehensive Review. Bioengineering (Basel) 2024; 11:320. [PMID: 38671741 PMCID: PMC11048570 DOI: 10.3390/bioengineering11040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The energy state of endosteal implants is dependent on the material, manufacturing technique, cleaning procedure, sterilization method, and surgical manipulation. An implant surface carrying a positive charge renders hydrophilic properties, thereby facilitating the absorption of vital plasma proteins crucial for osteogenic interactions. Techniques to control the surface charge involve processes like oxidation, chemical and topographical adjustments as well as the application of nonthermal plasma (NTP) treatment. NTP at atmospheric pressure and at room temperature can induce chemical and/or physical reactions that enhance wettability through surface energy changes. NTP has thus been used to modify the oxide layer of endosteal implants that interface with adjacent tissue cells and proteins. Results have indicated that if applied prior to implantation, NTP strengthens the interaction with surrounding hard tissue structures during the critical phases of early healing, thereby promoting rapid bone formation. Also, during this time period, NTP has been found to result in enhanced biomechanical fixation. As such, the application of NTP may serve as a practical and reliable method to improve healing outcomes. This review aims to provide an in-depth exploration of the parameters to be considered in the application of NTP on endosteal implants. In addition, the short- and long-term effects of NTP on osseointegration are addressed, as well as recent advances in the utilization of NTP in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tina Swain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, New York University Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Alqutaibi AY, Aljohani A, Alduri A, Masoudi A, Alsaedi AM, Al-Sharani HM, Farghal AE, Alnazzawi AA, Aboalrejal AN, Mohamed AAH, Zafar MS. The Effectiveness of Cold Atmospheric Plasma (CAP) on Bacterial Reduction in Dental Implants: A Systematic Review. Biomolecules 2023; 13:1528. [PMID: 37892210 PMCID: PMC10604822 DOI: 10.3390/biom13101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The emergence of dental implants has revolutionized the management of tooth loss. However, the placement of clinical implants exposes them to complex oral environment and numerous microscopic entities, such as bacteria. Cold atmospheric plasma (CAP) is often used to treat the surfaces of dental implants, which alters morphological features and effectively reduces bacterial load. PURPOSE This systematic review aims to assess the existing literature on the bactericidal properties of CAP when used on various kinds of dental implant surfaces. REVIEW METHOD An in-depth examination of MEDLINE/PubMed and EMBASE was performed to identify relevant studies, with the most recent search conducted in May 2023. Studies were selected based on their exploration of CAP's effects on dental implants compared to control groups, focusing on CAP's bactericidal efficacy. However, studies that lacked a control group or that failed to measure bactericidal effects were excluded. RESULTS After applying the selection criteria, 15 studies were ultimately included in the systematic review. The collected data suggest that CAP can effectively reduce bacterial loads on dental implant surfaces, including pathogens like Streptococcus mitis and Staphylococcus aureus. Furthermore, CAP appears to combat biofilms and plaques that are key contributors to periimplantitis. CONCLUSION CAP emerges as a promising treatment option, exhibiting significant bactericidal activity on dental implant surfaces. CAP can decrease the rates of bacterial biofilm and plaque formation, leading to improved outcomes for dental implant patients.
Collapse
Affiliation(s)
- Ahmed Yaseen Alqutaibi
- Department of Substitutive Dental Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.)
- Prosthodontics Department, College of Dentistry, Ibb University, Ibb 70270, Yemen
| | - Abdulbari Aljohani
- College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.A.); (A.A.); (A.M.); (A.M.A.)
| | - Abdullah Alduri
- College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.A.); (A.A.); (A.M.); (A.M.A.)
| | - Abdulmajid Masoudi
- College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.A.); (A.A.); (A.M.); (A.M.A.)
| | - Anas M. Alsaedi
- College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.A.); (A.A.); (A.M.); (A.M.A.)
| | - Hesham Mohammed Al-Sharani
- National Center for Epidemiology and Population Health, ANU College of Health and Medicine, Canberra 2601, Australia;
| | - Ahmed E. Farghal
- Department of Substitutive Dental Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.)
