1
|
Joshi VM, Kandaswamy E, Germain JS, Schiavo JH, Fm HS. Effect of hyaluronic acid on palatal wound healing: A systematic review. Clin Oral Investig 2024; 28:565. [PMID: 39358570 DOI: 10.1007/s00784-024-05955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES To evaluate the efficacy of topically applied hyaluronic acid on wound healing (patient-reported outcomes and clinical healing) after a palatal autogenous gingival graft is harvested. MATERIALS AND METHODS A systematic search was performed in April 2024 in eleven electronic databases. Two investigators independently screened the references for inclusion. Outcomes of interest included postoperative pain, analgesic consumption, complete epithelialization, and color match, which were synthesized using narrative synthesis. RESULTS A total of 535 results were identified and eight articles were included in the systematic review. Hyaluronic acid use on the palatal donor site had a better response to healing and wound size compared to the control sites with no agent applied. Hyaluronic acid demonstrated a positive effect in the form of complete epithelialization, and color match, with improved patient-reported outcomes such as post-operative pain. CONCLUSION Within the limitations of this systematic review, it can be concluded that hyaluronic acid shows a strong potential to improve patient-reported outcomes and clinical wound healing at the graft donor site on the palate. Future studies are required to clarify the optimal concentration, frequency of application, and synergistic effect when HA is combined with other interventions. CLINICAL RELEVANCE Within the limitations of this systematic review, it can be concluded that hyaluronic acid shows a strong potential to improve patient-reported outcomes and clinical wound healing at the graft donor site on the palate. Future studies are required to clarify the optimal concentration, frequency of application, and synergistic effect when HA is combined with other interventions.
Collapse
Affiliation(s)
- Vinayak M Joshi
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA, 70119, USA
| | - Eswar Kandaswamy
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA, 70119, USA.
| | - Jeanne St Germain
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA, 70119, USA
| | - Julie H Schiavo
- Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | |
Collapse
|
2
|
Lorenzi C, Leggeri A, Cammarota I, Carosi P, Mazzetti V, Arcuri C. Hyaluronic Acid in Bone Regeneration: Systematic Review and Meta-Analysis. Dent J (Basel) 2024; 12:263. [PMID: 39195107 DOI: 10.3390/dj12080263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
AIM The aim of this systematic review and meta-analysis was to assess possible histomorphometric differences in new bone formation and in remaining graft particles when hyaluronic acid (HA) was added and mixed with graft materials in bone regeneration. MATERIALS AND METHODS This review was registered at the International Prospective Register of Systematic Reviews (PROSPERO) of the National Institute of Health Research (registration number CRD42024530030). Electronic research was performed, and involved studies published up to 29 February 2024 using a specific word combination. The primary outcome was to assess possible histomorphometric differences in new bone formation and in remaining graft particles when HA was added and mixed with graft materials in bone regeneration. The search resulted in 138 potential studies. Meta-analyses were performed using the fixed and random effects model to identify significant changes in new bone formation and in the remaining graft particles. RESULTS After screening procedures, only three randomized controlled trials fulfilled the inclusion criteria and were selected for qualitative and quantitative analysis. The effect size of HA in the new bone formation was not statistically significant at 95% CI (Z = 1.734, p-value = 0.083, 95 % CI -,399; 6516). The effect size of HA in the remaining graft particles was not statistically significant at 95% CI (Z = -1.042, p-value = 0.297, CI -,835; 255). CONCLUSIONS Within the limitations of the present systematic review and meta-analysis, the addition of HA to bone graft did not result in significant changes in bone regeneration procedures in terms of new bone formation and residues, even if the included studies showed encouraging and promising results.
