1
|
Ruff SE, de Angelis IH, Mullis M, Payet JP, Magnabosco C, Lloyd KG, Sheik CS, Steen AD, Shipunova A, Morozov A, Reese BK, Bradley JA, Lemonnier C, Schrenk MO, Joye SB, Huber JA, Probst AJ, Morrison HG, Sogin ML, Ladau J, Colwell F. A global comparison of surface and subsurface microbiomes reveals large-scale biodiversity gradients, and a marine-terrestrial divide. SCIENCE ADVANCES 2024; 10:eadq0645. [PMID: 39693444 DOI: 10.1126/sciadv.adq0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Subsurface environments are among Earth's largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth's subsurface and surface environments.
Collapse
Affiliation(s)
- S Emil Ruff
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | - Cody S Sheik
- Large Lakes Observatory and Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | | | | | | | - Brandi Kiel Reese
- University of South Alabama, Mobile, AL, USA
- Dauphin Island Sea Laboratory, Dauphin Island, AL, USA
| | - James A Bradley
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille, France
- Queen Mary University of London, London, UK
| | - Clarisse Lemonnier
- UMR CARRTEL, INRAE, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI. USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry and Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | | | - Joshua Ladau
- Department of Computational Precision Health, University of California, San Francisco, CA, USA
- Arva Intelligence, Houston, TX, USA
| | - Frederick Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
2
|
Tyne RL, Barry PH, Lawson M, Lloyd KG, Giovannelli D, Summers ZM, Ballentine CJ. Identifying and Understanding Microbial Methanogenesis in CO 2 Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37327355 DOI: 10.1021/acs.est.2c08652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Carbon capture and storage (CCS) is an important component in many national net-zero strategies. Ensuring that CO2 can be safely and economically stored in geological systems is critical. To date, CCS research has focused on the physiochemical behavior of CO2, yet there has been little consideration of the subsurface microbial impact on CO2 storage. However, recent discoveries have shown that microbial processes (e.g., methanogenesis) can be significant. Importantly, methanogenesis may modify the fluid composition and the fluid dynamics within the storage reservoir. Such changes may subsequently reduce the volume of CO2 that can be stored and change the mobility and future trapping systematics of the evolved supercritical fluid. Here, we review the current knowledge of how microbial methanogenesis could impact CO2 storage, including the potential scale of methanogenesis and the range of geologic settings under which this process operates. We find that methanogenesis is possible in all storage target types; however, the kinetics and energetics of methanogenesis will likely be limited by H2 generation. We expect that the bioavailability of H2 (and thus potential of microbial methanogenesis) will be greatest in depleted hydrocarbon fields and least within saline aquifers. We propose that additional integrated monitoring requirements are needed for CO2 storage to trace any biogeochemical processes including baseline, temporal, and spatial studies. Finally, we suggest areas where further research should be targeted in order to fully understand microbial methanogenesis in CO2 storage sites and its potential impact.
Collapse
Affiliation(s)
- R L Tyne
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - P H Barry
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | | | - K G Lloyd
- University of Tennessee, Knoxville, Tennessee 37996, United States
| | - D Giovannelli
- University of Naples Federico II, Naples 80138 Italy
| | - Z M Summers
- LanzaTech, Skokie, Illinois 60077, United States
| | | |
Collapse
|
3
|
Plant-archaea relationships: a potential means to improve crop production in arid and semi-arid regions. World J Microbiol Biotechnol 2020; 36:133. [PMID: 32772189 DOI: 10.1007/s11274-020-02910-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Crop production in arid and semi-arid regions of the world is limited by several abiotic factors, including water stress, temperature extremes, low soil fertility, high soil pH, low soil water-holding capacity, and low soil organic matter. Moreover, arid and semi-arid areas experience low levels of rainfall with high spatial and temporal variability. Also, the indiscriminate use of chemicals, a practice that characterizes current agricultural practice, promotes crop and soil pollution potentially resulting in serious human health and environmental hazards. A reliable and sustainable alternative to current farming practice is, therefore, a necessity. One such option includes the use of plant growth-promoting microbes that can help to ameliorate some of the adverse effects of these multiple stresses. In this regard, archaea, functional components of the plant microbiome that are found both in the rhizosphere and the endosphere may contribute to the promotion of plant growth. Archaea can survive in extreme habitats such as areas with high temperatures and hypersaline water. No cases of archaea pathogenicity towards plants have been reported. Archaea appear to have the potential to promote plant growth, improve nutrient supply and protect plants against various abiotic stresses. A better understanding of recent developments in archaea functional diversity, plant colonizing ability, and modes of action could facilitate their eventual usage as reliable components of sustainable agricultural systems. The research discussed herein, therefore, addresses the potential role of archaea to improve sustainable crop production in arid and semi-arid areas.