| | - Ahmad Abdulkareem Alnazzawi
- Department of Substitutive Dental Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.)
| | | | - Abdel-Aleam H. Mohamed
- Physics Department, College of Science, Taibah University, Al Madinah 42353, Saudi Arabia;
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
7
|
Kunrath MF, Gerhardt MDN. Trans-mucosal platforms for dental implants: Strategies to induce muco-integration and shield peri-implant diseases. Dent Mater 2023; 39:846-859. [PMID: 37537095 DOI: 10.1016/j.dental.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Trans-mucosal platforms connecting the bone-anchored implants to the prosthetic teeth are essential for the success of oral rehabilitation in implant dentistry. This region promotes a challenging environment for the successfulness of dental components due to the transitional characteristics between soft and hard tissues, the presence of bacteria, and mechanical forces. This review explored the most current approaches to modify trans-mucosal components in terms of macro-design and surface properties. METHODS This critical review article revised intensely the literature until July 2023 to demonstrate, discuss, and summarize the current knowledge about marketable and innovative trans-mucosal components for dental implants. RESULTS A large number of dental implant brands have promoted the development of several implant-abutment designs in the clinical market. The progress of abutment designs shows an optimistic reduction of bacteria colonization underlying the implant-abutment gap, although, not completely inhibited. Fundamental and preclinical studies have demonstrated promising outcomes for altered-surface properties targeting antibacterial properties and soft tissue sealing. Nanotopographies, biomimetic coatings, and antibiotic-release properties have been shown to be able to modulate, align, orient soft tissue cells, and induce a reduction in biofilm formation, suggesting superior abilities compared to the current trans-mucosal platforms available on the market. SIGNIFICANCE Future clinical implant-abutments show the possibility to reduce peri-implant diseases and fortify soft tissue interaction with the implant-substrate, defending the implant system from bacteria invasion. However, the absence of technologies translated to commercial stages reveals the need for findings to "bridge the gap" between scientific evidences published and applied science in the industry.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Maurício do N Gerhardt
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioact Mater 2023; 27:348-361. [PMID: 37180640 PMCID: PMC10172871 DOI: 10.1016/j.bioactmat.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
Collapse
Affiliation(s)
- Kai Tang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meng-Lin Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| | - Fu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
9
|
Lee CM, Jeong YIL, Lim YK, Kook JK, Yang SW, Kook MS, Kim BH. The effect of cold atmospheric plasma (CAP) on the formation of reactive oxygen species and treatment of Porphyromonas gingivalis biofilm in vitro for application in treatment of peri-implantitis. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Kwiatkowski M, Terebun P, Kučerová K, Tarabová B, Kovalová Z, Lavrikova A, Machala Z, Hensel K, Pawłat J. Evaluation of Selected Properties of Dielectric Barrier Discharge Plasma Jet. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1167. [PMID: 36770174 PMCID: PMC9918978 DOI: 10.3390/ma16031167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
In the technological processes requiring mild treatment, such as soft materials processing or medical applications, an important role is played by non-equilibrium plasma reactors with dielectric barrier discharge (DBD), that when generated in noble gases allows for the effective treatment of biological material at a low temperature. The aim of this study is to determine the operating parameters of an atmospheric pressure, radio-frequency DBD plasma jet reactor for the precise treatment of biological materials. The tested parameters were the shape of the discharge (its length and volume), current and voltage signals, as well as the power consumed by the reactor for various composition and flow rates of the working gas. To determine the applicability in medicine, the temperature, pH, concentrations of H2O2, NO2- and NO3- and Escherichia coli log reduction in the plasma treated liquids were determined. The obtained results show that for certain operating parameters, a narrow shape of plasma stream can generate significant amounts of H2O2, allowing for the mild decontamination of bacteria at a relatively low power of the system, safe for the treatment of biological materials.
