1
|
Shadab H, Nawabi A, Anwari A, Nejabi MB, Ghafari ES, Karimi S, Ahmadi ME. Surgical Management of Hereditary Gingival Fibromatosis: Case Series. Clin Cosmet Investig Dent 2024; 16:307-319. [PMID: 39286662 PMCID: PMC11403129 DOI: 10.2147/ccide.s480490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Hereditary gingival fibromatosis (HGF) is an uncommon genetic condition marked by gradual and progressive overgrowth of fibrous tissue in the gums, which is benign in nature. It is a genetic disorder inherited in an autosomal dominant pattern, known for its considerable genetic diversity. The marginal, attached, and interdental gingivae are affected by this condition. The affected area appears pink, does not bleed easily, and exhibits a firm, fibrotic texture. Additionally, it displays a hard, widespread nodular growth that is smooth to stippled and has little bleeding tendency. Nevertheless, in certain instances, the enlargement may feel so dense and firm that it resembles bone upon palpation. Accordingly, esthetics and functions related to a healthy gingiva is also affected. The choice of treatment modality often depends on factors such as the severity of gingival overgrowth, available resources, and patient-specific considerations. Laser techniques and electrosurgery have emerged as valuable options, providing benefits like reduced discomfort and enhanced precision. However, traditional surgical methods remain highly effective, particularly when advanced technologies are not available. This article reports on three cases of hereditary gingival fibromatosis (HGF) treated with conventional gingivectomy, flap procedures, and resective osseous surgery (osteoplasty and osteotomy). The aim is to support the efficacy of these interventions in addressing patient complaints and preparing the groundwork for managing additional issues, such as speech and mastication difficulties, delayed eruption of permanent teeth, and malocclusion. The surgical treatment led to significant improvements: masticatory function was markedly enhanced, aesthetic outcomes were notably better, and oral hygiene significantly improved. Additionally, the procedures created favorable conditions for future treatments, including orthodontics, implants, or prosthetics, by providing a more manageable and functional oral environment.
Collapse
Affiliation(s)
- Hassina Shadab
- Periodontics Department, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - Aisha Nawabi
- Periodontics Department, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - Abdurrahman Anwari
- Operative/ Restorative Dentistry and Endodontics Department, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - Mohammad Bashir Nejabi
- Prosthodontics Department, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - Elaha Somaya Ghafari
- Periodontics Department, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - Sajeya Karimi
- Periodontics Department, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - Mohammad Eissa Ahmadi
- Periodontics Department, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| |
Collapse
|
2
|
Kularbkaew T, Thongmak T, Sandeth P, Durward CS, Vittayakittipong P, Duke P, Iamaroon A, Kintarak S, Intachai W, Ngamphiw C, Tongsima S, Jatooratthawichot P, Cox TC, Ketudat Cairns JR, Kantaputra P. Genetic Variants in the TBC1D2B Gene Are Associated with Ramon Syndrome and Hereditary Gingival Fibromatosis. Int J Mol Sci 2024; 25:8867. [PMID: 39201553 PMCID: PMC11354241 DOI: 10.3390/ijms25168867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Ramon syndrome (MIM 266270) is an extremely rare genetic syndrome, characterized by gingival fibromatosis, cherubism-like lesions, epilepsy, intellectual disability, hypertrichosis, short stature, juvenile rheumatoid arthritis, and ocular abnormalities. Hereditary or non-syndromic gingival fibromatosis (HGF) is also rare and considered to represent a heterogeneous group of disorders characterized by benign, slowly progressive, non-inflammatory gingival overgrowth. To date, two genes, ELMO2 and TBC1D2B, have been linked to Ramon syndrome. The objective of this study was to further investigate the genetic variants associated with Ramon syndrome as well as HGF. Clinical, radiographic, histological, and immunohistochemical examinations were performed on affected individuals. Exome sequencing identified rare variants in TBC1D2B in both conditions: a novel homozygous variant (c.1879_1880del, p.Glu627LysfsTer61) in a Thai patient with Ramon syndrome and a rare heterozygous variant (c.2471A>G, p.Tyr824Cys) in a Cambodian family with HGF. A novel variant (c.892C>T, p.Arg298Cys) in KREMEN2 was also identified in the individuals with HGF. With support from mutant protein modeling, our data suggest that TBC1D2B variants contribute to both Ramon syndrome and HGF, although variants in additional genes might also contribute to the pathogenesis of HGF.
