1
|
Ribeiro MCLDS, Ferreira BAJ, Ribeiro ACF, França FMG, TURSSi CP, Basting RT, Vieira-Junior WF. Occlusion, acid resistance, and elemental characterization of dentin treated with desensitizing agents. Braz Oral Res 2025; 39:e016. [PMID: 39936715 DOI: 10.1590/1807-3107bor-2025.vol39.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 02/13/2025] Open
Abstract
The objective of this study was to evaluate the occlusion potential of in-office desensitizing agents, and characterize the human dentin elements after acid exposure. Twelve human dentin discs were sectioned into four specimens each, and randomized into treatments (n = 20): no treatment (negative control); no treatment and 6% citric acid exposure (positive control); application of Gluma desensitizer (Heraeus Kulzer) or PRG Barrier Coat (Shofu), followed by 6% citric acid exposure. Occlusion and dentin surface characteristics were determined by scanning electron microscopy (SEM, n = 10), and elemental composition (at%), by energy-dispersive X-ray spectroscopy (EDS, n = 10). Three calibrated, blinded evaluators used SEM to categorize the occlusion potential: 1 = occluded, 2 = partially unoccluded, 3 = equally occluded/unoccluded, 4 = partially occluded, 5 = unoccluded. Data were analyzed by weighted kappa, Friedman, and Nemenyi tests (α = 0.05). For SEM, mean occlusion scores were higher for the PRG Barrier Coat than the positive control (p = 0.0235). Most specimens in the controls scored 4 or 5. The most frequent scores for PRG Barrier Coat were 1(60%) and 2(20%), while 30% of Gluma specimens scored 1 and 2. Gluma showed intratubular precipitation, while PRG Barrier Coat covered dentinal tubules totally or partially. For EDS, the K% was lower for Gluma than the negative control (p = 0.0046), with Si peaks in dentin treated with PRG Barrier Coat. The bioactive in-office desensitizing agent with S-PRG filler (PRG Barrier Coat) promoted dentin tubule occlusion, and persisted after exposure to acid.
Collapse
|
2
|
Garcia MT, Namba AM, do Carmo PHF, Pedroso LLC, de Lima PMN, Gonçale JC, Junqueira JC. Antimicrobial effects of surface pre-reacted glass-ionomer (S-PRG) eluate against oral microcosm biofilm. BIOFOULING 2024; 40:390-401. [PMID: 38945827 DOI: 10.1080/08927014.2024.2371817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
This study investigated the antimicrobial activity of surface pre-reacted glass ionomer eluate (S-PRG) against oral microcosm biofilms collected from the oral cavity of patients. Dental biofilm samples were collected from three volunteers to form microcosm biofilms in vitro. Initially, screening tests were carried out to determine the biofilm treatment conditions with S-PRG eluate. The effects of a daily treatment for 5 min using three microcosm biofilms from different patients was then evaluated. For this, biofilms were formed on tooth enamel specimens for 120 h. Biofilms treated with 100% S-PRG for 5 min per day for 5 days showed a reduction in the number of total microorganisms, streptococci and mutans streptococci. SEM images confirmed a reduction in the biofilm after treatment. Furthermore, S-PRG also reduced lactic acid production. It was concluded that S-PRG eluate reduced the microbial load and lactic acid production in oral microcosm biofilms, reinforcing its promising use as a mouthwash agent.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Andressa Mayumi Namba
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Lara Luise Castro Pedroso
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Patrícia Michele Nagai de Lima
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Juliana Caparroz Gonçale
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Juliana Campos Junqueira
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| |
Collapse
|
3
|
