1
|
Zhou EM, Adegboruwa AL, Mefferd CC, Bhute SS, Murugapiran SK, Dodsworth JA, Thomas SC, Bengtson AJ, Liu L, Xian WD, Li WJ, Hedlund BP. Diverse respiratory capacity among Thermus strains from US Great Basin hot springs. Extremophiles 2019; 24:71-80. [PMID: 31535211 DOI: 10.1007/s00792-019-01131-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/14/2019] [Indexed: 11/26/2022]
Abstract
Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0-3.5% of sequences and were predominately Thermus thermophilus. 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.
Collapse
Affiliation(s)
- En-Min Zhou
- School of Resource Environment and Earth Science, Yunnan University, Kunming, 650091, People's Republic of China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | | | - Shrikant S Bhute
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Scott C Thomas
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda J Bengtson
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- SWCA Environmental Consultants, Reno, NV, USA
| | - Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
2
|
Westphal A, Eichinger F, Eichinger L, Würdemann H. Change in the microbial community of saline geothermal fluids amended with a scaling inhibitor: effects of heat extraction and nitrate dosage. Extremophiles 2019; 23:283-304. [PMID: 30778766 DOI: 10.1007/s00792-019-01080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/29/2019] [Indexed: 11/27/2022]
Abstract
Geothermal plants are often affected by corrosion caused by microbial metabolites such as H2S. In the Bad Blumau (Austria) geothermal system, an increase in microbially produced H2S was observed in the hot (107 °C) and scaling inhibitor-amended saline fluids and in fluids that had cooled down (45 °C). Genetic fingerprinting and quantification revealed the dominance, increasing abundance and diversity of sulfate reducers such as Desulfotomaculum spp. that accompanied the cooling and processing of the geothermal fluids. In addition, a δ34S isotopic signature showed the microbial origin of the H2S that has been produced either chemolithotrophically or chemoorganotrophically. A nitrate addition test in a test pipe as a countermeasure against the microbial H2S formation caused a shift from a biocenosis dominated by bacteria of the phylum Firmicutes to a community of Firmicutes and Proteobacteria. Nitrate supported the growth of nitrate-reducing sulfur-oxidizing Thiobacillus thioparus, which incompletely reduced nitrate to nitrite. The addition of nitrate led to a change in the composition of the sulfate-reducing community. As a result, representatives of nitrate- and nitrite-reducing SRB, such as Desulfovibrio and Desulfonatronum, emerged as additional community members. The interaction of sulfate-reducing bacteria and nitrate-reducing sulfur-oxidizing bacteria (NR-SOB) led to the removal of H2S, but increased the corrosion rate in the test pipe.
Collapse
Affiliation(s)
- Anke Westphal
- Section 5.3 Geomicrobiology, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
| | | | - Lorenz Eichinger
- HYDROISOTOP GmbH, Woelkestr. 9, 85301, Schweitenkirchen, Germany
| | - Hilke Würdemann
- Section 5.3 Geomicrobiology, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473, Potsdam, Germany. .,Department of Engineering and Natural Sciences, University of Applied Science Merseburg, Eberhard-Leibnitz-Str. 2, 06217, Merseburg, Germany.
| |
Collapse
|
3
|
Biogeography of thermophiles and predominance of Thermus scotoductus in domestic water heaters. Extremophiles 2018; 23:119-132. [PMID: 30536130 DOI: 10.1007/s00792-018-1066-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Built systems such as water heaters can harbor extremophiles similar to those residing in natural hot springs, but the extent of colonization is not well understood. To address this, we conducted a survey of thermophilic microorganisms in household water heaters across the United States. Filter samples and inoculated cultures were collected by citizen-scientists from 101 homes. Draft genomes were assembled from cultured isolates and 16S rRNA genes were sequenced from filter samples. 28% of households harbored communities with unambiguous DNA signatures of thermophilic organisms, 36% of households provided viable inocula, and 21% of households had both. All of the recovered cultures as well as the community sequencing results revealed Thermus scotoductus to be the dominant thermophile in domestic water heaters, with a minority of water heaters also containing Meiothermus species and a few containing Aquificae. Sequence distance comparisons show that allopatric speciation does not appear to be a strong control on T. scotoductus distribution. Our results demonstrate that thermophilic organisms are widespread in hot tap water, and that Thermus scotoductus preferentially colonizes water heaters at the expense of local environmental Thermus strains.