Collapse
Affiliation(s)
- Thatphicha Kularbkaew
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
- Division of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Phan Sandeth
- Department of Oral and Maxillofacial Surgery, Preah Ang Duong Hospital, Phnom Penh 120201, Cambodia;
| | - Callum S. Durward
- Faculty of Dentistry, University of Puthisastra, Phnom Penh 120201, Cambodia;
| | - Pichai Vittayakittipong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Paul Duke
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Anak Iamaroon
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sompid Kintarak
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
- Division of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Ge M, Li M, Shen L. Non-surgical treatment of idiopathic gingival enlargement: A case report. Medicine (Baltimore) 2024; 103:e37448. [PMID: 38728494 PMCID: PMC11081537 DOI: 10.1097/md.0000000000037448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Idiopathic gingival enlargement is associated with plaque, but other contributing factors are unclear. The prognosis of idiopathic gingival enlargement is closely related to the patient's oral hygiene habits and regular follow-up. CASE PRESENTATION This article reports a case of a 32-year-old male patient with idiopathic gingival enlargement. The patient presented to the department of stomatology with a 2-month history of gingival swelling and pain on the right upper posterior teeth. During the treatment, oral hygiene instruction, supragingival cleaning, subgingival scaling, and root planning were carried out, and part of the hyperplastic gingiva was taken and sent for pathology. Pathological examination showed gingival enlargement with chronic suppurative inflammation. At 4-month follow-up, the patient's periodontal condition remained basically stable, and the gingival enlargement did not recur. CONCLUSION The treatment of this case resulted in significant reduction of gingival swelling and patient's pain reduction through non-surgical treatment and good plaque control, indicating that patients with idiopathic gingival enlargement can also achieve ideal results through non-surgical treatment. Through oral hygiene instruction, the patient mastered the method of self-plaque control, which is conducive to the long-term stabilization of the periodontal situation.
Collapse
Affiliation(s)
- Mingjie Ge
- Center for Plastic and Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mengli Li
- Center for Plastic and Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liheng Shen
- Center for Plastic and Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Chen J, Xu X, Chen S, Lu T, Zheng Y, Gan Z, Shen Z, Ma S, Wang D, Su L, He F, Shang X, Xu H, Chen D, Zhang L, Xiong F. Double heterozygous pathogenic mutations in KIF3C and ZNF513 cause hereditary gingival fibromatosis. Int J Oral Sci 2023; 15:46. [PMID: 37752101 PMCID: PMC10522663 DOI: 10.1038/s41368-023-00244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.
Collapse
Affiliation(s)
- Jianfan Chen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Experimental Department of Obstetrics and Gynecology Institute, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqing Xu
- Department of Precision Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Song Chen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingchun Zheng
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongzhi Gan
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zongrui Shen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shunfei Ma
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Duocai Wang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Leyi Su
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Shang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huiyong Xu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Huang X, Zhu W, Zhang X, Fu Y. Modified gingivoplasty for hereditary gingival fibromatosis: two case reports. BMC Oral Health 2022; 22:523. [DOI: 10.1186/s12903-022-02411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Abstract
Background
Hereditary gingival fibromatosis (HGF) is characterized by sub-epithelial fibromatosis of keratinized gingiva resulting in a fibrotic enlargement of keratinized gingiva. The treatment choice is gingivectomy, which can be performed with an internal or external bevel incision conventionally. However, both techniques can hardly resume the natural status of gingiva, and have a certain recurrence rate, especially in the cases which have limited width of attached gingiva.
Case description
Two cases of HGF with the chief complaint of difficulty in mastication, pronunciation, and poor esthetics were presented. After the initial periodontal therapy, a novel gingivoplasty modified with a crevicular incision was applied. A full thickness flap above the mucogingival junction and a split flap below the junction were raised. Then, fibrotic connective tissue was completely eliminated and keratinized gingival epithelium was preserved. The fibrotic alveolar bone was shaped by handpiece and bur. Finally, the flap was apically repositioned and sutured. Twelve months after surgery, the gingiva recovered with normal color, contour and consistency.
Conclusions
Compared to traditional gingivectomy, modified gingivoplasty which focuses on eliminating pathological fibrotic connective tissue can completely resume the natural appearance of gingiva and demonstrate no tendency of recurrence.
