1
|
Fuentes-Quiroz A, Herrera H, Alvarado R, Rabert C, Arriagada C, Valadares RBDS. Functional differences of cultivable leaf-associated microorganisms in the native Andean tree Gevuina avellana Mol. (Proteaceae) exposed to atmospheric contamination. J Appl Microbiol 2024; 135:lxae041. [PMID: 38364303 DOI: 10.1093/jambio/lxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
AIMS This study aimed to evaluate and describe the functional differences of cultivable bacteria and fungi inhabiting the leaves of Gevuina avellana Mol. (Proteaceae) in an urban area with high levels of air pollution and in a native forest in the southern Andes. METHODS AND RESULTS Phyllosphere microorganisms were isolated from the leaves of G. avellana, their plant growth-promoting capabilities were estimated along with their biocontrol potential and tolerance to metal(loid)s. Notably, plants from the urban area showed contrasting culturable leaf-associated microorganisms compared to those from the native area. The tolerance to metal(loid)s in bacteria range from 15 to 450 mg l-1 of metal(loid)s, while fungal strains showed tolerance from 15 to 625 mg l-1, being especially higher in the isolates from the urban area. Notably, the bacterial strain Curtobacterium flaccumfaciens and the fungal strain Cladosporium sp. exhibited several plant-growth-promoting properties along with the ability to inhibit the growth of phytopathogenic fungi. CONCLUSIONS Overall, our study provides evidence that culturable taxa in G. avellana leaves is directly influenced by the sampling area. This change is likely due to the presence of atmospheric pollutants and diverse microbial symbionts that can be horizontally acquired from the environment.
Collapse
Affiliation(s)
- Alejandra Fuentes-Quiroz
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Roxana Alvarado
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 01090, Temuco, Chile
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| | | |
Collapse
|
2
|
Xu T, Roepke EW, Flynn ED, Rosenfeld CE, Balgooyen S, Ginder-Vogel M, Schuler CJ, Santelli CM. Aqueous Co removal by mycogenic Mn oxides from simulated mining wastewaters. CHEMOSPHERE 2023; 327:138467. [PMID: 36966934 DOI: 10.1016/j.chemosphere.2023.138467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Naturally occurring manganese (Mn) oxide minerals often form by microbial Mn(II) oxidation, resulting in nanocrystalline Mn(III/IV) oxide phases with high reactivity that can influence the uptake and release of many metals (e.g., Ni, Cu, Co, and Zn). During formation, the structure and composition of biogenic Mn oxides can be altered in the presence of other metals, which in turn affects the minerals' ability to bind these metals. These processes are further influenced by the chemistry of the aqueous environment and the type and physiology of microorganisms involved. Conditions extending to environments that typify mining and industrial wastewaters (e.g., increased salt content, low nutrient, and high metal concentrations) have not been well investigated thus limiting the understanding of metal interactions with biogenic Mn oxides. By integrating geochemistry, microscopic, and spectroscopic techniques, we examined the capacity of Mn oxides produced by the Mn(II)-oxidizing Ascomycete fungus Periconia sp. SMF1 isolated from the Minnesota Soudan Mine to remove the metal co-contaminant Co(II) from synthetic waters that are representative of mining wastewaters currently undergoing remediation efforts. We compared two different applied remediation strategies under the same conditions: coprecipitation of Co with mycogenic Mn oxides versus adsorption of Co with pre-formed fungal Mn oxides. Co(II) was effectively removed from solution by fungal Mn oxides through two different mechanisms: incorporation into, and adsorption onto, Mn oxides. These mechanisms were similar for both remediation strategies, indicating the general effectiveness of Co(II) removal by these oxides. The mycogenic Mn oxides were primarily a nanoparticulate, poorly-crystalline birnessite-like phases with slight differences depending on the chemical conditions during formation. The relatively fast and complete removal of aqueous Co(II) during biomineralization as well as the subsequent structural incorporation of Co into the Mn oxide structure illustrated a sustainable cycle capable of continuously remediating Co(II) from metal-polluted environments.
Collapse
Affiliation(s)
- Tingying Xu
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, MN, 55455, USA; BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul, MN, 55108, USA.
| | - Elizabeth W Roepke
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, MN, 55455, USA; BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul, MN, 55108, USA
| | - Elaine D Flynn
- Department of Earth and Planetary Sciences, Washington University, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Carla E Rosenfeld
- Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, Pittsburgh, PA, 15213, USA
| | - Sarah Balgooyen
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53706, USA
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53706, USA
| | - Christopher J Schuler
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, MN, 55455, USA; BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul, MN, 55108, USA
| | - Cara M Santelli
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, MN, 55455, USA; BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul, MN, 55108, USA
| |
Collapse
|
3
|
Vázquez-Arias A, Pacín C, Ares Á, Fernández JÁ, Aboal JR. Do we know the cellular location of heavy metals in seaweed? An up-to-date review of the techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159215. [PMID: 36208739 DOI: 10.1016/j.scitotenv.2022.159215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Seaweeds are dominant organisms in coastal environments. However, in the context of global change, the integrity of these organisms is threatened by metal pollution. It is therefore important to understand how seaweeds are affected by metal concentrations in the water. Measuring the concentrations of metals in seaweed provides information about the effects of metal pollution on the seaweeds themselves and their ecosystems. Nonetheless, correct interpretation of this type of analysis requires knowledge of the cellular location of the pollutants, as the effects will differ depending on whether the metals are present in particles adhered to the surface, attached to external polysaccharides or dissolved in the cytoplasm. Thus, the objectives of this study were to compile the available information on the subcellular distribution of metals in seaweeds and to conduct a critical review of the information. We found that the existing studies provide contrasting, sometimes contradictory, results. Thus, metals have been detected entirely intracellularly and also mainly outside of the cells. In all of the studies reviewed, which used different techniques (mainly extracellular elution, X-ray microanalysis and centrifugation), methodological and/or conceptual problems were identified that raise questions about the effectiveness of each approach. To obtain reliable information about the distribution of metals in algal cells, further studies must be conducted that take into consideration the differences between elements and algal species and the limits of the methods used to measure the elements.