Collapse
|
4
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
5
|
Molecular Mechanisms Contributing to the Growth and Physiology of an Extremophile Cultured with Dielectric Heating. Appl Environ Microbiol 2016; 82:6233-6246. [PMID: 27520819 DOI: 10.1128/aem.02020-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022] Open
Abstract
The effect of microwave frequency electromagnetic fields on living microorganisms is an active and highly contested area of research. One of the major drawbacks to using mesophilic organisms to study microwave radiation effects is the unavoidable heating of the organism, which has limited the scale (<5 ml) and duration (<1 h) of experiments. However, the negative effects of heating a mesophile can be mitigated by employing thermophiles (organisms able to grow at temperatures of >60°C). This study identified changes in global gene expression profiles during the growth of Thermus scotoductus SA-01 at 65°C using dielectric (2.45 GHz, i.e., microwave) heating. RNA sequencing was performed on cultures at 8, 14, and 24 h after inoculation to determine the molecular mechanisms contributing to long-term cellular growth and survival under microwave heating conditions. Over the course of growth, genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. Genes involved in cell wall biogenesis and elongation were also upregulated, consistent with the distinct elongated cell morphology observed after 24 h using microwave heating. Analysis of the global differential gene expression data enabled the identification of molecular processes specific to the response of T. scotoductus SA-01 to dielectric heating during growth. IMPORTANCE The residual heating of living organisms in the microwave region of the electromagnetic spectrum has complicated the identification of radiation-only effects using microorganisms for 50 years. A majority of the previous experiments used either mature cells or short exposure times with low-energy high-frequency radiation. Using global differential gene expression data, we identified molecular processes unique to dielectric heating using Thermus scotoductus SA-01 cultured over 30 h in a commercial microwave digestor. Genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. These findings serve as a platform for future studies with mesophiles in order to better understand the response of microorganisms to microwave radiation.
Collapse
|
6
|
Whole Genome Comparison of Thermus sp. NMX2.A1 Reveals Principle Carbon Metabolism Differences with Closest Relation Thermus scotoductus SA-01. G3-GENES GENOMES GENETICS 2016; 6:2791-7. [PMID: 27412985 PMCID: PMC5015936 DOI: 10.1534/g3.116.032953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genome sequencing of the yellow-pigmented, thermophilic bacterium Thermus sp. NMX2.A1 resulted in a 2.29 Mb draft genome that encodes for 2312 proteins. The genetic relationship between various strains from the genus Thermus was assessed based on phylogenomic analyses using a concatenated set of conserved proteins. The resulting phylogenetic tree illustrated that Thermus sp. NMX2 A.1 clusters together with Thermus scotoductus SA-01, despite being isolated from vastly different geographical locations. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized; however, neither strain’s genome data were available at that point in time. Genomic comparison of the Thermus sp. NMX2.A1 and T. scotoductus SA-01, as well as other closely related Thermus strains, revealed a high degree of synteny at both the genomic and proteomic level, with processes such as denitrification and natural cell competence appearing to be conserved. However, despite this high level of similarity, analysis revealed a complete, putative Calvin–Benson–Bassham (CBB) cycle in NMX2.A1 that is absent in SA-01. Analysis of horizontally transferred gene islands provide evidence that NMX2 selected these genes due to pressure from its HCO3- rich environment, which is in stark contrast to that of the deep subsurface isolated SA-01.