Collapse
Affiliation(s)
- Michał Kwiatkowski
- Chair of Electrical Engineering and Electrotechnologies, Lublin University of Technology, 20-618 Lublin, Poland
| | - Piotr Terebun
- Chair of Electrical Engineering and Electrotechnologies, Lublin University of Technology, 20-618 Lublin, Poland
| | - Katarína Kučerová
- Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Barbora Tarabová
- Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague, Czech Republic
| | - Zuzana Kovalová
- Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague, Czech Republic
| | - Aleksandra Lavrikova
- Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Zdenko Machala
- Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Karol Hensel
- Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Joanna Pawłat
- Chair of Electrical Engineering and Electrotechnologies, Lublin University of Technology, 20-618 Lublin, Poland
| |
Collapse
|
11
|
Yang Y, Liu M, Yang Z, Lin WS, Chen L, Tan J. Enhanced Antibacterial Effect on Zirconia Implant Abutment by Silver Linear-Beam Ion Implantation. J Funct Biomater 2023; 14:jfb14010046. [PMID: 36662093 PMCID: PMC9865340 DOI: 10.3390/jfb14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Peri-implant lesions, such as peri-implant mucositis and peri-implantitis, are bacterial-derived diseases that happen around dental implants, compromising the long-term stability and esthetics of implant restoration. Here, we report a surface-modification method on zirconia implant abutment using silver linear-beam ion implantation to reduce the bacterial growth around the implant site, thereby decreasing the prevalence of peri-implant lesions. The surface characteristics of zirconia after ion implantation was evaluated using energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and a contact-angle device. The antibacterial properties of implanted zirconia were evaluated using Streptococcus mutans and Porphyromonas gingivalis. The biocompatibility of the material surface was evaluated using human gingival fibroblasts. Our study shows that the zirconia surface was successfully modified with silver nanoparticles by using the ion-implantation method. The surface modification remained stable, and the silver-ion elution was below 1 ppm after one-month of storage. The modified surface can effectively eliminate bacterial growth, while the normal gingiva's cell growth is not interfered with. The results of the study demonstrate that a silver-ion-implanted zirconia surface possesses good antibacterial properties and good biocompatibility. The surface modification using silver-ion implantation is a promising method for future usage.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School, Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Mingyue Liu
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- First Clinical Division, Peking University School, Hospital of Stomatology, Beijing 100081, China
| | - Zhen Yang
- Department of Prosthodontics, Peking University School, Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Wei-Shao Lin
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Li Chen
- Department of Prosthodontics, Peking University School, Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Correspondence:
| | - Jianguo Tan
- Department of Prosthodontics, Peking University School, Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
12
|
Zhou W, Wang X, Huang X. Cold atmospheric pressure plasmas applications in dentistry. PLASMA PROCESSES AND POLYMERS 2022; 19. [DOI: 10.1002/ppap.202200024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2025]
Abstract
AbstractCold atmospheric pressure plasmas (CAP) is widely used for various therapeutic applications in health care. With the enormous progress in the understanding of plasma physics and development of plasma devices, the application of CAP is greatly promoted in dentistry. The reactive chemical species and electromagnetic radiation generated by CAP can activate and control various biochemical procedures. Therefore, CAP showed promising usage in surface modification of dental materials, biofilm removal, disinfection, endodontic therapy, periodontitis treatment, wound healing, and head and neck cancer control. Therefore, the objective of the present review is to present recently published studies on CAP in dentistry.