Collapse
Affiliation(s)
- Antón Vázquez-Arias
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Carme Pacín
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Ángela Ares
- Marine Biophysics Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| | - J Ángel Fernández
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jesús R Aboal
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
4
|
Smith JA, Quesada T, Alake G, Anger N. Transcontinental Dispersal of Nonendemic Fungal Pathogens through Wooden Handicraft Imports. mBio 2022; 13:e0107522. [PMID: 35766379 PMCID: PMC9426497 DOI: 10.1128/mbio.01075-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
This study examined the viability and diversity of fungi harbored in imported wooden handicraft products sold in six retail stores in Florida, United States. Despite being subjected to trade regulations that require various sterilization/fumigation protocols, our study demonstrates high survival and diversity of fungi in wood products originating from at least seven countries on three continents. Among these fungi were nonendemic plant and human pathogens, as well as mycotoxin producers. Several products that are sold for use in food preparation and consumption harbored a novel (to North America) plant and human pathogen, Paecilomyces formosus. In addition, a high number of species isolated were thermophilic and included halophilic species, suggesting adaptability and selection through current wood treatment protocols that utilize heat and/or fumigation with methyl-bromide. This research suggests that current federal guidelines for imports of wooden goods are not sufficient to avoid the transit of potential live pathogens and demonstrates the need to increase safeguards at both points of origin and entry for biosecurity against introduction from invasive fungal species in wood products. Future import regulations should consider living fungi, their tolerance to extreme conditions, and their potential survival in solid substrates. Mitigation efforts may require additional steps such as more stringent fumigation and/or sterilization strategies and limiting use of wood that has not been processed to remove bark and decay. IMPORTANCE This study, the first of its kind, demonstrates the risk of importation of nonendemic foreign fungi on wooden handicrafts into the United States despite the application of sanitation protocols. Previous risk assessments of imported wood products have focused on potential for introduction of invasive arthropods (and their fungal symbionts) or have focused on other classes of wood products (timber, wooden furniture, garden products, etc.). Little to no attention has been paid to wooden handicrafts and the fungal pathogens (of plants and humans) they may carry. Due to the large size and diversity of this market, the risk for introduction of potentially dangerous pathogens is significant as illustrated by the results of this study.
Collapse
Affiliation(s)
- Jason A. Smith
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Tania Quesada
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Gideon Alake
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Nicolas Anger
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Wang M, Xu Z, Dong B, Zeng Y, Chen S, Zhang Y, Huang Y, Pei X. An efficient manganese-oxidizing fungus Cladosporium halotolerans strain XM01: Mn(II) oxidization and Cd adsorption behavior. CHEMOSPHERE 2022; 287:132026. [PMID: 34461328 DOI: 10.1016/j.chemosphere.2021.132026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The applications of biogenic Mn oxides (BMOs) formed by Mn-oxidizing fungus in decontaminating heavy metals have attracted increasing attention. In this study, an efficient Mn-oxidizing fungus was isolated from soil and identified as Cladosporium halotolerans strain XM01. The Mn(II) adsorption and oxidation activities of this strain were investigated, showing significantly high removal and oxidation rates of soluble Mn(II) of 99.9% and 88.2%, respectively. Dynamic analysis of the Mn(II) removal process demonstrated the oxidation process of Mn(II) to Mn(III) was the rate-limiting step in the Mn(II) metabolic process. The XRD and SAED characterization showed that more layers were orderly accumulated along the c-axis with the formation of fungal BMOs, which might lead to the decrease in its specific surface area. The adsorption of Cd(II) by the formed BMOs was investigated and compared with two typical abiotic Mn oxides, indicating that the adsorption capacity decreased with the following order: immature BMO, mature BMO, δ-MnO2, acid birnessite, while the fixation capacity decreased in the order of acid birnessite, mature BMO, δ-MnO2, immature BMO. The inverse correlation between the capacity of Cd(II) adsorption and fixation of immature and mature BMOs was probably attributed to the increase in the layer stacking of BMOs. This result indicates an interesting phenomenon of high reservation of Cd(II) resulting from sequential transformation from strong adsorption to strong fixation with the formation of BMOs. This study offers considerable insights into fungal Mn oxidation mechanisms and provides theoretical guidance for fungal BMOs in heavy metals bioremediation.