Collapse
|
7
|
Zhou EM, Murugapiran SK, Mefferd CC, Liu L, Xian WD, Yin YR, Ming H, Yu TT, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Ngan CY, Daum C, Shapiro N, Markowitz V, Ivanova N, Spunde A, Kyrpides N, Woyke T, Li WJ, Hedlund BP. High-quality draft genome sequence of the Thermus amyloliquefaciens type strain YIM 77409(T) with an incomplete denitrification pathway. Stand Genomic Sci 2016; 11:20. [PMID: 26925197 PMCID: PMC4769583 DOI: 10.1186/s40793-016-0140-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Thermus amyloliquefaciens type strain YIM 77409(T) is a thermophilic, Gram-negative, non-motile and rod-shaped bacterium isolated from Niujie Hot Spring in Eryuan County, Yunnan Province, southwest China. In the present study we describe the features of strain YIM 77409(T) together with its genome sequence and annotation. The genome is 2,160,855 bp long and consists of 6 scaffolds with 67.4 % average GC content. A total of 2,313 genes were predicted, comprising 2,257 protein-coding and 56 RNA genes. The genome is predicted to encode a complete glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle. Additionally, a large number of transporters and enzymes for heterotrophy highlight the broad heterotrophic lifestyle of this organism. A denitrification gene cluster included genes predicted to encode enzymes for the sequential reduction of nitrate to nitrous oxide, consistent with the incomplete denitrification phenotype of this strain.
Collapse
Affiliation(s)
- En-Min Zhou
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
- />School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV USA
| | | | | | - Lan Liu
- />State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Wen-Dong Xian
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Yi-Rui Yin
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Hong Ming
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Tian-Tian Yu
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
| | - Marcel Huntemann
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Alicia Clum
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | - Neha Varghese
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | | | - T. B. K. Reddy
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Chew Yee Ngan
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Chris Daum
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Nicole Shapiro
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Victor Markowitz
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Natalia Ivanova
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Alexander Spunde
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Nikos Kyrpides
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Tanja Woyke
- />Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Wen-Jun Li
- />Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091 People’s Republic of China
- />State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Brian P. Hedlund
- />School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV USA
- />Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV USA
| |
Collapse
|
8
|
Microbiology of the Deep Continental Biosphere. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Differences in Physical and Biochemical Properties of Thermus scotoductus SA-01 Cultured with Dielectric or Convection Heating. Appl Environ Microbiol 2015; 81:6285-93. [PMID: 26150459 DOI: 10.1128/aem.01618-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/28/2015] [Indexed: 02/06/2023] Open
Abstract
A thermophile, Thermus scotoductus SA-01, was cultured within a constant-temperature (65°C) microwave (MW) digester to determine if MW-specific effects influenced the growth and physiology of the organism. As a control, T. scotoductus cells were also cultured using convection heating at the same temperature as the MW studies. Cell growth was analyzed by optical density (OD) measurements, and cell morphologies were characterized using electron microscopy imaging (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]), dynamic light scattering (DLS), and atomic force microscopy (AFM). Biophysical properties (i.e., turgor pressure) were also calculated with AFM, and biochemical compositions (i.e., proteins, nucleic acids, fatty acids) were analyzed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the fatty acid methyl esters extracted from cell membranes. Here we report successful cultivation of a thermophile with only dielectric heating. Under the MW conditions for growth, cell walls remained intact and there were no indications of membrane damage or cell leakage. Results from these studies also demonstrated that T. scotoductus cells grown with MW heating exhibited accelerated growth rates in addition to altered cell morphologies and biochemical compositions compared with oven-grown cells.
Collapse
|
10
|
Cusick KD, Fitzgerald LA, Cockrell AL, Biffinger JC. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions. PLoS One 2015; 10:e0131015. [PMID: 26115538 PMCID: PMC4482720 DOI: 10.1371/journal.pone.0131015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR) is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1) aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2) anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3) aerobic growth with different heating methods: gyrA, gap, gyrB; (4) all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute quantification indicate that relative quantification is appropriate for RT-qPCR studies with this thermophile.
