1
|
Pócsi I, Dijksterhuis J, Houbraken J, de Vries RP. Biotechnological potential of salt tolerant and xerophilic species of Aspergillus. Appl Microbiol Biotechnol 2024; 108:521. [PMID: 39560743 DOI: 10.1007/s00253-024-13338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Xerophilic fungi occupy versatile environments owing to their rich arsenal helping them successfully adapt to water constraints as a result of low relative humidity, high-osmolarity, and high-salinity conditions. The general term xerophilic fungi relates to organisms that tolerate and/or require reduced water activity, while halophilic and osmophilic are applied to specialized groups that require high salt concentrations or increased osmotic pressure, respectively. Species belonging to the family Aspergillaceae, and especially those classified in Aspergillus subgenus Aspergillus (sections Restricti and Aspergillus) and Polypaecilum, are particularly enriched in the group of osmophilic and salt-tolerant filamentous fungi. They produce an unprecedently wide spectrum of salt tolerant enzymes including proteases, peptidases, glutaminases, γ-glutamyl transpeptidases, various glycosidases such as cellulose-decomposing and starch-degrading hydrolases, lipases, tannases, and oxidareductases. These extremophilic fungi also represent a huge untapped treasure chest of yet-to-be-discovered, highly valuable, biologically active secondary metabolites. Furthermore, these organisms are indispensable agents in decolorizing textile dyes, degrading xenobiotics and removing excess ions in high-salt environments. They could also play a role in fermentation processes at low water activity leading to the preparation of daqu, meju, and tea. Considering current and future agricultural applications, salt-tolerant and osmophilic Aspergilli may contribute to the biosolubilization of phosphate in soil and the amelioration salt stress in crops. Transgenes from halophile Aspergilli may find promising applications in the engineering of salt stress and drought-tolerant agricultural crops. Aspergilli may also spoil feed and food and raise mycotoxin concentrations above the permissible doses and, therefore, the development of novel feed and food preservation technologies against these Aspergillus spp. is also urgently needed. On the other hand, some xerophilic Aspergilli have been shown to be promising biological control agents against mites. KEY POINTS: • Salt tolerant and osmophilic Aspergilli can be found in versatile environments • These fungi are rich resources of valuable enzymes and secondary metabolites • Biotechnological and agricultural applications of these fungi are expanding.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- HUN-REN-UD Fungal Stress Biology Research Group, Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
2
|
Agrawal S, Chavan P, Dufossé L. Hidden Treasure: Halophilic Fungi as a Repository of Bioactive Lead Compounds. J Fungi (Basel) 2024; 10:290. [PMID: 38667961 PMCID: PMC11051466 DOI: 10.3390/jof10040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The pressing demand for novel compounds to address contemporary health challenges has prompted researchers to venture into uncharted territory, including extreme ecosystems, in search of new natural pharmaceuticals. Fungi capable of tolerating extreme conditions, known as extremophilic fungi, have garnered attention for their ability to produce unique secondary metabolites crucial for defense and communication, some of which exhibit promising clinical significance. Among these, halophilic fungi thriving in high-salinity environments have particularly piqued interest for their production of bioactive molecules. This review highlights the recent discoveries regarding novel compounds from halotolerant fungal strains isolated from various saline habitats. From diverse fungal species including Aspergillus, Penicillium, Alternaria, Myrothecium, and Cladosporium, a plethora of intriguing molecules have been elucidated, showcasing diverse chemical structures and bioactivity. These compounds exhibit cytotoxicity against cancer cell lines such as A549, HL60, and K-562, antimicrobial activity against pathogens like Escherichia coli, Bacillus subtilis, and Candida albicans, as well as radical-scavenging properties. Notable examples include variecolorins, sclerotides, alternarosides, and chrysogesides, among others. Additionally, several compounds display unique structural motifs, such as spiro-anthronopyranoid diketopiperazines and pentacyclic triterpenoids. The results emphasize the significant promise of halotolerant fungi in providing bioactive compounds for pharmaceutical, agricultural, and biotechnological uses. However, despite their potential, halophilic fungi are still largely unexplored as sources of valuable compounds.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research (ICMR), V Ramalingaswami Bhawan, Ansari Nagar-AIIMS (All India Institute of Medical Sciences), Delhi 110029, India
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Pruthviraj Chavan
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, ChemBioPro, Université de La Réunion, Ecole Supérieure d’Ingénieurs—Réunion, Océan Indien ESIROI Agroalimentaire, 97410 Saint-Denis, France
| |
Collapse
|
3
|
Li Q, Li S, Li S, Hao X, Wang A, Si S, Xu Y, Shu J, Gan M. Antimicrobial and Anti-inflammatory Cyclic Tetrapeptides from the Co-cultures of Two Marine-Derived Fungi. JOURNAL OF NATURAL PRODUCTS 2024; 87:365-370. [PMID: 38276888 DOI: 10.1021/acs.jnatprod.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Violaceotides B-E (1-4), four new cyclic tetrapeptides, along with seven known compounds, were identified from the sponge-associated Aspergillus insulicola IMB18-072 co-cultivated with the marine-derived Alternaria angustiovoidea IMB20-805. Their structures were elucidated by extensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and MS/MS data. The absolute configurations were determined by the advanced Marfey's method. Compounds 2, 3, and violaceotide A (5) displayed selective antimicrobial activities against the aquatic pathogenic bacteria Edwardsiella tarda and E. ictaluri. In addition, compounds 1-5 showed inhibitory activities against the LPS-induced expression of the inflammatory mediator IL-6 in RAW264.7 cells at a concentration of 10 μM.