Collapse
Affiliation(s)
- Mei Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yifan Zeng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Sisi Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yangrui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiangjun Pei
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| |
Collapse
|
6
|
Álvarez-Barragán J, Cravo-Laureau C, Wick LY, Duran R. Fungi in PAH-contaminated marine sediments: Cultivable diversity and tolerance capacity towards PAH. MARINE POLLUTION BULLETIN 2021; 164:112082. [PMID: 33524832 DOI: 10.1016/j.marpolbul.2021.112082] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The cultivable fungal diversity from PAH-contaminated sediments was examined for the tolerance to polycyclic aromatic hydrocarbon (PAH). The 85 fungal strains, isolated in non-selective media, revealed a large diversity by ribosomal internal transcribed spacer (ITS) sequencing, even including possible new species. Most strains (64%) exhibited PAH-tolerance, indicating that sediments retain diverse cultivable PAH-tolerant fungi. The PAH-tolerance was linked neither to a specific taxon nor to the peroxidase genes (LiP, MnP and Lac). Examining the PAH-removal (degradation and/or sorption), Alternaria destruens F10.81 showed the best capacity with above 80% removal for phenanthrene, pyrene and fluoranthene, and around 65% for benzo[a]pyrene. A. destruens F10.81 internalized pyrene homogenously into the hyphae that contrasted with Fusarium pseudoygamai F5.76 in which PAH-vacuoles were observed but PAH removal was below 20%. Thus, our study paves the way for the exploitation of fungi in remediation strategies to mitigate the effect of PAH in coastal marine sediments.
Collapse
Affiliation(s)
- Joyce Álvarez-Barragán
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - Cristiana Cravo-Laureau
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, 04318, Germany
| | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France.
| |
Collapse
|
7
|
Zhou Y, Gao X, Shi C, Li M, Jia W, Shao Z, Yan P. Diversity and Antiaflatoxigenic Activities of Culturable Filamentous Fungi from Deep-Sea Sediments of the South Atlantic Ocean. MYCOBIOLOGY 2021; 49:151-160. [PMID: 37970182 PMCID: PMC10635107 DOI: 10.1080/12298093.2020.1871175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2023]
Abstract
Despite recent studies, relatively few are known about the diversity of fungal communities in the deep Atlantic Ocean. In this study, we investigated the diversity of fungal communities in 15 different deep-sea sediments from the South Atlantic Ocean with a culture-dependent approach followed by phylogenetic analysis of ITS sequences. A total of 29 fungal strains were isolated from the 15 deep-sea sediments. These strains belong to four fungal genera, including Aspergillus, Cladosporium, Penicillium, and Alternaria. Penicillium, accounting for 44.8% of the total fungal isolates, was a dominant genus. The antiaflatoxigenic activity of these deep-sea fungal isolates was studied. Surprisingly, most of the strains showed moderate to strong antiaflatoxigenic activity. Four isolates, belonging to species of Penicillium polonicum, Penicillium chrysogenum, Aspergillus versicolor, and Cladosporium cladosporioides, could completely inhibit not only the mycelial growth of Aspergillus parasiticus mutant strain NFRI-95, but also the aflatoxin production. To our knowledge, this is the first report to investigate the antiaflatoxigenic activity of culturable deep-sea fungi. Our results provide new insights into the community composition of fungi in the deep South Atlantic Ocean. The high proportion of strains that displayed antiaflatoxigenic activity demonstrates that deep-sea fungi from the Atlantic Ocean are valuable resources for mining bioactive compounds.
Collapse
Affiliation(s)
- Ying Zhou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Xiujun Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Mengying Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Wenwen Jia
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Zongze Shao
- China Key Laboratory of Marine Genetic Resources, The Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Peisheng Yan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| |
Collapse
|
8
|
Wu C, An W, Xue S. Element Case Studies: Manganese. AGROMINING: FARMING FOR METALS 2021:425-441. [DOI: 10.1007/978-3-030-58904-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
9
|
Yang S, Xu W, Gao Y, Chen X, Luo ZH. Fungal diversity in deep-sea sediments from Magellan seamounts environment of the western Pacific revealed by high-throughput Illumina sequencing. J Microbiol 2020; 58:841-852. [PMID: 32876913 DOI: 10.1007/s12275-020-0198-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
There are lots of seamounts globally whose primary production is disproportionally greater than the surrounding areas. Compared to other deep-sea environments, however, the seamounts environment is relatively less explored for fungal diversity. In the present study, we explored the fungal community structure in deep-sea sediments from four different stations of the Magellan seamounts environment by using high-throughput sequencing of the ITS1 region. A total of 1,897,618 ITS1 sequences were obtained. Among these sequences, fungal ITS1 sequences could be clustered into 1,662 OTUs. The majority of these sequences belonged to Ascomycota. In the genera level, the most abundant genus was Mortierella (4.79%), which was reported as a common fungal genus in soil and marine sediments, followed by Umbelopsis (3.80%), Cladosporium (2.98%), Saccharomycopsis (2.53%), Aspergillus (2.42%), Hortaea (2.36%), Saitozyma (2.20%), Trichoderma (2.12%), Penicillium (2.11%), Russula (1.86%), and Verticillium (1.40%). Most of these recovered genera belong to Ascomycota. The Bray-Curtis analysis showed that there was 37 to 85% dissimilarity of fungal communities between each two sediment samples. The Principal coordinates analysis clearly showed variations in the fungal community among different sediment samples. These results suggested that there was a difference in fungal community structures not only among four different sampling stations but also for different layers at the same station. The depth and geographical distance significantly affect the fungal community, and the effect of depth and geographical distance on the structure of the fungal community in the Magellan seamounts is basically same. Most of the fungi were more or less related to plants, these plant parasitic/symbiotic/endophytic fungi constitute a unique type of seamounts environmental fungal ecology, different from other marine ecosystems.