Collapse
Affiliation(s)
- Wen Zhou
- Postdoctoral Workstation, School and Hospital of Stomatology Fujian Medical University Fuzhou China
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology Fujian Medical University Fuzhou China
| | - Xiuqing Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology Fujian Medical University Fuzhou China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology Fujian Medical University Fuzhou China
| |
Collapse
|
13
|
Li Q, Li C, Wang Y. Effect of femtosecond laser ablate ultra-fine microgrooves on surface properties of dental zirconia materials. J Mech Behav Biomed Mater 2022; 134:105361. [DOI: 10.1016/j.jmbbm.2022.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
|
14
|
Kang SU, Kim CH, Kim HK, Yoon YW, Kim YK, Kim SJ. Effect of the Plasma Gas Type on the Surface Characteristics of 3Y-TZP Ceramic. Int J Mol Sci 2022; 23:3007. [PMID: 35328427 PMCID: PMC8950882 DOI: 10.3390/ijms23063007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma surface treatment can be an attractive strategy for modifying the chemically inert nature of zirconia to improve its clinical performance. This study aimed to clarify the effect of plasma gas compositions on the physicochemical surface modifications of 3 mol% yttria-stabilized zirconia (3Y-TZP). The cold, atmospheric plasma discharges were carried out by using four different plasma gases, which are He/O2, N2/Ar, N2, and Ar from an application distance of 10 mm for 60 s. Static contact angles were measured to define the surface free energy. Changes in elemental composition, surface crystallinity, and surface topography were assessed with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM), respectively. A significant decrease in water contact angle was observed in all plasma groups with the lowest value of 69° in the N2/Ar group. CLSM and SEM investigations exhibited no morphological changes in all plasma groups. XPS revealed that a reduction in the surface C content along with an increase in O content was pronounced in the case of N2/Ar compared to others, which was responsible for high hydrophilicity of the surface. XRD showed that the changes in crystallite size and microstrain due to oxygen atom displacements were observed in the N2/Ar group. The N2/Ar plasma treatment may contribute to enhancing the bioactivity as well as the bonding performance of 3Y-TZP by controlling the plasma-generated nitrogen functionalities.
Collapse
Affiliation(s)
- Sung-Un Kang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
- Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hee-Kyung Kim
- Department of Prosthodontics, Institute of Oral Health Science, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ye-Won Yoon
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| | - Yu-Kwon Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| | - Seung-Joo Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| |
Collapse
|
15
|
YE XY, LIU MY, LI J, LIU XQ, LIAO Y, ZHAN LL, ZHU XM, LI HP, TAN J. Effects of cold atmospheric plasma treatment on resin bonding to high-translucency zirconia ceramics. Dent Mater J 2022; 41:896-904. [DOI: 10.4012/dmj.2022-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xin-Yi YE
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - Ming-Yue LIU
- First Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - Jing LI
- Department of Engineering Physics, Tsinghua University
| | - Xiao-Qiang LIU
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - Yu LIAO
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - Ling-Lu ZHAN
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration
| | - Xiao-Ming ZHU
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - He-Ping LI
- Department of Engineering Physics, Tsinghua University
| | - Jianguo TAN
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| |
Collapse
|
16
|
Plasma-Activated Water Promotes Wound Healing by Regulating Inflammatory Responses. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1030022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infection can hinder the process of wound healing, so it is important to begin antibacterial treatment quickly after a wound forms. Plasma activated water (PAW) can inactivate a variety of common wound infection bacteria. In this study, we compared the effects of PAW prepared with portable surface discharge plasma equipment and medical alcohol on wound healing in a mouse full-thickness skin wound model. The effectiveness of wound healing processes in mice was ranked accordingly: PAW treatment group > medical alcohol treatment group > control group. In order to further understand the mechanism of PAW in promoting wound healing, we tested the expression levels of the pro-inflammatory factors interleukin (IL)-1β and IL-6, the anti-inflammatory factor IL-10, and vascular endothelial growth factor (VEGF). The results showed that PAW promoted the release of pro-inflammatory factors and anti-inflammatory factors from the wounds in mice, which allowed the mice in the treatment group to transition out of the inflammatory period early and enter the next stage of wound healing. The expression level of VEGF in the wounds of mice in the PAW treatment group was higher, which indicates that the microvessels around the wound in the PAW treatment group proliferated faster, and thus the wound healed faster. PAW biosafety experiments showed that PAW did not significantly affect the appearance, morphology, or tissue structure of internal organs, or blood biochemical indicators in mice. In general, PAW prepared via portable devices is expected to become more widely used given its convenience, affordability, and lack of side effects in promoting wound healing.