Collapse
Affiliation(s)
- Qin Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Shasha Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shunwang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Anqi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
4
|
Dembitsky VM. Bioactive Steroids Bearing Oxirane Ring. Biomedicines 2023; 11:2237. [PMID: 37626733 PMCID: PMC10452232 DOI: 10.3390/biomedicines11082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the biological activity and structural diversity of steroids and related isoprenoid lipids, with a particular focus on compounds containing an oxirane ring. These natural compounds are derived from fungi, fungal endophytes, as well as extracts of plants, algae, and marine invertebrates. To evaluate their biological activity, an extensive examination of refereed literature sources was conducted, including in vivo and in vitro studies and the utilization of the QSAR method. Notable properties observed among these compounds include strong anti-inflammatory, antineoplastic, antiproliferative, anti-hypercholesterolemic, antiparkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout this review, 3D graphs illustrating the activity of individual steroids are presented, accompanied by images of selected terrestrial or marine organisms. Furthermore, this review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review are of scientific interest to the academic community and carry practical implications in the fields of pharmacology and medicine. By analyzing the biological activity and structural diversity of steroids and related isoprenoid lipids, this review offers valuable insights that contribute to both theoretical understanding and applied research. This review draws upon data from various authors to compile information on the biological activity of natural steroids containing an oxirane ring.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
5
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
6
|
Łysakowska P, Sobota A, Wirkijowska A. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production-A Review. Molecules 2023; 28:5393. [PMID: 37513265 PMCID: PMC10384337 DOI: 10.3390/molecules28145393] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medicinal mushrooms, e.g., Lion's Mane (Hericium erinaceus (Bull.) Pers.), Reishi (Ganoderma lucidum (Curtis) P. Karst.), Chaga (Inonotus obliquus (Ach. ex Pers.) Pilát), Cordyceps (Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones and Spatafora), Shiitake (Lentinula edodes (Berk.) Pegler), and Turkey Tail (Trametes versicolor (L.) Lloyd), are considered new-generation foods and are of growing interest to consumers. They are characterised by a high content of biologically active compounds, including (1,3)(1,6)-β-d-glucans, which are classified as dietary fibre, triterpenes, phenolic compounds, and sterols. Thanks to their low-fat content, they are a low-calorie product and are classified as a functional food. They have a beneficial effect on the organism through the improvement of its overall health and nutritional level. The biologically active constituents contained in medicinal mushrooms exhibit anticancer, antioxidant, antidiabetic, and immunomodulatory effects. In addition, these mushrooms accelerate metabolism, help fight obesity, and slow down the ageing processes thanks to their high antioxidant activity. The vast therapeutic properties of mushrooms are still not fully understood. Detailed mechanisms of the effects of medicinal mushrooms on the human organism still require long-term clinical studies to confirm their nutraceutical effects, their safety of use, and their dosage. Medicinal mushrooms have great potential to be used in the design of innovative functional foods. There is a need for further research on the possibility of incorporating mushrooms into food products to assess the interactions of their bioactive substances with ingredients in the food matrix. This review focuses on the properties of selected medicinal mushrooms and their effects on the human organism and presents current knowledge on the possibilities of their use in the production of functional foods.