Collapse
Affiliation(s)
- Shuai Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, P. R. China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, P. R. China
| | - Yuanhao Gao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, P. R. China
| | - Xiaoyao Chen
- Monotoring Center of Fishery Resources, Fujian Province, Fuzhou, 350003, P. R. China
| | - Zhu-Hua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, P. R. China. .,Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, 222005, P. R. China. .,School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China.
| |
Collapse
|
10
|
Shi Q, Liu Y, Shi A, Cai Z, Nian H, Hartmann M, Lian T. Rhizosphere Soil Fungal Communities of Aluminum-Tolerant and -Sensitive Soybean Genotypes Respond Differently to Aluminum Stress in an Acid Soil. Front Microbiol 2020; 11:1177. [PMID: 32547532 PMCID: PMC7270577 DOI: 10.3389/fmicb.2020.01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
Different soybean genotypes can differ in their tolerance toward aluminum stress depending on their rhizosphere-inhabiting microorganisms. However, there is limited understanding of the response of fungal communities to different aluminum concentrations across different genotypes. Here, we used metabarcoding of fungal ribosomal markers to assess the effects of aluminum stress on the rhizosphere fungal community of aluminum-tolerant and aluminum-sensitive soybean genotypes. Shifts in fungal community structure were related to changes in plant biomass, fungal abundance and soil chemical properties. Aluminum stress increased the difference in fungal community structure between tolerant and sensitive genotypes. Penicillium, Cladosporium and Talaromyces increased with increasing aluminum concentration. These taxa associated with the aluminum-tolerant genotypes were enriched at the highest aluminum concentration. Moreover, complexity of the co-occurrence network associated with the tolerant genotypes increased at the highest aluminum concentration. Collectively, increasing aluminum concentrations magnified the differences in fungal community structure between the two studied tolerant and sensitive soybean genotypes. This study highlights the possibility to focus on rhizosphere fungal communities as potential breeding target to produce crops that are more tolerant toward heavy metal stress or toxicity in general.
Collapse
Affiliation(s)
- Qihan Shi
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.,The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuantai Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.,The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Aoqing Shi
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.,The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.,The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.,The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.,The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Calvillo-Medina RP, Gunde-Cimerman N, Escudero-Leyva E, Barba-Escoto L, Fernández-Tellez EI, Medina-Tellez AA, Bautista-de Lucio V, Ramos-López MÁ, Campos-Guillén J. Richness and metallo-tolerance of cultivable fungi recovered from three high altitude glaciers from Citlaltépetl and Iztaccíhuatl volcanoes (Mexico). Extremophiles 2020; 24:625-636. [PMID: 32535716 DOI: 10.1007/s00792-020-01182-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
In Mexico little is known about high-altitude glacial psychrotolerant or psychrophilic fungal species, with most glacial fungi isolated from polar environments or Alpine glaciers. It has been documented that some of these species may play an important role in bioremediation of contaminated environments with heavy metals. In the present study, 75 fungi were isolated from glaciers in Citlaltépetl (5675 masl) and Iztaccíhuatl (5286 masl) volcanoes. Combining morphological characteristics and molecular methods, based on ITS rDNA, 38 fungi were partially identified to genus level, 35 belonging to Ascomycota and three to Mucoromycota. The most abundant genera were Cladosporium, followed by Alternaria and Sordariomycetes order. All isolated fungi were psychrotolerant, pigmented and resistant to different concentrations of Cr(III) and Pb(II), while none tolerated Hg(II). Fungi most tolerant to Cr(III) and Pb(II) belong to the genera Stemphylium, Cladosporium and Penicillium and to a lesser extent Aureobasidium and Sordariomycetes. To our knowledge, this is the first report on cultivable mycobiota richness and their Cr and Pb tolerance. The results open new research possibilities about fungal diversity and heavy metals myco-remediation. Extremophilic fungal communities should be further investigated before global warming causes permanent changes and we miss the opportunity to describe these sites in Mexico.