Collapse
Affiliation(s)
- Kathleen D Cusick
- National Research Council Associateship, US Naval Research Laboratory, 4555 Overlook Ave., SW, Washington DC, 20375, United States of America
| | - Lisa A Fitzgerald
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW, Washington DC, 20375, United States of America
| | - Allison L Cockrell
- National Research Council Associateship, US Naval Research Laboratory, 4555 Overlook Ave., SW, Washington DC, 20375, United States of America
| | - Justin C Biffinger
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW, Washington DC, 20375, United States of America
| |
Collapse
|
11
|
Anda D, Makk J, Krett G, Jurecska L, Márialigeti K, Mádl-Szőnyi J, Borsodi AK. Thermophilic prokaryotic communities inhabiting the biofilm and well water of a thermal karst system located in Budapest (Hungary). Extremophiles 2015; 19:787-97. [PMID: 25952671 DOI: 10.1007/s00792-015-0754-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/26/2015] [Indexed: 11/29/2022]
Abstract
In this study, scanning electron microscopy (SEM) and 16S rRNA gene-based phylogenetic approach were applied to reveal the morphological structure and genetic diversity of thermophilic prokaryotic communities of a thermal karst well located in Budapest (Hungary). Bacterial and archaeal diversity of the well water (73.7 °C) and the biofilm developed on the inner surface of an outflow pipeline of the well were studied by molecular cloning method. According to the SEM images calcium carbonate minerals serve as a surface for colonization of bacterial aggregates. The vast majority of the bacterial and archaeal clones showed the highest sequence similarities to chemolithoautotrophic species. The bacterial clone libraries were dominated by sulfur oxidizer Thiobacillus (Betaproteobacteria) in the water and Sulfurihydrogenibium (Aquificae) in the biofilm. A relatively high proportion of molecular clones represented genera Thermus and Bellilinea in the biofilm library. The most abundant phylotypes both in water and biofilm archaeal clone libraries were closely related to thermophilic ammonia oxidizer Nitrosocaldus and Nitrososphaera but phylotypes belonging to methanogens were also detected. The results show that in addition to the bacterial sulfur and hydrogen oxidation, mainly archaeal ammonia oxidation may play a decisive role in the studied thermal karst system.
Collapse
Affiliation(s)
- Dóra Anda
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Kumwenda B, Litthauer D, Reva O. Analysis of genomic rearrangements, horizontal gene transfer and role of plasmids in the evolution of industrial important Thermus species. BMC Genomics 2014; 15:813. [PMID: 25257245 PMCID: PMC4180962 DOI: 10.1186/1471-2164-15-813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 09/17/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Bacteria of genus Thermus inhabit both man-made and natural thermal environments. Several Thermus species have shown biotechnological potential such as reduction of heavy metals which is essential for eradication of heavy metal pollution; removing of organic contaminants in water; opening clogged pipes, controlling global warming among many others. Enzymes from thermophilic bacteria have exhibited higher activity and stability than synthetic or enzymes from mesophilic organisms. RESULTS Using Meiothermus silvanus DSM 9946 as a reference genome, high level of coordinated rearrangements has been observed in extremely thermophilic Thermus that may imply existence of yet unknown evolutionary forces controlling adaptive re-organization of whole genomes of thermo-extremophiles. However, no remarkable differences were observed across species on distribution of functionally related genes on the chromosome suggesting constraints imposed by metabolic networks. The metabolic network exhibit evolutionary pressures similar to levels of rearrangements as measured by the cross-clustering index. Using stratigraphic analysis of donor-recipient, intensive gene exchanges were observed from Meiothermus species and some unknown sources to Thermus species confirming a well established DNA uptake mechanism as previously proposed. CONCLUSION Global genome rearrangements were found to play an important role in the evolution of Thermus bacteria at both genomic and metabolic network levels. Relatively higher level of rearrangements was observed in extremely thermophilic Thermus strains in comparison to the thermo-tolerant Thermus scotoductus. Rearrangements did not significantly disrupt operons and functionally related genes. Thermus species appeared to have a developed capability for acquiring DNA through horizontal gene transfer as shown by the donor-recipient stratigraphic analysis.