Hiraishi N, Gondo T, Shimada Y, Hayashi F. Effect of borate, fluoride and strontium ions on biomimetic nucleation of calcium phosphate studied using solid-state nuclear magnetic resonance and X-ray diffraction. Dent Mater 2024; 40:210-218. [PMID: 37977993 DOI: 10.1016/j.dental.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES Apatite minerals can have various anions and cations in their crystal structure in addition to phosphate ion (PO₄³⁻) and calcium ion (Ca2+). The aim of this study is to investigate effects of the borate, fluoride and strontium ions on biomimetic nucleation of calcium phosphate. METHODS Nano-crystalline hydroxyapatite (H-Ap) was obtained from a supersaturated buffered solution containing 4.12 mM HPO42- and 5.88 mM Ca2+ (H-Ap). Four additives were used in solid solution methods: (i) 0.588 mM F- (F-Ap), (ii) 5.88 mM Sr2+ (Sr-Ap), (iii) 4.12 mM BO33- (BO3-Ap), and (iv) a surface pre-reacted glass ionomer (S-PRG) filler eluate that contained 0.17 mM Sr2+, 0.588 mM F-, 11.1 mM BO33-- (SPRG-Ap). Apatite crystallization was investigated using a solid-state magic-angle spinning NMR spectroscopy and X-ray diffraction (XRD) with the Rietveld analysis. RESULTS A 2D 1H-31P heteronuclear-correlation NMR showed F- ion incorporation in the apatite structure of the F-Ap and SPRG-Ap. The peaks on the 31P axis of the F-Ap, Sr-Ap, and BO3-Ap were different from that of the H-Ap, and the full width at half maximum increased in the following order: H-Ap∼F-Ap∼BO3-Ap< SPRG-Ap< Sr-Ap, suggesting the incorporation of the F-, Sr2+ and BO33-. The incorporation of F and BO3 was further confirmed by 19F and 11B NMR. The XRD revealed that Sr2+ was preferentially incorporated into the CaII site. SIGNIFICANCE The F-, Sr2+ and BO33-ions might be involved in modifying the crystallization of apatite precipitation, producing a variety of apatite. S-PRG filler that release these ions may have an effect on remineralization, i.e., the reformation of apatite lost due to caries.
Collapse
Affiliation(s)
- Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Tadamu Gondo
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Hayashi
- NMR Operation Team, Laboratory for Advanced NMR Application and Development, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
4
|
Kornsombut N, Takenaka S, Sotozono M, Nagata R, Ida T, Manuschai J, Saito R, Takahashi R, Noiri Y. Antibiofilm Properties and Demineralization Suppression in Early Enamel Lesions Using Dental Coating Materials. Antibiotics (Basel) 2024; 13:106. [PMID: 38275335 PMCID: PMC10812522 DOI: 10.3390/antibiotics13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
This study aimed to investigate the effects of dental coating materials on Streptococcus mutans biofilm formation. The test materials were PRG Barrier Coat (PRG), BioCoat Ca (BioC), and FluorDental Jelly (FluorJ). Bovine enamel specimens were demineralized to mimic early enamel lesions. The biofilm was developed on a specimen treated with one of the materials by using a modified Robbins device flow-cell system. Scanning electron and fluorescence confocal laser scanning microscopy, viable and total cell counts, and gene expression assessments of the antibiofilm were performed. Ion incorporation was analyzed using a wavelength-dispersive X-ray spectroscopy electron probe microanalyzer. All materials allowed biofilm formation but reduced its volume. FluorJ was the only material that inhibited biofilm accumulation and had a bactericidal effect, revealing 0.66 log CFU in viable cells and 1.23 log copy reduction in total cells compared with the untreated group after 24 h of incubation. The ions released from PRG varied depending on the element. BioC contributed to enamel remineralization by supplying calcium ions while blocking the acid produced from the biofilm. In summary, the dental coating materials physically prevented acid attacks from the biofilm while providing ions to the enamel to improve its mechanical properties.