Collapse
Affiliation(s)
| | - Nina Gunde-Cimerman
- Molecular Genetics and Biology of Microorganisms, Dept. Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Efraín Escudero-Leyva
- Centro de Investigaciones en Productos Naturales (CIPRONA) Y Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), Centro Nacional de Computación Avanzada (CNCA), CeNAT-CONARE, San José, Costa Rica
| | - Luis Barba-Escoto
- International Maize and Wheat Improvement Center (CIMMYT), Sustainable Intensification Program, Texcoco, Mexico
| | | | | | - Victor Bautista-de Lucio
- Laboratorio de Microbiología Y Proteómica, Instituto de Oftalmología "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico
| | | | - Juan Campos-Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, Mexico
| |
Collapse
|
12
|
Highlighting the Crude Oil Bioremediation Potential of Marine Fungi Isolated from the Port of Oran (Algeria). DIVERSITY 2020. [DOI: 10.3390/d12050196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While over hundreds of terrestrial fungal genera have been shown to play important roles in the biodegradation of hydrocarbons, few studies have so far focused on the fungal bioremediation potential of petroleum in the marine environment. In this study, the culturable fungal communities occurring in the port of Oran in Algeria, considered here as a chronically-contaminated site, have been mainly analyzed in terms of species richness. A collection of 84 filamentous fungi has been established from seawater samples and then the fungi were screened for their ability to utilize and degrade crude oil. A total of 12 isolates were able to utilize crude oil as a unique carbon source, from which 4 were defined as the most promising biodegrading isolates based on a screening test using 2,6-dichlorophenol indophenol as a proxy to highlight their ability to metabolize crude oil. The biosurfactant production capability was also tested and, interestingly, the oil spreading and drop-collapse tests highlighted that the 4 most promising isolates were also those able to produce the highest quantity of biosurfactants. The results generated in this study demonstrate that the most promising fungal isolates, namely Penicillium polonicum AMF16, P. chrysogenum AMF47 and 2 isolates (AMF40 and AMF74) affiliated to P. cyclopium, appear to be interesting candidates for bioremediation of crude oil pollution in the marine environment within the frame of bioaugmentation or biostimulation processes.
Collapse
|
13
|
Mota EA, Felestrino ÉB, Leão VA, Guerra-Sá R. Manganese (II) removal from aqueous solutions by Cladosporium halotolerans and Hypocrea jecorina. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 25:e00431. [PMID: 32071895 PMCID: PMC7013165 DOI: 10.1016/j.btre.2020.e00431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 11/26/2022]
Abstract
Manganese (Mn) is toxic at higher concentrations requiring its removal before returning the wastewater to the environment. This article reported the Mn removal of two fungi strains isolated from mine wastewater. ITS rRNA region sequencing identified the fungi strains as Cladosporium halotolerans and Hypocrea jecorina. Mn2+ removal assays were performed in Sabouraud broth with 50 mg L-1 Mn2+ supplemented and bioleaching assays using MnO2 instead of MnSO4 at the same conditions. C. halotolerans removed 96 % of 50 mg L-1 Mn2+ at two weeks without MnO2 bioleaching with 649.9 mg of biomass and H. jecorina removed about 50 % of Mn2+ in 21 days from initial 50 mg of Mn2+ L-1 with 316.8 mg of biomass. Extracellular laccases were present in C. halotolerans agar regardless of the Mn addition. Mn adsorbed was detected on C. halotolerans hyphae. Mn oxidation was positive to H. jecorina by reaction of its medium with Leucoberbelin blue.
Collapse
Key Words
- ABTS, 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
- CTAB, Hexadecyltrimethylammonium bromide
- Chelating
- Cladosporium halotolerans
- EDX, Energy-dispersive spectroscopy
- Hypocrea jecorina
- ITS, Intergenic Spacer
- LAC1/2, Laccase genes 1/2
- LBB, Leucoberbelin blue or N.N'-Dimethylamino-β, β'-triphenylmethane-o-sulphonic acid
- Manganese
- Mcos, Multicopper oxidases
- Mn oxidation
- PCR, Polymerase Chain Reaction
- SEM, Scanning electronic microscopy
- nBLAST, nucleotide Basic Local Alignment Search Tool
- rRNA, ribosomal Ribonucleic Acid
Collapse
Affiliation(s)
- Ester Alves Mota
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
| | - Érica Barbosa Felestrino
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
| | - Versiane Albis Leão
- Bio & Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, MG, Ouro Preto, Brazil
| | - Renata Guerra-Sá
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil,Corresponding author. Present address: Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas/ Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, ICEB 2, Sala 045 Campus Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
14
|
Mitchison-Field LMY, Vargas-Muñiz JM, Stormo BM, Vogt EJD, Van Dierdonck S, Pelletier JF, Ehrlich C, Lew DJ, Field CM, Gladfelter AS. Unconventional Cell Division Cycles from Marine-Derived Yeasts. Curr Biol 2019; 29:3439-3456.e5. [PMID: 31607535 PMCID: PMC7076734 DOI: 10.1016/j.cub.2019.08.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Fungi have been found in every marine habitat that has been explored; however, the diversity and functions of fungi in the ocean are poorly understood. In this study, fungi were cultured from the marine environment in the vicinity of Woods Hole, MA, USA, including from plankton, sponge, and coral. Our sampling resulted in 35 unique species across 20 genera. We observed many isolates by time-lapse, differential interference contrast (DIC) microscopy and analyzed modes of growth and division. Several black yeasts displayed highly unconventional cell division cycles compared to those of traditional model yeast systems. Black yeasts have been found in habitats inhospitable to other life and are known for halotolerance, virulence, and stress resistance. We find that this group of yeasts also shows remarkable plasticity in terms of cell size control, modes of cell division, and cell polarity. Unexpected behaviors include division through a combination of fission and budding, production of multiple simultaneous buds, and cell division by sequential orthogonal septations. These marine-derived yeasts reveal alternative mechanisms for cell division cycles that seem likely to expand the repertoire of rules established from classic model system yeasts.