Collapse
Affiliation(s)
- Benjamin Kumwenda
- />Department of Biochemistry, Bioinformatics and Computational Biology Unit, University of Pretoria, Pretoria, South Africa
| | - Derek Litthauer
- />Department of Microbial Biochemical and Food Biotechnology, University of Free State, Bloemfontein, South Africa
| | - Oleg Reva
- />Department of Biochemistry, Bioinformatics and Computational Biology Unit, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Babák L, Šupinová P, Burdychová R. Growth models of Thermus aquaticus and Thermus scotoductus. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2013. [DOI: 10.11118/actaun201260050019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Chow J, Kovacic F, Dall Antonia Y, Krauss U, Fersini F, Schmeisser C, Lauinger B, Bongen P, Pietruszka J, Schmidt M, Menyes I, Bornscheuer UT, Eckstein M, Thum O, Liese A, Mueller-Dieckmann J, Jaeger KE, Streit WR. The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases. PLoS One 2012; 7:e47665. [PMID: 23112831 PMCID: PMC3480424 DOI: 10.1371/journal.pone.0047665] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 11/18/2022] Open
Abstract
Triacylglycerol lipases (EC 3.1.1.3) catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates rendering them especially suitable for many biotechnological applications. Most lipases used today originate from mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here, we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75 °C and screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70 °C. The lipT gene encoded for a multimeric enzyme with a half-life of 3 h at 70 °C. LipS had an optimum temperature at 70 °C and LipT at 75 °C. Both enzymes catalyzed hydrolysis of long-chain (C(12) and C(14)) fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates. LipS was highly specific for (R)-ibuprofen-phenyl ester with an enantiomeric excess (ee) of 99%. Furthermore, LipS was able to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70 °C with rates similar to those of the lipase CalB from Candida antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis activities. Its X-ray structure was solved with a resolution of 1.99 Å revealing an unusually compact lid structure.
Collapse
Affiliation(s)
- Jennifer Chow
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Yuliya Dall Antonia
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Francesco Fersini
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Christel Schmeisser
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Benjamin Lauinger
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Patrick Bongen
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Joerg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Marlen Schmidt
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Ina Menyes
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Marrit Eckstein
- Bioprocess Development Consumer Specialties and Biocatalysis Biotechnology, Evonik Industries AG, Essen, Germany
| | - Oliver Thum
- Bioprocess Development Consumer Specialties and Biocatalysis Biotechnology, Evonik Industries AG, Essen, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Hamburg, Germany
| | - Jochen Mueller-Dieckmann
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| |
Collapse
|
15
|
Poerschmann J, Koschorreck M, Górecki T. Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I: fatty acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 414:614-623. [PMID: 22119026 DOI: 10.1016/j.scitotenv.2011.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
Fatty acid (FA) patterns of sediments collected from the bottom of an acidic mine pit lake (AML) at different depths (surface sediment: 0 to 1cm; deep sediment: 4 to 5 cm) were studied to characterize microbial communities and the sources of sedimentary organic matter (SOM). Studies were performed on the molecular level utilizing source-specific, diagnostic FA biomarkers. The biomarker-based approach has been used widely in marine sediment studies, but has not been applied for sediments from AMLs so far. Combined FA concentrations in the surface sediment were higher compared to those in the deep sediment (497 vs. 127 μg g(-1)d.w., respectively). This was related to deposition of autochthonous biomass and higher terrestrial plants onto the surface sediment, as well as--to lesser extent--with higher bacterial activity on the sediment-water interface. The FA distribution in both sediments was characterized by a strong even-over-odd preference and was bimodal in nature: there was a cluster at nC(14)-nC(18) characteristic of chiefly autochthonous (algal and bacterial) SOM production, and another cluster at nC(22-28) related to input from higher plants. The FA distribution in the surface sediment pointed to higher terrestrial input compared to autochthonous contribution to SOM (67%:33%) as an estimate. Fingerprinting of viable bacteria was accomplished through signature FA markers including branched C(15) and C(17) surrogates, cyclopropanoic acids, 3-hydroxy (OH) acids and monounsaturated surrogates with unusual double bond localization. The abundance of Gram-negative bacteria was higher in the surface sediment as evidenced by total diagnostic 3-OH-fatty acids (37 μg g(-1) versus 25 μg g(-1)). Potential source taxa in both sediment layers included acidophilic iron- and sulfur-oxidizing bacteria including Acidithiobacillus ferrooxidans. High abundances of terminally branched C(15) and C(17) surrogates in both sediments pointed to sulfate- and iron-reducing bacteria. Signature FAs characteristic of methanotrophs were virtually lacking in both sediments.