Collapse
Affiliation(s)
- Paulina Łysakowska
- Department of Plant Food Technology and Gastronomy, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland
| | - Aldona Sobota
- Department of Plant Food Technology and Gastronomy, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland
| | - Anna Wirkijowska
- Department of Plant Food Technology and Gastronomy, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland
| |
Collapse
|
7
|
Yuan B, Grau MF, Murata RM, Torok T, Venkateswaran K, Stajich JE, Wang CCC. Identification of the Neoaspergillic Acid Biosynthesis Gene Cluster by Establishing an In Vitro CRISPR-Ribonucleoprotein Genetic System in Aspergillus melleus. ACS OMEGA 2023; 8:16713-16721. [PMID: 37214671 PMCID: PMC10193573 DOI: 10.1021/acsomega.2c08104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 05/24/2023]
Abstract
Filamentous fungi are an essential source of bioactive mycotoxins. Recent efforts have focused on developing antifungal agents that are effective against invasive yeasts, such as Candida spp. By screening fungal strains isolated from regions surrounding the Chernobyl nuclear power plant disaster for antifungal activity against Candida albicans, we found that Aspergillus melleus IMV 01140 produced compounds that inhibited the growth of the yeast. The active compound produced by A. melleus was isolated and found to be neoaspergillic acid, a compound that is closely related to aspergillic acid. While aspergillic acid and its derivatives have been characterized and were found to have antibacterial and antifungal properties, neoaspergillic acid has been much less studied. Even though neoaspergillic acid and related compounds were found to have antibacterial and antitumoral effects, further investigation into this group of compounds is limited by challenges associated with large-scale production, isolation, and purification. The production of neoaspergillic acid has been shown to require co-cultivation methods or special growth conditions. In this work, neoaspergillic acid and related compounds were found to be produced by A. melleus under laboratory growth conditions. The biosynthetic gene cluster of neoaspergillic acid was predicted using the aspergillic acid gene cluster as a model. The biosynthetic pathway for neoaspergillic acid was then confirmed by establishing an in vitro CRISPR-ribonucleoprotein system to individually delete genes within the cluster. A negative transcriptional factor, mcrA, was also eliminated to further improve the production of neoaspergillic acid and the related compounds for future studies.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Michelle F. Grau
- Department
of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Ramiro Mendonça Murata
- Department
of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, North Carolina 27834, United States
| | - Tamas Torok
- Ecology
Department, Lawrence Berkley National Laboratory, Berkeley, California 94720, United States
| | - Kasthuri Venkateswaran
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91109, United States
| | - Jason E. Stajich
- Department
of Microbiology and Plant Pathology, University
of California Riverside, Riverside, California 92521, United States
| | - Clay C. C. Wang
- Department
of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, University of Southern California,
Dornsife College of Letters, Arts, and Sciences, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Tilvi S, Parvatkar R, Awashank A, Khan S. Investigation of Secondary Metabolites from Marine‐Derived Fungi
Aspergillus. ChemistrySelect 2022. [DOI: 10.1002/slct.202203742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Supriya Tilvi
- Bio-organic Chemistry Laboratory Chemical Oceanography Division CSIR-National Institute of Oceanography Donapaula Goa
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India- 201002
| | - Rajesh Parvatkar
- Department of Chemistry Government College of Arts, Science and Commerce Sankhali Goa India 403505
| | - Avinash Awashank
- CSIR-National Institute of Oceanography, Regional Centre, Four Bungalows, Andheri (West) Mumbai Maharashtra India- 400053
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India- 201002
| | - Safia Khan
- Bio-organic Chemistry Laboratory Chemical Oceanography Division CSIR-National Institute of Oceanography Donapaula Goa
| |
Collapse
|
9
|
Marine fungal metabolites as a source of drug leads against aquatic pathogens. Appl Microbiol Biotechnol 2022; 106:3337-3350. [PMID: 35486178 DOI: 10.1007/s00253-022-11939-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Aquatic pathogens, including Vibrio, Edwardsiella, Pseudomonas, and Aeromonas, which could result in bacterial diseases to aquaculture, have seriously threatened the world aquaculture production. Marine-derived fungi, which could produce novel secondary metabolites with significant antibacterial activity, may be an important source for finding effective agents against aquatic pathogens. In this review, a systematically overview of the harm of several aquatic pathogens, and 134 antibacterial secondary metabolites against aquatic pathogens from 13 genera of marine-derived fungi, were summarized and concluded. The aim of this review is to find out the relationships between activity and structural type, between bioactive compounds and their hosts, and so on. Altogether, 95 references published during 1997-2021 were cited. KEY POINTS: •Aquatic pathogens, which could result in bacterial diseases to aquaculture, were described. •Marine fungal metabolites with activities against aquatic pathogens were summarized. •The distributions of these bioactive marine fungal metabolites were analyzed.