Collapse
Affiliation(s)
- Lorna M Y Mitchison-Field
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA
| | - José M Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin M Stormo
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Van Dierdonck
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - James F Pelletier
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ehrlich
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Christine M Field
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA.
| |
Collapse
|
15
|
Ma R, Huang H, Bai Y, Luo H, Fan Y, Yao B. Insight into the cold adaptation and hemicellulose utilization of Cladosporium neopsychrotolerans from genome analysis and biochemical characterization. Sci Rep 2018; 8:6075. [PMID: 29666397 PMCID: PMC5904165 DOI: 10.1038/s41598-018-24443-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/20/2018] [Indexed: 11/30/2022] Open
Abstract
The occurrence of Cladosporium in cold ecosystems has been evidenced long before, and most of the knowledge about nutrient utilization of this genus is sporadic. An alpine soil isolate C. neopsychrotolerans SL-16, showing great cold tolerance and significant lignocellulose-degrading capability, was sequenced to form a 35.9 Mb genome that contains 13,456 predicted genes. Functional annotation on predicted genes revealed a wide array of proteins involved in the transport and metabolism of carbohydrate, protein and lipid. Large numbers of transmembrane proteins (967) and CAZymes (571) were identified, and those related to hemicellulose degradation was the most abundant. To undermine the hemicellulose (xyaln as the main component) utilization mechanism of SL-16, the mRNA levels of 23 xylanolytic enzymes were quantified, and representatives of three glycoside hydrolase families were functionally characterized. The enzymes showed similar neutral, cold active and thermolabile properties and synergistic action on xylan degradation (the synergy degree up to 15.32). Kinetic analysis and sequence and structure comparison with mesophilic and thermophilic homologues indicated that these cold-active enzymes employed different cold adaptation strategies to function well in cold environment. These similar and complementary advantages in cold adaptation and catalysis might explain the high efficiency of lignocellulose conversion observed in SL-16 under low temperatures.
Collapse
Affiliation(s)
- Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Biotechnology Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunliu Fan
- Biotechnology Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
16
|
|
17
|
Fungal communities from the calcareous deep-sea sediments in the Southwest India Ridge revealed by Illumina sequencing technology. World J Microbiol Biotechnol 2016; 32:78. [PMID: 27038948 DOI: 10.1007/s11274-016-2030-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58-63 % and 36-42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.
Collapse
|
18
|
Xue S, Zhu F, Wu C, Lei J, Hartley W, Pan W. Effects of manganese on the microstructures of Chenopodium ambrosioides L., A manganese tolerant plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:710-719. [PMID: 26696389 DOI: 10.1080/15226514.2015.1131233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chenopodium ambrosioides L. can tolerate high concentrations of manganese and has potential for its use in the revegetation of manganese mine tailings. Following a hydroponic investigation, transmission electron microscopy (TEM)-energy disperse spectroscopy (EDS) was used to study microstructure changes and the possible accumulation of Mn in leaf cells of C. ambrosioides in different Mn treatments (200, 1000, 10000 μmol·L(-1)). At 200 μmol·L(-1), the ultrastructure of C. ambrosioides was clearly visible without any obvious damage. At 1000 μmol·L(-1), the root, stem and leaf cells remained intact, and the organelles were clearly visible without any obvious damage. However, when the Mn concentration exceeded 1000 μmol·L(-1) the number of mitochondria in root cells decreased and the chloroplasts in stem cells showed a decrease in grana lamellae and osmiophilic granules. Compared to controls, treatment with 1000 μmol·L(-1) or 10000 μmol·L(-1) Mn over 30 days, gave rise to black agglomerations in the cells. At 10000 μmol·L(-1), Mn was observed to form acicular structures in leaf cells and intercellular spaces, which may be a form of tolerance and accumulation of Mn in C. ambrosioides. This study has furthered the understanding of Mn tolerance mechanisms in plants, and is potential for the revegetation of Mn-polluted soils.
Collapse
Affiliation(s)
- Shengguo Xue
- a School of Metallurgy and Environment, Central South University , Changsha , PR China
| | - Feng Zhu
- a School of Metallurgy and Environment, Central South University , Changsha , PR China
| | - Chuan Wu
- a School of Metallurgy and Environment, Central South University , Changsha , PR China
| | - Jie Lei
- a School of Metallurgy and Environment, Central South University , Changsha , PR China
| | - William Hartley
- b Crop and Environment Sciences Department , Harper Adams University , Newport , Shropshire , United Kingdom
| | - Weisong Pan
- c College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha , PR China
| |
Collapse
|
19
|
Pankiewicz U, Sujka M, Jamroz J. Bioaccumulation of the Selected Metal Ions in Saccharomyces cerevisiae Cells Under Treatment of the Culture with Pulsed Electric Field (PEF). J Membr Biol 2015; 248:943-9. [PMID: 26403528 DOI: 10.1007/s00232-015-9844-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/18/2015] [Indexed: 11/26/2022]
Abstract
The obtained results demonstrated an influence of PEF on increase in accumulation of various ions in S. cerevisiae cells. Optimization of particular PEF parameters and ions concentrations in the medium caused twofold increase in accumulation of magnesium and zinc ions and 3.5-fold higher accumulation of calcium ions in the cells. In the case of ion couple, accumulation of magnesium and zinc was, respectively, 1.5-fold and twofold higher in comparison to the control cultures. Yeast cells biomass enriched with Mg(2+), Zn(2+), Ca(2+) as well as Mg(2+) and Zn(2+) (simultaneously) may be an alternative for pharmacological supplementation applied in deficiency of these cations.