Collapse
Affiliation(s)
- Juergen Poerschmann
- UFZ-Helmholtz Center for Environmental Research, Department of Environmental Engineering, Permoserstr 15, 04318 Leipzig, Germany.
| | | | | |
Collapse
|
16
|
Gounder K, Brzuszkiewicz E, Liesegang H, Wollherr A, Daniel R, Gottschalk G, Reva O, Kumwenda B, Srivastava M, Bricio C, Berenguer J, van Heerden E, Litthauer D. Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01. BMC Genomics 2011; 12:577. [PMID: 22115438 PMCID: PMC3235269 DOI: 10.1186/1471-2164-12-577] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 11/24/2011] [Indexed: 11/13/2022] Open
Abstract
Background Many strains of Thermus have been isolated from hot environments around the world. Thermus scotoductus SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different Thermus thermophilus strains have been completed. This paper represents the completed genome from a second Thermus species - T. scotoductus. Results The genome of Thermus scotoductus SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the Thermus thermophilus genomes. The T. thermophilus megaplasmid genes are part of the T. scotoductus chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of T. scotoductus and T. thermophilus. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from Meiothermus ruber. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of Thermus scotoductus was confirmed experimentally as expected as most of the proteins of the natural transformation system of Thermus thermophilus are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle. Conclusions The genome of Thermus scotoductus SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to Thermus thermophilus. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of Thermus scotoductus illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.
Collapse
Affiliation(s)
- Kamini Gounder
- BioPAD Metagenomics Platform, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
da Costa MS, Albuquerque L, Nobre MF, Wait R. The Identification of Polar Lipids in Prokaryotes. METHODS IN MICROBIOLOGY 2011. [DOI: 10.1016/b978-0-12-387730-7.00007-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Bester PA, Litthauer D, Piater LA, van Heerden E. A thioredoxin reductase-like protein from the thermophile, Thermus scotoductus SA-01, displaying iron reductase activity. FEMS Microbiol Lett 2010; 302:182-8. [PMID: 20132311 DOI: 10.1111/j.1574-6968.2009.01852.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transition metal iron is an important element for the sustenance of life--it can function either as an electron acceptor or as a donor and serves as a cofactor in many enzymes activities. The cytoplasmic NAD(P)H-dependent ferric reductase in Thermus scotoductus SA-01 shares high sequence and structural similarity to prokaryotic thioredoxin reductases. Here we report the sequence of the ferric reductase (which is typically annotated as a thioredoxin reductase-like protein) and a comparative kinetic study with the thioredoxin reductase from SA-01. Structurally, the most noteworthy difference, immediately apparent from the protein sequence, is the absence of the disulphide redox centre in the ferric reductase. This is the first report relating the attributes of such a redox protein to its ability to reduce a ferric substrate.