Collapse
Affiliation(s)
- Niraya Kornsombut
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Shoji Takenaka
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Maki Sotozono
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Ryoko Nagata
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Takako Ida
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Jutharat Manuschai
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Rui Saito
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Ryouhei Takahashi
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Yuichiro Noiri
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| |
Collapse
|
5
|
Falcione DL, Pena CE, Turssi CP, França F, Amaral FD, Tagami J, Basting RT. Influence of Application Modes on Increasing Bond Strength Longevity of Self-etching and Universal Adhesive Systems to Enamel. Oper Dent 2024; 49:52-64. [PMID: 38019213 DOI: 10.2341/22-133-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 11/30/2023]
Abstract
The present study aimed to evaluate the influence of application mode on the short-term microshear bond strength longevity of self-etching and universal adhesive systems to enamel, the failure mode, and the resulting enamel surface micromorphology. Ninety enamel surfaces were obtained from sound third molars, planed, and randomly assigned to nine groups, according to the application mode and the adhesive system (n=10). There were three primer application modes: according to the manufacturer's recommended application time (control), using double the application time recommended for the primer and selective enamel etching. The adhesive systems used were: Clearfil SE Bond (Kuraray), FL-Bond II (SHOFU), and Futurabond U (Voco). At least two resin-bonded composite cylinders (Grandioso Light Flow, Voco) were placed on each enamel surface, and then evaluated for microshear bond strength at 24 hours and 180 days of storage in solution body fluid (SBF) at pH 7.4. Failure modes were evaluated with a stereoscopic microscope at 20× magnification. A micromorphological analysis of the enamel surface was performed under a scanning electron microscope at 5000× magnification before and after the treatments. Mixed models for repeated measures over time showed significant interaction among application modes, adhesive systems, and time periods (p=0.0331). The bond strength of FL-Bond II adhesive to enamel observed after performing selective enamel etching was significantly higher than that observed after applying the control treatment (p=0.0010) at both 24 hours and 180 days. However, no significant difference was observed between the application of this same adhesive at double the time recommended by the manufacturer and the other two application modes (p>0.05). There was also no significant difference in the microshear bond strength for the enamel treatments applied using Clearfil SE Bond and Futurabond U (p>0.05). A significant reduction in bond strength to enamel was observed at the 180-day storage time for all the adhesive systems when selective enamel etching was performed (p<0.0001). No significant association was observed between the adhesive system failure mode and the enamel treatments (p=0.1402 and p=0.7590 for 24 hours and 180 days, respectively). The most prevalent failure was the adhesive type.
Collapse
Affiliation(s)
- D L Falcione
- Daniel Locheider Falcione, PhD student, Faculdade São Leopoldo Mandic, São Paulo, Brazil
| | - C E Pena
- Carlos Eduardo Pena, professor, Centro de Extensão e Especialização Profissional Odontológica, São Paulo, Brazil
| | - C P Turssi
- Cecilia Pedroso Turssi, professor, Faculdade São Leopoldo Mandic, São Paulo, Brazil
| | - Fmg França
- Fabiana Mantovani Gomes França, professor, Faculdade São Leopoldo Mandic, São Paulo, Brazil
| | - Flb do Amaral
- Flávia Lucisano Botelho do Amaral, professor, Faculdade São Leopoldo Mandic, São Paulo, Brazil
| | - J Tagami
- Junji Tagami, visiting professor, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - R T Basting
- *Roberta Tarkany Basting, professor, Faculdade São Leopoldo Mandic, São Paulo, Brazil
| |
Collapse
|
6
|
Akabane K, Hiraishi N, Shimojima M, Nassar M, Qi F, Otsuki M, Shimada Y. The bleaching effect of office bleaching agents containing S-PRG filler evaluated by pH value and electron spin resonance. Clin Oral Investig 2023:10.1007/s00784-023-05031-0. [PMID: 37133698 DOI: 10.1007/s00784-023-05031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVES Surface reaction-type pre-reacted glass-ionomer (S-PRG) filler releases six types of ions with a neutralizing ability. This study evaluated the effect of S-PRG filler incorporation in an H2O2-based bleaching material on the bleaching efficacy, pH, and reaction state. MATERIALS AND METHODS The experimental bleaching material was formulated by the addition of 5% or 10% S-PRG fillers to the powder part. The stained bovine teeth were treated with the prepared bleaching paste. Commission internationale de l'éclairage (CIE) L*a*b* color space values were recorded before and after bleaching, and the color difference (ΔE) and whiteness index (WID) were calculated. Moreover, the used bleaching formulations were assessed for their pH values and reaction state by evaluating the oxidation state of manganese (Mn+2) using electron spin resonance (ESR). RESULTS The results of ΔE and WID showed that the addition of S-PRG filler increased the bleaching effect, but there was no significant difference between the groups with 5% and 10% S-PRG filler. A significant increase in pH in S-PRG filler groups (5% pH 6.7, 10% pH 6.8) was found compared to the 0% group (pH 4.8). ESR measurements showed that the signal emitted from Mn+2 decreased over time. The S-PRG filler groups showed a significantly higher reduction in Mn+2 compared to the 0% group, with no significant difference between the 5% and 10% S-PRG groups. CONCLUSIONS S-PRG filler addition resulted in improved bleaching efficacy, higher reaction rate, and pH values that are close to neutral. CLINICAL RELEVANCE S-PRG filler addition may be effective on the bleaching outcome of H2O2-based materials.