Collapse
|
6
|
Kamal NM, Hamouda MA, Abdelgawad N. Expression of TGF-β and MMP-2 in hereditary gingival fibromatosis epithelial cells. A possible contribution of the epithelium to its pathogenesis. J Oral Biol Craniofac Res 2022; 12:617-622. [PMID: 35989975 DOI: 10.1016/j.jobcr.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022] Open
Abstract
Background Although the molecular mechanisms that cause the development of hereditary gingival fibromatosis are not fully understood, multiple theories have been suggested to clarify its pathogenesis. However, the overlying keratinocytes' function is poorly comprehended. This work aimed to investigate the expression of TGF-β and MMP-2 in hereditary gingival fibromatosis epithelial cells compared to the normal gingival epithelium to give an insight into the mechanism of the development of this condition. Methods Biopsies were obtained from 20 hereditary gingival fibromatosis patients and 20 healthy controls. Biopsies were stained immunohistochemically and statistically analyzed for MMP-2 and TGF-β expression. Results Regarding MMP-2, The hereditary gingival fibromatosis group recorded a higher mean value compared to the normal gingiva, with a mean difference of 3.29 ± 0.34. This difference was statistically significant (p = 0.00). Regarding TGF-β, a higher mean value was recorded in the HGF group compared to the normal gingiva, with a mean difference of 15.88 ± 1.05 The difference was statistically significant (p = 0.00). A strong positive correlation was detected between MMP-2 and TGF-β (R = 0.534, p = 0.015). Conclusions In hereditary gingival fibromatosis, the epithelium expresses higher levels of TGF-β and MMP-2 than normal gingival tissue. There was an evident positive correlation between MMP-2 and TGF-β. Our data suggest that the expression of TGF-β and MMP2 by epithelial cells of HGF may play a role in the epithelial-mesenchymal transition pathogenic pathway.
Collapse
Affiliation(s)
- Naglaa M Kamal
- Department of Oral Pathology, Faculty of Oral and Dental Medicine, Ahram Canadian University, 6th of October, Egypt
| | - Mai A Hamouda
- Department of Oral Pathology, Faculty of Oral and Dental Medicine, Ahram Canadian University, 6th of October, Egypt
| | - Nora Abdelgawad
- Department of Oral Medicine, Periodontology, Diagnosis and Radiology, Faculty of Dental Medicine for Girls, Al Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Abstract
Non-plaque induced diffuse gingival overgrowth represents a broad class of conditions caused by several etiological factors. The aim of this review is to highlight the most recent updates and classifications of all the existent gingival overgrowths. In addition, we highlighted the diagnostic pathway that should be employed in patients affected by gingival overgrowth. Gingival overgrowth can be related to syndromic diseases including a wide spectrum of genetic and chromosomal alterations. However, thanks to scientific sharing and the availability of genetic panels it is possible to obtain an accurate phenotypic identification of well-known syndromes and also to identify new ones. This narrative review shows that through rigid, strict diagnostic protocols, the work of the clinician is greatly facilitated, despite the wide variety of pathologies considered. In conclusion, the exchange of specialists’ competencies and the multidisciplinary management of these patients, are crucial to reach diagnosis and the correct clinical-therapeutic management.
Collapse
|
8
|
Li N, Wang W, Sun Y, Wang H, Wang T. Seven-year follow-up of a patient with hereditary gingival fibromatosis treated with a multidisciplinary approach: case report. BMC Oral Health 2021; 21:473. [PMID: 34565352 PMCID: PMC8474844 DOI: 10.1186/s12903-021-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hereditary gingival fibromatosis (HGF) is rare in clinical practice, and the long-term results of the combined orthodontic-periodontal treatment of HGF are rarely reported. CASE PRESENTATION This study reports for the first time the results of seven years of follow-up in a seven-year-old girl with HGF. The diagnosis was confirmed by clinical signs, family history and histopathological examination. First, periodontal scaling and oral hygiene reinforcement were performed regularly in the mixed dentition stage. Next, gingivoplasty was performed on the permanent dentition. Two months after the surgery, treatment with fixed orthodontic appliances was conducted. The teeth were polished on a monthly basis, and oral hygiene was reinforced to control gingival enlargement. Gingival hypertrophy recurred slightly, and gingivectomies were performed in the months following the start of orthodontic treatment. Follow-up was performed for 24 months with orthodontic retention, and gingival enlargement remained stable after the combined treatment. CONCLUSIONS The risk of gingival hyperplasia recurrence during and after orthodontic treatment is high, but satisfying long-term outcomes can be achieved with gingivectomy, malocclusion correction, and regular follow-up maintenance.
Collapse
Affiliation(s)
- Ning Li
- Department of Orthodontics, Yantai Stomatological Hospital, Yantai, 264000, Shandong, China
| | - Wenfang Wang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shanxi, China
| | - Yuanyuan Sun
- Department of Periodontology, Yantai Stomatological Hospital, Yantai, 264000, Shandong, China
| | - Hongning Wang
- Department of Orthodontics, Yantai Stomatological Hospital, Yantai, 264000, Shandong, China
| | - Tiejun Wang
- Department of Orthodontics, Yantai Stomatological Hospital, Yantai, 264000, Shandong, China.
| |
Collapse
|