Collapse
Affiliation(s)
- Phillip Armand Bester
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | | | | | |
Collapse
|
19
|
Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 2009; 13:447-59. [PMID: 19247786 DOI: 10.1007/s00792-009-0230-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 02/04/2009] [Indexed: 11/24/2022]
Abstract
A coordinated study of water chemistry, sediment mineralogy, and sediment microbial community was conducted on four >73 degrees C springs in the northwestern Great Basin. Despite generally similar chemistry and mineralogy, springs with short residence time (approximately 5-20 min) were rich in reduced chemistry, whereas springs with long residence time (>1 day) accumulated oxygen and oxidized nitrogen species. The presence of oxygen suggested that aerobic metabolisms prevail in the water and surface sediment. However, Gibbs free energy calculations using empirical chemistry data suggested that several inorganic electron donors were similarly favorable. Analysis of 298 bacterial 16S rDNAs identified 36 species-level phylotypes, 14 of which failed to affiliate with cultivated phyla. Highly represented phylotypes included Thermus, Thermotoga, a member of candidate phylum OP1, and two deeply branching Chloroflexi. The 276 archaeal 16S rDNAs represented 28 phylotypes, most of which were Crenarchaeota unrelated to the Thermoprotei. The most abundant archaeal phylotype was closely related to "Candidatus Nitrosocaldus yellowstonii", suggesting a role for ammonia oxidation in primary production; however, few other phylotypes could be linked with energy calculations because phylotypes were either related to chemoorganotrophs or were unrelated to known organisms.
Collapse
Affiliation(s)
- Kyle C Costa
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | | | | | | | | | | |
Collapse
|
20
|
Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer R, González JM, Whitman WB, Wiegel J. Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 2006; 11:145-57. [PMID: 17021657 DOI: 10.1007/s00792-006-0022-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Three thermophilic strains of chemolithoautotrophic Fe(III)-reducers were isolated from mixed sediment and water samples (JW/KA-1 and JW/KA-2(T): Calcite Spring, Yellowstone N.P., WY, USA; JW/JH-Fiji-2: Savusavu, Vanu Levu, Fiji). All were Gram stain positive rods (approximately 0.5 x 1.8 microm). Cells occurred singly or in V-shaped pairs, and they formed long chains in complex media. All utilized H(2) to reduce amorphous iron (III) oxide/hydroxide to magnetite at temperatures from 50 to 75 degrees C (opt. approximately 73 degrees C). Growth occurred within the pH(60C) range of 6.5-8.5 (opt. pH(60C) 7.1-7.3). Magnetite production by resting cells occurred at pH(60C) 5.5-10.3 (opt. 7.3). The iron (III) reduction rate was 1.3 mumol Fe(II) produced x h(-1) x ml(-1) in a culture with 3 x 10(7) cells, one of the highest rates reported. In the presence or absence of H(2), JW/KA-2(T) did not utilize CO. The G + C content of the genomic DNA of the type strain is 52.7 +/- 0.3 mol%. Strains JW/KA-1 and JW/KA-2(T) each contain two different 16S rRNA gene sequences. The 16S rRNA gene sequences from JW/KA-1, JW/KA-2(T), or JW/JH-Fiji-2 possessed >99% similarity to each other but also 99% similarity to the 16S rRNA gene sequence from the anaerobic, thermophilic, hydrogenogenic CO-oxidizing bacterium 'Carboxydothermus restrictus' R1. DNA-DNA hybridization between strain JW/KA-2(T) and strain R1(T) yielded 35% similarity. Physiological characteristics and the 16S rRNA gene sequence analysis indicated that the strains represent two novel species and are placed into the novel genus Thermolithobacter within the phylum 'Firmicutes'. In addition, the levels of 16S rRNA gene sequence similarity between the lineage containing the Thermolithobacter and well-established members of the three existing classes of the 'Firmicutes' is less than 85%. Therefore, Thermolithobacter is proposed to constitute the first genus within a novel class of the 'Firmicutes', Thermolithobacteria. The Fe(III)-reducing Thermolithobacter ferrireducens gen. nov., sp. nov. is designated as the type species with strain JW/KA-2(T) (ATCC 700985(T), DSM 13639(T)) as its type strain. Strain R1(T) is the type strain for the hydrogenogenic, CO-oxidizing Thermolithobacter carboxydivorans sp. nov. (DSM 7242(T), VKM 2359(T)).