Collapse
Affiliation(s)
- Kodai Akabane
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
| | - Mika Shimojima
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Feng Qi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Masayuki Otsuki
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| |
Collapse
|
7
|
de Castro Oliveira L, Marchetti VM, de Souza E Silva Ramos F, Delbem ACB, Souza MT, Ganss B, Theodoro LH, Fagundes TC. In vitro dentin permeability and tubule occlusion of experimental in-office desensitizing materials. Clin Oral Investig 2023; 27:1265-1276. [PMID: 36305964 DOI: 10.1007/s00784-022-04760-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study investigates the dentin permeability (by hydraulic conductance) and tubule occlusion (by confocal and scanning electron microscopies) of in-office desensitizing materials. MATERIALS AND METHODS Bovine dentin blocks were immersed in EDTA to open dentinal tubules. Placebo varnish (PLA), fluoride varnish (FLU), NaF 5% + 5% nanoparticulate sodium trimetaphosphate varnish (TMP), universal adhesive system (SBU), S-PRG filler varnish (SPRG), Biosilicate (BIOS), and amelotin (AMTN) solution were the materials tested. After application, the specimens underwent an erosive-abrasive challenge. Dentin permeability was evaluated at T0 (initial), T1 (after treatment), and T2 (after challenge). Confocal and scanning electron microscopy (SEM) were used to evaluate, respectively, length and number of dentinal tubule occlusions and opened dentinal tubules, after challenge. Permeability and SEM data were analyzed by two-way repeated measures ANOVA and Tukey's tests. Confocal data were analyzed by one-way ANOVA, Tukey's test, and Kruskal-Wallis and Dunn's tests. Spearman and Pearson's correlation tests were also used. Significance level was set at 5%. RESULTS At T1, the AMTN group showed the lowest permeability value, following the increasing order at T2: AMTN = SBU < BIOS = SPRG < TMP < FLU < PLA. The SBU group had the highest value of occluded dentinal tubule length. The AMTN group presented more occluded dentinal tubules compared to PLA and FLU. AMTN and SBU had the lowest values of opened dentin tubules. Results showed a negative correlation between the analyses. CONCLUSION The SBU and AMTN solution were more effective in reducing dentin permeability by occluding dentin tubules. CLINICAL RELEVANCE All materials reduced permeability after challenge, except fluoride varnish.
Collapse
Affiliation(s)
- Laryssa de Castro Oliveira
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, CEP, 16015-050, Brazil
| | - Vitória Marega Marchetti
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, CEP, 16015-050, Brazil
| | - Fernanda de Souza E Silva Ramos
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, CEP, 16015-050, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, CEP, 16015-050, Brazil
| | - Marina Trevelin Souza
- Vitreous Materials Laboratory, Department of Materials Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Bernhard Ganss
- Faculty of Dentistry and Institute of Biomedical Engineering, University of Toronto, Toronto, Ontário, Canada
| | - Leticia Helena Theodoro
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Ticiane Cestari Fagundes
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, CEP, 16015-050, Brazil.
| |
Collapse
|
8
|
Shimizu S, Kusakabe S, Toyama M, Takagaki T, Kitada N, Yamamoto K, Ikeda M, Ichimura Y, Burrow MF, Hotta M, Nikaido T. Bacterial adhesion and antibacterial property of coating materials containing theobromine and S-PRG filler. Dent Mater J 2023; 42:112-120. [PMID: 36476682 DOI: 10.4012/dmj.2021-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Theobromine (TB) has been reported to promote tooth remineralization, strengthen tooth substance, and relieve dentin hypersensitivity. This study aimed to evaluate experimental tooth coating materials containing TB and surface pre-reacted glass-ionomer (S-PRG) fillers by examining the effects on bacterial adhesion and antibacterial properties. In addition, the amount of TB eluted from the coating material was measured. There was no significant difference in bacterial adhesion depending on the presence or absence of TB in the coating material, however, a significant decrease in the amount of bacterial adhesion was observed when S-PRG fillers were added to the coating material. The amount of eluted TB did not differ depending on the type of the filler in the coating material. It was suggested that TB could be used to develop a new dental material with the potential ability to inhibit the initiation and progression of dental caries.