Collapse
|
10
|
Metabolic Potential of Halophilic Filamentous Fungi—Current Perspective. Int J Mol Sci 2022; 23:ijms23084189. [PMID: 35457008 PMCID: PMC9030287 DOI: 10.3390/ijms23084189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salty environments are widely known to be inhospitable to most microorganisms. For centuries salt has been used as a food preservative, while highly saline environments were considered uninhabited by organisms, and if habited, only by prokaryotic ones. Nowadays, we know that filamentous fungi are widespread in many saline habitats very often characterized also by other extremes, for example, very low or high temperature, lack of light, high pressure, or low water activity. However, fungi are still the least understood organisms among halophiles, even though they have been shown to counteract these unfavorable conditions by producing multiple secondary metabolites with interesting properties or unique biomolecules as one of their survival strategies. In this review, we focused on biomolecules obtained from halophilic filamentous fungi such as enzymes, pigments, biosurfactants, and osmoprotectants.
Collapse
|
11
|
Production and characterization of a broad-spectrum antimicrobial 5-butyl-2-pyridine carboxylic acid from Aspergillus fumigatus nHF-01. Sci Rep 2022; 12:6006. [PMID: 35397665 PMCID: PMC8994762 DOI: 10.1038/s41598-022-09925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The present study aims at the production optimization, purification, and characterization of a potent broad-spectrum antimicrobial compound (AMC) produced by Aspergillus fumigatus nHF-01 (GenBank Ac. No. MN190286). The culture conditions were optimized for a higher amount of AMC. The AMC was solvent extracted and characterized by UV–Vis, FT–IR, ESI–MS, and 1H-NMR spectroscopy. The MIC, MBC and mode of action were determined against a set of Gram-positive and Gram-negative human pathogenic bacteria. Its antibiofilm, synergistic and cytotoxic effects were also tested. The putative target site of action was evaluated through in silico molecular docking study. The stain A. fumigatus nHF-01 produced the maximum AMC (5-butyl-2-pyridine carboxylic acid) in 2% MEB (w/v) and 4% YE (w/v) at pH 6.0 and 20 °C temperature with 100 rpm agitation for ten days. It caused complete lethality of the Gram-positive and Gram-negative human pathogenic bacteria at a 129 µg/mL dose by rupture and entire dissolution of cell integrity. It showed moderate antibiofilm activity and had a synergistic activity with streptomycin and additive effects with ciprofloxacin and vancomycin. It targets a respiratory enzyme, Quinol-Fumarate Reductase (1l0v), with the highest binding affinities. It had cytotoxicity against human lung carcinoma A549 cell line and was stable up to 100 °C. Thus, the study revealed that the strain A. fumigatus nHF-01 produces a potent broad-spectrum AMC 5-butyl-2-pyridine carboxylic acid that could be used against human food and topical pathogenic bacteria. This is the first report of such a compound produced from the A. fumigatus.
Collapse
|
12
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
13
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
14
|
Gao H, Wang Y, Luo Q, Yang L, He X, Wu J, Kachanuban K, Wilaipun P, Zhu W, Wang Y. Bioactive Metabolites From Acid-Tolerant Fungi in a Thai Mangrove Sediment. Front Microbiol 2021; 11:609952. [PMID: 33552019 PMCID: PMC7862741 DOI: 10.3389/fmicb.2020.609952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023] Open
Abstract
Despite being potentially useful extremophile resources, there have been few reports on acid-tolerant fungi and their bioactive metabolites. Acidophilic/aciduric fungi (n = 237) were isolated from Thai mangrove sediments in an acidic medium. Using fungal identification technology (including morphologic observation, chemical screening, and sequence comparisons) all the isolates were identified and 41 representative isolates were selected for analysis of the phylogenetic relationships (ITS rDNA, β-tubulin, calmodulin, and actin gene sequences). There were seven genera identified – Penicillium; Aspergillus; Talaromyces; Cladosporium; Allophoma; Alternaria; and Trichoderma – in four taxonomic orders of the phylum Ascomycota, and Penicillium, Aspergillus, and Talaromyces were the dominant genera. Acidity tolerance was evaluated and 95% of the isolates could grow under extremely acidic conditions (pH 2). Six strains were classed as acidophilic fungi that cannot survive under pH 7, all of which had an extraordinarily close genetic relationship and belonged to the genus Talaromyces. This is the first report on the acidophilic characteristics of this genus. The antimicrobial, anti-tumor, and antiviral activities of the fermentation extracts were evaluated. Nearly three-quarters of the extracts showed cytotoxic activity, while less than a quarter showed antimicrobial or anti-H1N1 activity. The typical aciduric fungus Penicillium oxalicum OUCMDZ-5207 showed similar growth but completely different chemical diversity at pH 3 and 7. The metabolites of OUCMDZ-5207 that were obtained only at pH 3 were identified as tetrahydroauroglaucin (1), flavoglaucin (2), and auroglaucin (3), among which auroglaucin showed strong selective inhibition of A549 cells with an IC50 value of 5.67 μM. These results suggest that acid stress can activate silent gene clusters to expand the diversity of secondary metabolites, and the bioprospecting of aciduric/acidophilic microorganism resources in Thai mangrove sediments may lead to the discovery of compounds with potential medicinal applications.