Collapse
|
4
|
Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature 2019; 568:487-492. [PMID: 31019327 DOI: 10.1038/s41586-019-1131-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/08/2019] [Indexed: 11/08/2022]
Abstract
Carbon and other volatiles in the form of gases, fluids or mineral phases are transported from Earth's surface into the mantle at convergent margins, where the oceanic crust subducts beneath the continental crust. The efficiency of this transfer has profound implications for the nature and scale of geochemical heterogeneities in Earth's deep mantle and shallow crustal reservoirs, as well as Earth's oxidation state. However, the proportions of volatiles released from the forearc and backarc are not well constrained compared to fluxes from the volcanic arc front. Here we use helium and carbon isotope data from deeply sourced springs along two cross-arc transects to show that about 91 per cent of carbon released from the slab and mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition. Around an additional three per cent is incorporated into the biomass through microbial chemolithoautotrophy, whereby microbes assimilate inorganic carbon into biomass. We estimate that between 1.2 × 108 and 1.3 × 1010 moles of carbon dioxide per year are released from the slab beneath the forearc, and thus up to about 19 per cent less carbon is being transferred into Earth's deep mantle than previously estimated.
Collapse
|
5
|
|
6
|
Ding J, Zhang Y, Wang H, Jian H, Leng H, Xiao X. Microbial Community Structure of Deep-sea Hydrothermal Vents on the Ultraslow Spreading Southwest Indian Ridge. Front Microbiol 2017; 8:1012. [PMID: 28659873 PMCID: PMC5468387 DOI: 10.3389/fmicb.2017.01012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Southwest Indian Ridge (SWIR) is a typical oceanic ultraslow spreading ridge with intensive hydrothermal activities. The microbial communities in hydrothermal fields including primary producers to support the entire ecosystem by utilizing geochemical energy generated from rock-seawater interactions. Here we have examined the microbial community structures on four hydrothermal vents from SWIR, representing distinct characteristics in terms of temperature, pH and metal compositions, by using Illumina sequencing of the 16S small subunit ribosomal RNA (rRNA) genes, to correlate bacterial and archaeal populations with the nature of the vents influenced by ultraslow spreading features. Epsilon-, Gamma-, Alpha-, and Deltaproteobacteria and members of the phylum Bacteroidetes and Planctomycetes, as well as Thaumarchaeota, Woesearchaeota, and Euryarchaeota were dominant in all the samples. Both bacterial and archaeal community structures showed distinguished patterns compared to those in the fast-spreading East Pacific Ridge or the slow-spreading Mid-Atlantic Ridge as previously reported. Furthermore, within SWIR, the microbial communities are highly correlated with the local temperatures. For example, the sulfur-oxidizing bacteria were dominant within bacteria from low-temperature vents, but were not represented as the dominating group recovered from high temperature (over 300°C) venting chimneys in SWIR. Meanwhile, Thaumarchaeota, the ammonium oxidizing archaea, only showed high relative abundance of amplicons in the vents with high-temperature in SWIR. These findings provide insights on the microbial community in ultraslow spreading hydrothermal fields, and therefore assist us in the understanding of geochemical cycling therein.
Collapse
Affiliation(s)
- Jian Ding
- School of Life Science and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Yu Zhang
- Institute of Oceanography, Shanghai Jiao Tong UniversityShanghai, China
| | - Han Wang
- School of Life Science and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Huahua Jian
- School of Life Science and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Hao Leng
- School of Life Science and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiang Xiao
- School of Life Science and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,Institute of Oceanography, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
7
|
Archaeal community structure in the tropical coastal waters of Peninsular Malaysia. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
8
|
Jia B, Liu J, Van Duyet L, Sun Y, Xuan YH, Cheong GW. Proteome profiling of heat, oxidative, and salt stress responses in Thermococcus kodakarensis KOD1. Front Microbiol 2015; 6:605. [PMID: 26150806 PMCID: PMC4473059 DOI: 10.3389/fmicb.2015.00605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023] Open
Abstract
The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase) were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments.