Collapse
Affiliation(s)
- Shojiro Shimizu
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University
| | - Shusuke Kusakabe
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University
| | - Michiru Toyama
- Central Research Laboratories, Radioactive Isotope Research Laboratory, Asahi University
| | - Tomohiro Takagaki
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University
| | - Naoya Kitada
- Department of Research and Development Shofu Inc
| | | | - Masaomi Ikeda
- Oral Prosthetic Engineering, Graduate School, Tokyo Medical and Dental University
| | - Yoh Ichimura
- Division of Endodontic and Operative Dentistry, Department of Restorative and Biomaterials Sciences, School of Dentistry, Meikai University
| | - Michael F Burrow
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital
| | | | - Toru Nikaido
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University
| |
Collapse
|
9
|
Optimal Surface Pre-Reacted Glass Filler Ratio in a Dental Varnish Effective for Inhibition of Biofilm-Induced Root Dentin Demineralization. Polymers (Basel) 2022; 14:polym14225015. [PMID: 36433140 PMCID: PMC9695696 DOI: 10.3390/polym14225015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
A unique type of dental varnish (DV) containing surface pre-reacted glass (S-PRG) fillers of different concentrations was evaluated to determine the unpresented optimal ratio for inhibiting root dentin bio-demineralization. S-PRG DVs (10% to 40%)—10%-S, 20%-S, 30%-S, and 40%-S—were applied to bovine root dentin blocks and compared with controls—0%-f (no S-PRG) and 5%-NaF (5%-NaF). The Streptococcus mutans biofilm challenge was executed inside and outside an oral biofilm reactor for 7 days. The specimens were examined using a confocal laser scanning microscope and swept-source optical coherence tomography. Furthermore, they were observed using a scanning electron microscope and analyzed using energy-dispersive X-ray spectroscopy. The roughness (SzJIS) due to leaching of DV materials and demineralization depth were significantly less in the S-PRG groups than the control groups (p < 0.05). Complete or partially plugged dentinal tubules (DTs) were observed in 20%-S, 30%-S, and 40%-S, while wide-open DTs were observed more in controls. Cylindrical tags were present in groups containing more than 20% S-PRG. F, Na, Al, and Sr were detected in a higher percentile ratio in the 20%-S, 30%-S, and 40%-S groups compared to 0%-f and 10%-S. Nonetheless, it is suggested that incorporating 20% to 30% S-PRG fillers in DVs would be effective enough as an anti-demineralization coating, together with supplementing minerals; further evaluation is required to validate these findings.
Collapse
|
10
|
Ogawa Y, Sayed M, Hiraishi N, Al-Haj Husain N, Tagami J, Özcan M, Shimada Y. Effect of Surface Pre-Reacted Glass Ionomer Containing Dental Sealant on the Inhibition of Enamel Demineralization. J Funct Biomater 2022; 13:jfb13040189. [PMID: 36278658 PMCID: PMC9624343 DOI: 10.3390/jfb13040189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The effect of a surface pre-reacted glass ionomer (S-PRG)-containing sealant on the demineralization inhibition and remineralization of intact enamel adjacent to the sealant material was investigated. BeautiSealant (BTS, S-PRG sealant, Shofu), Teeth Mate F-12.0 (TMF, fluoride-releasing sealant, Kuraray Noritake Dental), and an experimental silica-filler sealant were investigated. After pH cycling for 10 days, the enamel surface adjacent to the sealant material was observed using confocal laser microscopy and scanning electron microscopy. The polymerized sealant disks were immersed in a demineralized solution (pH: 4.3) to measure pH change. The enamel specimens with polymerized sealant disks were additionally immersed in demineralized solution, followed by energy-dispersive X-ray spectroscopy. The demineralized area of BTS was significantly smaller than that of TMF and SS (p < 0.05). The surfaces adjacent to the sealant of TMF and SS were demineralized, while the surface of BTS was comparatively intact. An increase in pH values were observed in the BTS and TMF groups. Enamel surfaces presented an inhibition of demineralization for BTS and TMF, but not for SS. Fluoride uptake from the polymerized sealant was greater for BTS than for TMF. The S-PRG-containing sealant showed a buffering ability, demineralization inhibition, promotion of remineralization, and it can be advised for clinical applications.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Mahmoud Sayed
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
- Correspondence: ; Tel.: +81-3-5803-5483; Fax: +81-3-5803-0195
| | - Nadin Al-Haj Husain
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zürich, 8032 Zürich, Switzerland
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zürich, 8032 Zürich, Switzerland
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
11
|