Collapse
|
17
|
Monteiro DR, de Souza Batista VE, Caldeirão ACM, Jacinto RDC, Pessan JP. Oral prosthetic microbiology: aspects related to the oral microbiome, surface properties, and strategies for controlling biofilms. BIOFOULING 2021; 37:353-371. [PMID: 34139899 DOI: 10.1080/08927014.2021.1912741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The oral cavity is an environment that allows for the development of complex ecosystems; the placement of prosthetic devices as a consequence of partial or total tooth loss may alter the diversity of microbial communities. Biofilms on the surface of materials used in dental prostheses can promote important changes in the mechanic and aesthetic properties of the material itself and may cause local and systemic diseases for the prosthetic wearer. This review presents the main features of the oral microbiome associated with complete or partial dentures and dental implants. The main diseases associated with microbial colonization of prosthetic surfaces, factors that may affect biofilm formation on prosthetic materials, as well as novel alternative therapies aiming to reduce biofilm formation and/or to eradicate biofilms formed on these materials are also explored.
Collapse
Affiliation(s)
- Douglas Roberto Monteiro
- Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | | | | | - Rogério de Castilho Jacinto
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Juliano Pelim Pessan
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| |
Collapse
|
18
|
In vitro and in vivo research of atmosphere pressure nonequilibrium plasmas on root canal disinfection: implication for alternative strategy for irrigation. Clin Oral Investig 2021; 25:5833-5842. [PMID: 33763712 DOI: 10.1007/s00784-021-03888-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate an intracanal disinfection methodology of APNPs (atmosphere pressure nonequilibrium plasmas) or modified APNPs in root canal treatment and evaluate the antimicrobial efficiency against in vitro infected dentinal tubules and in vivo experimental apical periodontitis. MATERIALS AND METHODS Dentine specimens were centrifugated with Enterococcus faecalis to generate 1-day-old and 3-week-old biofilms, and were treated with 2% chlorhexidine (Chx), APNP or modified APNP for 3 and 10 min (n=4). LIVE/DEAD staining was employed to analyze the ratio of deactivated bacteria. Experimental apical periodontitis in beagles was induced. Root canal therapy with APNPs or modified APNPs was performed and the antimicrobial effect was evaluated by histological and radiographical analyses. RESULTS APNP deactivated 1-day-old and 3-week-old E. feacalis in dentinal tubules as much as 2% Chx irrigating. Modified APNP significantly deactivated more E. faecalis biofilms in dentinal tubules for 3-min and 10-min treatments, without thermal damage or dentinal destruction being observed. In beagles' apical periodontitis, significantly increased BV/TV and decreased lesion volume of apical bone were found in modified APNP group than 2% Chx irrigation group according to μCT. Fewer inflammatory cells and bacterial residual in dentine were observed in modified APNP-treated apical tissue by histology staining compared with those in the 2% Chx irrigation group. CONCLUSION The antimicrobial effect of APNP jet irradiation was comparable to that of 2% Chx irrigation. No structural damage in dentine or tissue necrosis at the periapical region was induced upon treatment. The modified APNP demonstrated an increased antimicrobial efficacy compared with 2% Chx irrigation both in vitro and in vivo. CLINICAL RELEVANCE The modified APNPs can be used as an alternative intracanal disinfection strategy.
Collapse
|
19
|
Salgado BAB, Fabbri S, Dickenson A, Hasan MI, Walsh JL. Surface barrier discharges for Escherichia coli biofilm inactivation: Modes of action and the importance of UV radiation. PLoS One 2021; 16:e0247589. [PMID: 33730103 PMCID: PMC7968650 DOI: 10.1371/journal.pone.0247589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Cold plasma generated in air at atmospheric pressure is an extremely effective antimicrobial agent, with proven efficacy against clinically relevant bacterial biofilms. The specific mode of bacterial inactivation is highly dependent upon the configuration of the plasma source used. In this study, the mode of microbial inactivation of a surface barrier discharge was investigated against Escherichia coli biofilms grown on polypropylene coupons. Different modes of exposure were considered and it was demonstrated that the long-lived reactive species created by the plasma are not solely responsible for the observed microbial inactivation. It was observed that a synergistic interaction occurs between the plasma generated long-lived reactive species and ultraviolet (UV) photons, acting to increase the antimicrobial efficacy of the approach by an order of magnitude. It is suggested that plasma generated UV is an important component for microbial inactivation when using a surface barrier discharge; however, it is not through the conventional pathway of direct DNA damage, rather through the synergistic interaction between liquid in the biofilm matrix and long-lived chemical species created by the discharge.