Collapse
Affiliation(s)
- Hai Gao
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanan Wang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiao Luo
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liyuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xingxing He
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | | | | | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Abo Nouh FA, Gezaf SA, Abo Nahas HH, Abo Nahas YH, Vargas-De-La-Cruz C, Acosta RAS, Abdel-Azeem AM. Diversity of Cordyceps from Different Environmental Agroecosystems and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Wilson ZE, Brimble MA. Molecules derived from the extremes of life: a decade later. Nat Prod Rep 2020; 38:24-82. [PMID: 32672280 DOI: 10.1039/d0np00021c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: Early 2008 until the end of 2019Microorganisms which survive (extreme-tolerant) or even prefer (extremophilic) living at the limits of pH, temperature, salinity and pressure found on earth have proven to be a rich source of novel structures. In this update we summarise the wide variety of new molecules which have been isolated from extremophilic and extreme-tolerant microorganisms since our original 2009 review, highlighting the range of bioactivities these molecules have been reported to possess.
Collapse
Affiliation(s)
- Zoe E Wilson
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | |
Collapse
|
17
|
Corral P, Amoozegar MA, Ventosa A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar Drugs 2019; 18:md18010033. [PMID: 31906001 PMCID: PMC7024382 DOI: 10.3390/md18010033] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022] Open
Abstract
The organisms thriving under extreme conditions better than any other organism living on Earth, fascinate by their hostile growing parameters, physiological features, and their production of valuable bioactive metabolites. This is the case of microorganisms (bacteria, archaea, and fungi) that grow optimally at high salinities and are able to produce biomolecules of pharmaceutical interest for therapeutic applications. As along as the microbiota is being approached by massive sequencing, novel insights are revealing the environmental conditions on which the compounds are produced in the microbial community without more stress than sharing the same substratum with their peers, the salt. In this review are reported the molecules described and produced by halophilic microorganisms with a spectrum of action in vitro: antimicrobial and anticancer. The action mechanisms of these molecules, the urgent need to introduce alternative lead compounds and the current aspects on the exploitation and its limitations are discussed.
Collapse
Affiliation(s)
- Paulina Corral
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Mohammad A. Amoozegar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6955, Iran;
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556765
| |
Collapse
|
18
|
Bibi S, Wang YB, Tang DX, Kamal MA, Yu H. Prospects for Discovering the Secondary Metabolites of Cordyceps Sensu Lato by the Integrated Strategy. Med Chem 2019; 17:97-120. [PMID: 31880251 DOI: 10.2174/1573406416666191227120425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some species of Cordyceps sensu lato are famous Chinese herbs with significant biological activities, often used as edible food and traditional medicine in China. Cordyceps represents the largest entomopathogenic group of fungi, including 40 genera and 1339 species in three families and incertae sedis of Hypocreales. OBJECTIVE Most of the Cordyceps-derivatives have been approved clinically for the treatment of various diseases such as diabetes, cancers, inflammation, cardiovascular, renal and neurological disorders and are used worldwide as supplements and herbal drugs, but there is still need for highly efficient Cordyceps-derived drugs for fatal diseases with approval of the U.S. Food and Drug Administration. METHODS Computer-aided drug design concepts could improve the discovery of putative Cordyceps- derived medicine within less time and low budget. The integration of computer-aided drug design methods with experimental validation has contributed to the successful discovery of novel drugs. RESULTS This review focused on modern taxonomy, active metabolites, and modern drug design techniques that could accelerate conventional drug design and discovery of Cordyceps s. l. Successful application of computer-aided drug design methods in Cordyceps research has been discussed. CONCLUSION It has been concluded that computer-aided drug design techniques could influence the multiple target-focused drug design, because each metabolite of Cordyceps has shown significant activities for the various diseases with very few or no side effects.