Collapse
Affiliation(s)
- Claudia Lorenzi
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Leggeri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Cammarota
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paolo Carosi
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Mazzetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudio Arcuri
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
3
|
Yu Y, Li X, Ying Q, Zhang Z, Liu W, Su J. Synergistic Effects of Shed-Derived Exosomes, Cu 2+, and an Injectable Hyaluronic Acid Hydrogel on Antibacterial, Anti-inflammatory, and Osteogenic Activity for Periodontal Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33053-33069. [PMID: 38899855 DOI: 10.1021/acsami.4c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The primary pathology of periodontitis involves the gradual deterioration of periodontal tissues resulting from the inflammatory reaction triggered by bacterial infection. In this study, a novel drug for periodontal pocket injection, known as the Shed-Cu-HA hydrogel, was developed by incorporating copper ions (Cu2+) and Shed-derived exosomes (Shed-exo) inside the hyaluronic acid (HA) hydrogel. Suitable concentrations of Cu2+ and Shed-exo released from Shed-Cu-HA enhanced cell viability and cell proliferation of human periodontal ligament stem cells. Additionally, the Shed-Cu-HA demonstrated remarkable antibacterial effects against the key periodontal pathogen (Aa) owing to the synergistic effect of Cu2+ and HA. Furthermore, the material effectively suppressed macrophage inflammatory response via the IL-6/JAK2/STAT3 pathway. Moreover, the Shed-Cu-HA, combining the inflammation-regulating properties of HA with the synergistic osteogenic activity of Shed-exo and Cu2+, effectively upregulated the expression of genes and proteins associated with osteogenic differentiation. The experimental findings from a mouse periodontitis model demonstrated that the administration of Shed-Cu-HA effectively reduced the extent of inflammatory cell infiltration and bacterial infections in gingival tissues and facilitated the regeneration of periodontal bone tissues and collagen after 2 and 4 weeks of injection. Consequently, it holds significant prospects for future applications in periodontitis treatment.
Collapse
Affiliation(s)
- Yiqiang Yu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Xuejing Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Qiao Ying
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Zhanwei Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Weicai Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jiansheng Su
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| |
Collapse
|
4
|
De Lauretis A, Øvrebø Ø, Romandini M, Lyngstadaas SP, Rossi F, Haugen HJ. From Basic Science to Clinical Practice: A Review of Current Periodontal/Mucogingival Regenerative Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308848. [PMID: 38380549 PMCID: PMC11077667 DOI: 10.1002/advs.202308848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Periodontitis is a dysbiosis-driven inflammatory disease affecting the tooth-supporting tissues, characterized by their progressive resorption, which can ultimately lead to tooth loss. A step-wise therapeutic approach is employed for periodontitis. After an initial behavioral and non-surgical phase, intra-bony or furcation defects may be amenable to regenerative procedures. This review discusses the regenerative technologies employed for periodontal regeneration, highlighting the current limitations and future research areas. The search, performed on the MEDLINE database, has identified the available biomaterials, including biologicals (autologous platelet concentrates, hydrogels), bone grafts (pure or putty), and membranes. Biologicals and bone grafts have been critically analyzed in terms of composition, mechanism of action, and clinical applications. Although a certain degree of periodontal regeneration is predictable in intra-bony and class II furcation defects, complete defect closure is hardly achieved. Moreover, treating class III furcation defects remains challenging. The key properties required for functional regeneration are discussed, and none of the commercially available biomaterials possess all the ideal characteristics. Therefore, research is needed to promote the advancement of more effective and targeted regenerative therapies for periodontitis. Lastly, improving the design and reporting of clinical studies is suggested by strictly adhering to the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement.
Collapse
Affiliation(s)
- Angela De Lauretis
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Øystein Øvrebø
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Mario Romandini
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| |
Collapse
|
5
|
Mansour A, Acharya AB, Alliot C, Eid N, Badran Z, Kareem Y, Rahman B. Hyaluronic acid in Dentoalveolar regeneration: Biological rationale and clinical applications. J Oral Biol Craniofac Res 2024; 14:230-235. [PMID: 38510340 PMCID: PMC10950752 DOI: 10.1016/j.jobcr.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hyaluronic acid (HA) is found in different locations in the periodontium, including mineralized tissues (i.e., cementum and alveolar bone) and non-mineralized tissues (i.e., gingiva and periodontal ligament). In addition, it seems to play an essential part in regulating the underlying mechanisms involved in tissue inflammatory reactions and wound healing. HA has the potential to regulate periodontal tissue regeneration and treat periodontal disease. Aim The current review of the literature was conducted to assess how HA plays its part in periodontal therapy and examine the contemporary literature's viewpoint on its use in periodontal regeneration. Conclusion HA has a multifunctional character in periodontal regeneration, and healing and appears to provide promising outcomes in different periodontal regenerative applications.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Anirudh Balakrishna Acharya
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Charles Alliot
- Department of Periodontology, Faculty of Dental Surgery, University of Nantes, Nantes, France
| | - Nael Eid
- Prosthodontics Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Zahi Badran
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Yousef Kareem
- College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Betul Rahman
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| |
Collapse
|