Collapse
Affiliation(s)
- Urszula Pankiewicz
- Faculty of Food Science and Biotechnology, Department of Analysis and Evaluation of Food Quality, University of Life Sciences, Skromna 8, 20-704, Lublin, Poland.
| | - Monika Sujka
- Faculty of Food Science and Biotechnology, Department of Analysis and Evaluation of Food Quality, University of Life Sciences, Skromna 8, 20-704, Lublin, Poland
| | - Jerzy Jamroz
- Faculty of Food Science and Biotechnology, Department of Analysis and Evaluation of Food Quality, University of Life Sciences, Skromna 8, 20-704, Lublin, Poland
| |
Collapse
|
20
|
|
21
|
Isolation of a strain of Aspergillus fumigatus able to grow in minimal medium added with an industrial cyanide waste. World J Microbiol Biotechnol 2011; 28:165-73. [DOI: 10.1007/s11274-011-0805-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
22
|
Singh P, Raghukumar C, Verma P, Shouche Y. Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. MICROBIAL ECOLOGY 2011; 61:507-517. [PMID: 21057784 DOI: 10.1007/s00248-010-9765-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/18/2010] [Indexed: 05/30/2023]
Abstract
Few studies have addressed the occurrence of fungi in deep-sea sediments, characterized by elevated hydrostatic pressure, low temperature, and fluctuating nutrient conditions. We evaluated the diversity of fungi at three locations of the Central Indian Basin (CIB) at a depth of ~5,000 m using culture-independent approach. Community DNA isolated from these sediments was amplified using universal and fungal-specific internal transcribed spacers and universal 18S rDNA primer pairs. A total of 39 fungal operational taxonomic units, with 32 distinct fungal taxa were recovered from 768 clones generated from 16 environmental clone libraries. The application of multiple primers enabled the recovery of eight sequences that appeared to be new. The majority of the recovered sequences belonged to diverse phylotypes of Ascomycota and Basidiomycota. Our results suggested the existence of cosmopolitan marine fungi in the sediments of CIB. This study further demonstrated that diversity of fungi varied spatially in the CIB. Individual primer set appeared to amplify different fungal taxa occasionally. This is the first report on culture-independent diversity of fungi from the Indian Ocean.
Collapse
Affiliation(s)
- Purnima Singh
- National Institute of Oceanography, Council for Scientific and Industrial Research, Dona Paula, Goa, India
| | | | | | | |
Collapse
|
23
|
Santelli CM, Pfister DH, Lazarus D, Sun L, Burgos WD, Hansel CM. Promotion of Mn(II) oxidation and remediation of coal mine drainage in passive treatment systems by diverse fungal and bacterial communities. Appl Environ Microbiol 2010; 76:4871-5. [PMID: 20495049 PMCID: PMC2901711 DOI: 10.1128/aem.03029-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/09/2010] [Indexed: 11/20/2022] Open
Abstract
Biologically active, passive treatment systems are commonly employed for removing high concentrations of dissolved Mn(II) from coal mine drainage (CMD). Studies of microbial communities contributing to Mn attenuation through the oxidation of Mn(II) to sparingly soluble Mn(III/IV) oxide minerals, however, have been sparse to date. This study reveals a diverse community of Mn(II)-oxidizing fungi and bacteria existing in several CMD treatment systems.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/genetics
- Bacteria/metabolism
- Cluster Analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fungi/classification
- Fungi/genetics
- Fungi/metabolism
- Manganese/metabolism
- Molecular Sequence Data
- Oxidation-Reduction
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
- Water Pollutants/metabolism
Collapse
Affiliation(s)
- Cara M. Santelli
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, Department of Civil and Environmental Engineering, the Pennsylvania State University, University Park, Pennsylvania
| | - Donald H. Pfister
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, Department of Civil and Environmental Engineering, the Pennsylvania State University, University Park, Pennsylvania
| | - Dana Lazarus
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, Department of Civil and Environmental Engineering, the Pennsylvania State University, University Park, Pennsylvania
| | - Lu Sun
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, Department of Civil and Environmental Engineering, the Pennsylvania State University, University Park, Pennsylvania
| | - William D. Burgos
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, Department of Civil and Environmental Engineering, the Pennsylvania State University, University Park, Pennsylvania
| | - Colleen M. Hansel
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, Department of Civil and Environmental Engineering, the Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
24
|
Wu L, Li F, Deng C, Xu D, Jiang S, Xiong Y. A method for obtaining DNA from compost. Appl Microbiol Biotechnol 2009; 84:389-95. [PMID: 19590869 DOI: 10.1007/s00253-009-2103-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
An effective cell lysis method for extraction of bacterial genomic DNA from compost was developed in this study. Enzymatic disruption method, physical-chemical combination method, and commercial kit method were used to extract DNA from compost samples and were compared by analyzing DNA yield and efficient cell lysis. The results showed that all the three methods can be used to extract high-quality DNA from compost, but the enzymatic method had better cell lysis efficiency and DNA yields than others without the use of special equipment and expensive spending. Comparison of different methods for lysing gram-positive bacteria Bacillus subtilis indicated that the enzymatic cell lysis is superior for destroying the gram-positive cell wall. Spin-bind DNA column was used for DNA purification, and the purity of the purified sample was checked by polymerase chain reaction to amplify a region of the 16S rRNA. Results indicated that the part of 16S rRNA were amplified from all the purified DNA samples, and all the amplification products could be digested by the restriction enzyme HhaI.