Collapse
Affiliation(s)
- Breno A. B. Salgado
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Stefania Fabbri
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Aaron Dickenson
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Mohammad I. Hasan
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - James L. Walsh
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
20
|
Tan F, Fang Y, Zhu L, Al-Rubeai M. Cold atmospheric plasma as an interface biotechnology for enhancing surgical implants. Crit Rev Biotechnol 2021; 41:425-440. [PMID: 33622112 DOI: 10.1080/07388551.2020.1853671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cold atmospheric plasma (CAP) has been intensively researched for direct treatment of living cells and tissues. Significant attention is now being given to its indirect applications in plasma medicine. Surgical implant is an exemplary conveyor to deliver the therapeutic effects of plasma to patients. There is a constant drive to enhance the clinical performance of surgical implants, targeting at the implant-tissue interface. As a versatile and potent tool, CAP is capable of ameliorating surgical implants using various strategies of interface biotechnology, such as surface modification, coating deposition, and drug delivery. Understanding the chemical, physical, mechanical, electrical, and pharmacological processes occurring at the implant-tissue interface is crucial to effective application of CAP as an interface biotechnology. This preclinical review focuses on the recent advances in CAP-assisted implant-based therapy for major surgical specialties. The ultimate goal here is to elicit unique opportunities and challenges for translating implant science to plasma medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China.,School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China.,The Royal College of Surgeons of England, London, UK
| | - Yin Fang
- School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China
| | - Liwei Zhu
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Kniha K, Heussen N, Modabber A, Hölzle F, Möhlhenrich SC. The effect of zirconia and titanium surfaces on biofilm formation and on host-derived immunological parameters. Int J Oral Maxillofac Surg 2021; 50:1361-1374. [PMID: 33618967 DOI: 10.1016/j.ijom.2021.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/15/2023]
Abstract
The aim of this study was to analyse the effect of zirconia and titanium surfaces on biofilm formation and host-derived parameters. Studies comparing zirconia and titanium surfaces were selected up to September 1, 2019. The outcome measures were surface roughness, contact angle, bacterial count, bacterial adherence, biofilm thickness, bacterial distribution, and specifically investigated biofilm and specific host-derived immunological parameters. Random-effects meta-analyses of in vitro and in vivo studies were conducted. A total of 39 studies were included for data extraction. In the systematic review data, 10 studies stated that zirconia accumulated less initial oral biofilm parameters, 16 investigations showed negligible inter-material differences, and only one study showed that zirconia attracted the most biofilm. However, in the meta-analysis, the bacterial coverage was found to be significantly superior for zirconia surfaces (P< 0.00001); the other outcome measures did not show any statistically significant differences between zirconia and titanium for the remaining parameters and the studies presented a substantial degree of heterogeneity. Overall, on the basis of the meta-analysis, the current data situation does not allow a clear preference for the use of zirconia or titanium.
Collapse
Affiliation(s)
- K Kniha
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany; Private Clinic for Oral and Maxillofacial Surgery, Munich, Germany.