Collapse
Affiliation(s)
- Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul South Korea ; Division of Applied Life Sciences and Research Institute of Natural Science, Gyeongsang National University Jinju, South Korea
| | - Jinliang Liu
- College of Plant Sciences, Jilin University Changchun, China
| | - Le Van Duyet
- Division of Applied Life Sciences and Research Institute of Natural Science, Gyeongsang National University Jinju, South Korea
| | - Ying Sun
- College of Plant Sciences, Jilin University Changchun, China
| | - Yuan H Xuan
- College of Plant Protection, Shenyang Agricultural University Shenyang, China
| | - Gang-Won Cheong
- Division of Applied Life Sciences and Research Institute of Natural Science, Gyeongsang National University Jinju, South Korea
| |
Collapse
|
9
|
Teske A, Callaghan AV, LaRowe DE. Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Front Microbiol 2014; 5:362. [PMID: 25132832 PMCID: PMC4117188 DOI: 10.3389/fmicb.2014.00362] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022] Open
Abstract
Temperature is one of the key constraints on the spatial extent, physiological and phylogenetic diversity, and biogeochemical function of subsurface life. A model system to explore these interrelationships should offer a suitable range of geochemical regimes, carbon substrates and temperature gradients under which microbial life can generate energy and sustain itself. In this theory and hypothesis article, we make the case for the hydrothermally heated sediments of Guaymas Basin in the Gulf of California as a suitable model system where extensive temperature and geochemical gradients create distinct niches for active microbial populations in the hydrothermally influenced sedimentary subsurface that in turn intercept and process hydrothermally generated carbon sources. We synthesize the evidence for high-temperature microbial methane cycling and sulfate reduction at Guaymas Basin - with an eye on sulfate-dependent oxidation of abundant alkanes - and demonstrate the energetic feasibility of these latter types of deep subsurface life in previously drilled Guaymas Basin locations of Deep-Sea Drilling Project 64.
Collapse
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Amy V. Callaghan
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, USA
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
10
|
Modeling the Impact of Diffuse Vent Microorganisms Along Mid-Ocean Ridges and Flanks. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/178gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
11
|
Kish A, Griffin PL, Rogers KL, Fogel ML, Hemley RJ, Steele A. High-pressure tolerance in Halobacterium salinarum NRC-1 and other non-piezophilic prokaryotes. Extremophiles 2012; 16:355-61. [PMID: 22212652 DOI: 10.1007/s00792-011-0418-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/13/2011] [Indexed: 01/23/2023]
Abstract
In this study, we examined the high-pressure survival of a range of prokaryotes not found in high-pressure environments to determine the effects of adaptations to osmotic and oxidative stresses on piezo-resistance. The pressure survivals of Halobacterium salinarum NRC-1, Deinococcus radiodurans R1, and Chromohalobacter salexigens were compared to that of Escherichia coli MG1655. C. salexigens, which uses the compatible solute ectoine as an osmolyte, was as piezo-sensitive as E. coli MG1655, suggesting that ectoine is not a piezolyte. D. radiodurans R1 and H. salinarum NRC-1, both resistant to oxidative stress, were found to be highly piezo-resistant. H. salinarum NRC-1 showed nearly full survival after pressurization up to 400 MPa; a survival 3.5 log units higher than E. coli MG1655. This piezo-resistance was maintained in H. salinarum NRC-1 for pressurizations up to 1 h. We hypothesize that the high-pressure resistance of H. salinarum NRC-1 is due to a combination of factors including cell envelope structure and the presence of intracellular salts.
Collapse
Affiliation(s)
- Adrienne Kish
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC, 20015, USA.
| | | | | | | | | | | |
Collapse
|
12
|
A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 2009; 13:905-15. [PMID: 19763742 DOI: 10.1007/s00792-009-0278-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Strains of hyperthermophilic anaerobic hydrothermal vent archaea maintained in the culture collection assembled by Holger Jannasch at the Woods Hole Oceanographic Institution between 1984 and 1998 were identified and partially characterized by Denaturing Gradient Gel Electrophoresis, 16S rRNA gene sequencing, and by growth tests at different temperatures and on different organic carbon and nitrogen sources. All strains were members of the genera Thermococcus and Pyrococcus. The greatest phylogenetic diversity was found in strains from a single Guaymas Basin core isolated by serial dilution from four different depth horizons of heated sediment incubated at the corresponding in situ temperatures. In contrast, geographically distinct vent locations and sample materials yielded a lower diversity of isolates when enriched under uniform temperature regimes and without prior dilution of the source material.
Collapse
|
13
|
Pagé A, Tivey MK, Stakes DS, Reysenbach AL. Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ Microbiol 2008; 10:874-84. [DOI: 10.1111/j.1462-2920.2007.01505.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|