Collapse
Affiliation(s)
- Liang Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Poli A, Salerno A, Laezza G, di Donato P, Dumontet S, Nicolaus B. Heavy metal resistance of some thermophiles: potential use of α-amylase from Anoxybacillus amylolyticus as a microbial enzymatic bioassay. Res Microbiol 2009; 160:99-106. [DOI: 10.1016/j.resmic.2008.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/14/2008] [Accepted: 10/17/2008] [Indexed: 11/24/2022]
|
26
|
Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 2008; 13:39-48. [PMID: 18841325 DOI: 10.1007/s00792-008-0195-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Microorganisms play an important role in the geobiocycling of arsenic element. However, little is known about the bacteria involved in this process in oceanic environments. In this report, arsenite-resistant bacteria were detected in deep-sea sediments on the Southwest Indian Ridge. From arsenite enriched cultures, 54 isolates were obtained, which showed varied tolerance to arsenite of 2-80 mM. Phylogenetic analysis based on 16S rRNA showed that they mainly belonged to Proteobacteria and Actinobacteria. Denaturing gradient gel electrophoresis revealed that Microbacterium esteraromaticum was the dominant member in the arsenite enriched communities, and this was reconfirmed by 16S rRNA gene library analyses. Thus, M. esteraromaticum showed highest resistant to arsenite among the detected bacteria. These results indicate that there are quite diverse bacteria of arsenite resistance inhabiting the deep sea sediment, which may play a role in the geobiocycling of arsenic element in marine environments.
Collapse
|
27
|
Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME JOURNAL 2007; 1:756-62. [PMID: 18059498 DOI: 10.1038/ismej.2007.51] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To elucidate fungal diversity in methane hydrate-bearing deep-sea marine sediments in the South China Sea, internal transcribed spacer (ITS) regions of rRNA genes from five different sediment DNA samples were amplified and phylogenetically analyzed. Total five ITS libraries were constructed and 413 clones selected randomly were grouped into 24 restriction patterns by Amplified Ribosomal DNA Restriction Analysis (ARDRA). ITS sequences of 44 representative clones were determined and compared with the GenBank database using gapped-BLAST. The phylogenetic analysis showed that the ITS sequences (71-97% similarity) were similar to those of Phoma, Lodderomyces, Malassezia, Cryptococcus, Cylindrocarpon, Hortaea, Pichia, Aspergillus and Candida. The remaining sequences were not associated to any known fungi or fungal sequences in the public database. The results suggested that methane hydrate-bearing deep-sea marine sediments harbor diverse fungi. This is the first report on fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea.
Collapse
Affiliation(s)
- Xintian Lai
- State Key Laboratory for Biocontrol and Department of Biochemistry, College of Life Sciences, Zhongshan (Sun Yatsen) University, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Sun F, Shao Z. Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles 2007; 11:853-8. [PMID: 17898924 DOI: 10.1007/s00792-007-0097-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 05/24/2007] [Indexed: 10/22/2022]
Abstract
A lead resistant fungus was isolated from the Pacific sediment. It was associated with Penicillium according to its partial sequences of 18S and ITS. The fungus could grow in the presence of 24 mM Pb(NO(3))(2 )in a liquid medium, and no growth inhibition was observed at 4 mM and below. When growing in the presence of 4 mM Pb(NO(3))(2), the fungus accumulated a large amount of lead granules in the cell, as well as adsorbed on the outer layer of cell wall, as observed under a transmission electron microscope. The intracellular lead deposited either in the vicinity of the cytoplasm membrane or in the vacuoles, and also could aggregate into large particles in the cytoplasm. However, lead was not adsorbed on the thick inner wall of the fungus. Energy dispersive X-ray spectroscopy analysis showed that these granules or particles mainly consisted of lead, and other elements could hardly be detected. Selected area electron diffraction analysis showed that there were regular crystalline lattices in the lead precipitates, indicating that they were actually in the form of crystals to some extent. Therefore, both intracellular bioaccumulation and extracellular biosorption had contributed to the high resistance of this fungus to lead. These results suggest that this fungus can be used in biotreatment as a lead trapper.
Collapse
Affiliation(s)
- Fengqin Sun
- Third Institute of Oceanography, Key Lab of Marine Biogenetic Resources, State Oceanic Administration, Xiamen, Fujian, China
| | | |
Collapse
|