Lai YJ, Takahashi R, Lin PY, Kuo L, Zhou Y, Matin K, Chiang YC, Shimada Y, Tagami J. Anti-Demineralization Effects of Dental Adhesive-Composites on Enamel-Root Dentin Junction. Polymers (Basel) 2021; 13:polym13193327. [PMID: 34641143 PMCID: PMC8512347 DOI: 10.3390/polym13193327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022] Open
Abstract
Oral biofilm reactor (OBR) and pH cycling (pHC) artificial caries model were employed to evaluate the anti-demineralization effects of four composite filling systems on enamel-root dentin junction. Sixty-four enamel-root dentin blocks (6 mm × 6 mm × 2 mm) each with a cylindrical cavity were randomly assigned to the pHC and OBR group, then four subgroups (n = 8) and filled with either the Beautifil II (BEF, SPRG-filler-containing) or Estelite (EST) composite after the adhesive (either Single Bond Universal (SBU) or FL Bond II (FL, SPRG-filler-containing)). The demineralization lesions of filling interface were examined by micro-computerized tomography (μCT) and swept-source-optical coherence tomography (SS-OCT). According to the degree of interface damage, the caries lesions were sorted into four types: Type A and B (no attachment loss); Type C and D (attachment loss). EST/SBU showed the worst demineralization lesion and attachment loss (100% Type D), while BEF/FL exhibited the shallowest lesion depth (p < 0.05, 145 ± 45 μm on enamel, 275 ± 35 μm on root dentin) and no attachment loss (75% Type A and 25% Type B). Using FL adhesive alone does not effectively reduce enamel demineralization. BEF plays a leading role in acid resistance. The combination of BEF and FL showed a cumulative synergistic effect on anti-demineralization.
Collapse
Affiliation(s)
- Yu-Jung Lai
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei 10048, Taiwan;
- Dental Department, Division of Restorative and Aesthetic Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan;
| | - Rena Takahashi
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| | - Po-Yen Lin
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ling Kuo
- Dental Department, Division of Restorative and Aesthetic Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan;
| | - Yuan Zhou
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| | - Yu-Chih Chiang
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei 10048, Taiwan;
- Dental Department, Division of Restorative and Aesthetic Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan;
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel: +886-2-23123456; Fax: +886-2-23831346
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (R.T.); (Y.Z.); (K.M.); (Y.S.); (J.T.)
| |
Collapse
|
12
|
Francisconi-Dos-Rios LF, Dantas LM, Calabria MP, Pereira JC, Mosquim V, Wang L. Obliterating potential of active products for dentin hypersensitivity treatment under an erosive challenge. J Dent 2021; 112:103745. [PMID: 34252489 DOI: 10.1016/j.jdent.2021.103745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES To compare the effect of 5 desensitizing agents on the hydraulic conductance (Lp) of dentin and to analyze its surface under a Laser Scanning Confocal Microscope (LSCM) before and after an erosive challenge. METHODS Lp was analyzed in the following sequence: in the presence of smear layer (pMin), after a 15-second acid etching (pMax), after treatment with a desensitizing agent (pTreat) and after a 1-minute erosive challenge (6% citric acid - pEro). Fifty 1.0 ± 0.2 mm-thick dentin disks were prepared from sound human third molars and were randomly distributed into 5 groups (n = 10): FG-Fluoride gel (control), SA-Sensiactive, PR-Sensitive Pro-Relief, NP-Desensibilize Nano-P and EV-Enamel Pro Varnish. Data were analyzed by two-way ANOVA and Tukey tests (α<0.05). Additional specimens were analyzed under a Laser Scanning Confocal Microscope (LSCM) and by Energy Dispersive X-ray Spectroscopy (EDS). RESULTS All materials reduced the Lp in some extent, except for FG and EV. After the erosive challenge, SA was the only material effectively able to keep the same Lp of the post-treatment phase, while the other products showed lower resistance upon an erosive challenge. Under the LSCM, the SA and NP materials were more effective to obliterate the opened dentin tubules and demonstrated higher resistance upon an erosive challenge. The EDS analysis evidenced levels of Ca, O, P, Si, Na and S. CONCLUSIONS Product containing potassium oxalate was the most effective in reducing Lp of dentin samples before and after an erosive challenge. Under a LSCM, products containing potassium oxalate or hydroxyapatite crystals seemed to be occluding the dentin tubules after an erosive challenge.
Collapse
Affiliation(s)
| | | | | | - José Carlos Pereira
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Victor Mosquim
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Linda Wang
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|