| | - N Heussen
- Department of Medical Statistics, University Hospital of Aachen, Aachen, Germany
| | - A Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - F Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - S C Möhlhenrich
- Department of Orthodontics, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
22
|
Yang Y, Zheng M, Jia YN, Li J, Li HP, Tan JG. Time-dependent reactive oxygen species inhibit Streptococcus mutans growth on zirconia after a helium cold atmospheric plasma treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111633. [PMID: 33545816 DOI: 10.1016/j.msec.2020.111633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023]
Abstract
As an efficient strategy for the modification of material surfaces, cold atmospheric plasma (CAP) has been used in dentistry to improve hard and soft tissue integration of dental implant materials. We previously found the Streptococcus mutans growth was inhibited on the surface of zirconia implant abutment after a 60-second helium cold atmospheric plasma treatment. However, the mechanism of bacterial growth inhibition on CAP-treated zirconia has not been fully understood. The duration of bacterial inhibition effectiveness on CAP-treated zirconia has also been insufficiently examined. In this work, we assume that reactive oxygen species (ROS) are the primary cause of bacterial inhibition on CAP-treated zirconia. The ROS staining and an ROS scavenger were utilized to evaluate the bacterial intracellular ROS level, and to determine the role of ROS in bacterial growth inhibition when seeded on CAP-treated zirconia. The time-dependent effectiveness of CAP treatment was determined by changes in surface characteristics and antibacterial efficacy of zirconia with different storage times after CAP treatment. This study confirmed that the presence of reactive oxygen species on the zirconia surface after CAP treatment inhibits the growth of Streptococcus mutans on the material surface. Although the antibacterial efficacy of the 60-second CAP-treated zirconia decreased over time, there were fewer bacteria on the treated surface than those on the untreated surface after 14 days.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Miao Zheng
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, PR China
| | - Ya-Nan Jia
- College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Jing Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, PR China
| | - He-Ping Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, PR China.
| | - Jian-Guo Tan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| |
Collapse
|
23
|
The Emerging Role of Cold Atmospheric Plasma in Implantology: A Review of the Literature. NANOMATERIALS 2020; 10:nano10081505. [PMID: 32751895 PMCID: PMC7466481 DOI: 10.3390/nano10081505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
In recent years, cold atmospheric plasma (CAP) technologies have received increasing attention in the field of biomedical applications. The aim of this article is to review the currently available literature to provide an overview of the scientific principles of CAP application, its features, functions, and its applications in systemic and oral diseases, with a specific focus on its potential in implantology. In this narrative review, PubMed, Medline, and Scopus databases were searched using key words like “cold atmospheric plasma”, “argon plasma”, “helium plasma”, “air plasma”, “dental implants”, “implantology”, “peri-implantitis”, “decontamination”. In vitro studies demonstrated CAP’s potential to enhance surface colonization and osteoblast activity and to accelerate mineralization, as well as to determine a clean surface with cell growth comparable to the sterile control on both titanium and zirconia surfaces. The effect of CAP on biofilm removal was revealed in comparative studies to the currently available decontamination modalities (laser, air abrasion, and chlorhexidine). The combination of mechanical treatments and CAP resulted in synergistic antimicrobial effects and surface improvement, indicating that it may play a central role in surface “rejuvenation” and offer a novel approach for the treatment of peri-implantitis. It is noteworthy that the CAP conditioning of implant surfaces leads to an improvement in osseointegration in in vivo animal studies. To the best of our knowledge, this is the first review of the literature providing a summary of the current state of the art of this emerging field in implantology and it could represent a point of reference for basic researchers and clinicians interested in approaching and testing new technologies.
Collapse
|
24
|
Braný D, Dvorská D, Halašová E, Škovierová H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. Int J Mol Sci 2020; 21:E2932. [PMID: 32331263 PMCID: PMC7215620 DOI: 10.3390/ijms21082932] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Cold atmospheric plasma use in clinical studies is mainly limited to the treatment of chronic wounds, but its application in a wide range of medical fields is now the goal of many analyses. It is therefore likely that its application spectrum will be expanded in the future. Cold atmospheric plasma has been shown to reduce microbial load without any known significant negative effects on healthy tissues, and this should enhance its possible application to any microbial infection site. It has also been shown to have anti-tumour effects. In addition, it acts proliferatively on stem cells and other cultivated cells, and the highly increased nitric oxide levels have a very important effect on this proliferation. Cold atmospheric plasma use may also have a beneficial effect on immunotherapy in cancer patients. Finally, it is possible that the use of plasma devices will not remain limited to surface structures, because current endeavours to develop sufficiently miniature microplasma devices could very likely lead to its application in subcutaneous and internal structures. This study summarises the available literature on cold plasma action mechanisms and analyses of its current in vivo and in vitro use, primarily in the fields of regenerative and dental medicine and oncology.
Collapse
Affiliation(s)
| | - Dana Dvorská
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (E.H.); (H.Š.)
| | | | | |
Collapse
|