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/drug effects
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Bacteria, Anaerobic/isolation & purification
- Bacteria, Anaerobic/metabolism
- Base Composition
- Carbon Monoxide/metabolism
- Chemoautotrophic Growth
- DNA, Bacterial/analysis
- Drug Resistance
- Ferric Compounds/metabolism
- Ferrosoferric Oxide/metabolism
- Geologic Sediments/microbiology
- Gram-Positive Asporogenous Rods/classification
- Gram-Positive Asporogenous Rods/drug effects
- Gram-Positive Asporogenous Rods/genetics
- Gram-Positive Asporogenous Rods/growth & development
- Gram-Positive Asporogenous Rods/isolation & purification
- Gram-Positive Asporogenous Rods/metabolism
- Hydrogen-Ion Concentration
- Lipids/analysis
- Oxidation-Reduction
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Homology, Nucleic Acid
- Temperature
- Water Microbiology
Collapse
Affiliation(s)
- T Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hreggvidsson GO, Skirnisdottir S, Smit B, Hjorleifsdottir S, Marteinsson VT, Petursdottir S, Kristjansson JK. Polyphasic analysis of Thermus isolates from geothermal areas in Iceland. Extremophiles 2006; 10:563-75. [PMID: 16799746 DOI: 10.1007/s00792-006-0530-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 04/12/2006] [Indexed: 11/26/2022]
Abstract
Genetic relationships and diversity of 101 Thermus isolates from different geothermal regions in Iceland were investigated by using multilocus enzyme electrophoresis (MLEE) and small subunit ribosomal rRNA (SSU rRNA) sequence analysis. Ten polymorphic enzymes were used and seven distinct and genetically highly divergent lineages of Thermus were observed. Six of seven lineages could be assigned to species whose names have been validated. The most diverse lineage was Thermus scotoductus. In contrast to the other lineages, this lineage was divided into very distinct genetic sublineages that may represent subspecies with different habitat preferences. The least diverse lineage was Thermus brockianus. Phenotypic and physiological analysis was carried out on a subset of the isolates. No relationship was found between growth on specific single carbon source to the grouping obtained by the isoenzyme analysis. The response to various salts was distinguishing in a few cases. No relationship was found between temperature at the isolation site and the different lineages, but pH indicated a relation to specific lineages.
Collapse
|
22
|
|
23
|
Lapierre P, Shial R, Gogarten JP. Distribution of F- and A/V-type ATPases in Thermus scotoductus and other closely related species. Syst Appl Microbiol 2005; 29:15-23. [PMID: 16423651 DOI: 10.1016/j.syapm.2005.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Indexed: 11/27/2022]
Abstract
The presence of an A/V-type ATPase in different Thermus species and in the deeper branching species Meiothermus ruber and Deinococcus radiodurans suggests that the presence of the archaeal-type ATPase is a primitive character of the Deinococci that was acquired through horizontal gene transfer (HGT). However, the presence of a bacterial type F-ATPases was reported in two newly identified Thermus species (Thermus scotoductus DSM 8553 and Thermus filiformis DSM 4687). Two different scenarios can explain this finding, either the recent replacement of the ancestral A/V-type ATPase in Thermus scotoductus and Thermus filiformis with a newly acquired F-type ATPase or a long-term persistence of both F and A type ATPase in the Deinococci, which would imply several independent losses of the F-type ATPase in the Deinococci. Using PCR with redundant primers, sequencing and Southern blot analyses, we tried to confirm the presence of an F-type ATPase in the genome of Thermus scotoductus and Thermus filiformis, and determine its phylogenetic affinities. Initial experiments appeared to confirm the presence of an F-type ATPase in Thermus scotoductus that was similar to the F-ATPases found in Bacillus. However, further experiments revealed that the detection of an F-ATPase was due to a culture contamination. For all the Thermus and Deinococcus species surveyed, including Thermus scotoductus, cultures that were free of contamination only contained an A/V-type ATP synthases.
Collapse
Affiliation(s)
- Pascal Lapierre
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|