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - De-Xiang Tang
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Hong Yu
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| |
Collapse
|
19
|
Biologically Active Metabolites from the Marine Sediment-Derived Fungus Aspergillus flocculosus. Mar Drugs 2019; 17:md17100579. [PMID: 31614563 PMCID: PMC6835654 DOI: 10.3390/md17100579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Four new compounds were isolated from the Vietnamese marine sediment-derived fungus Aspergillus flocculosus, one aspyrone-related polyketide aspilactonol G (2), one meroterpenoid 12-epi-aspertetranone D (4), two drimane derivatives (7,9), together with five known metabolites (1,3,5,6,8,10). The structures of compounds 1–10 were established by NMR and MS techniques. The absolute stereoconfigurations of compounds 1 and 2 were determined by a modified Mosher’s method. The absolute configurations of compounds 4 and 7 were established by a combination of analysis of ROESY data and coupling constants as well as biogenetic considerations. Compounds 7 and 8 exhibited cytotoxic activity toward human prostate cancer 22Rv1, human breast cancer MCF-7, and murine neuroblastoma Neuro-2a cells.
Collapse
|
20
|
Cytotoxicity of lanostane-type triterpenoids and ergosteroids isolated from Omphalia lapidescens on MDA-MB-231 and HGC-27 cells. Biomed Pharmacother 2019; 118:109273. [DOI: 10.1016/j.biopha.2019.109273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
|
21
|
Fungi in salterns. J Microbiol 2019; 57:717-724. [DOI: 10.1007/s12275-019-9195-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
22
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
|
24
|
Shin HJ, Choi BK, Trinh PTH, Lee HS, Kang JS, Van TTT, Lee HS, Lee JS, Lee YJ, Lee J. Suppression of RANKL-Induced Osteoclastogenesis by the Metabolites from the Marine Fungus Aspergillus flocculosus Isolated from a Sponge Stylissa sp. Mar Drugs 2018; 16:md16010014. [PMID: 29304006 PMCID: PMC5793062 DOI: 10.3390/md16010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022] Open
Abstract
A new α-pyrone merosesquiterpenoid possessing an angular tetracyclic carbon skeleton, ochraceopone F (1), and four known secondary metabolites, aspertetranone D (2), cycloechinulin (3), wasabidienone E (4), and mactanamide (5), were isolated from the marine fungus Aspergillus flocculosus derived from a sponge Stylissa sp. collected in Vietnam. The structures of Compounds 1–5 were elucidated by analysis of 1D and 2D NMR spectra and MS data. All the isolated compounds were evaluated for anti-proliferation activity and their suppression effects on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation using tartate-resisant acid phosphatase (TRAP). Compounds 1–5 had no anti-proliferative effect on human cancer cell lines up to 30 μg/mL. Among these compounds, aspertetranone D (2) and wasabidienone E (4) exhibited weak osteoclast differentiation inhibitory activity at 10 μg/mL. However, mactanamide (5) showed a potent suppression effect of osteoclast differentiation without any evidence of cytotoxicity.
Collapse
Affiliation(s)
- Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea.
- Department of Marine Biotechnology, University of Science and Technology, 217 Gajungro Yuseong-gu, Daejeon 34113, Korea.
| | - Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea.
- Department of Marine Biotechnology, University of Science and Technology, 217 Gajungro Yuseong-gu, Daejeon 34113, Korea.
| | - Phan Thi Hoai Trinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam.
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea.
| | - Jong Soon Kang
- Bio-Evaluation Center, Korea Research Institute of Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Korea.
| | - Tran Thi Thanh Van
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam.
| | - Hyi-Seung Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea.
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea.
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea.
| | - Jihoon Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea.
| |
Collapse
|
25
|
Peng X, Wang Y, Zhu G, Zhu W. Fatty acid derivatives from the halotolerant fungus Cladosporium cladosporioides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:18-24. [PMID: 28847042 DOI: 10.1002/mrc.4659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Halotolerant fungus Cladosporium cladosporioides OUCMDZ-187 was isolated from the mangrove plant Rhizophora stylosa collected in Shankou, Guangxi Province of China. Three new fatty acid esters cladosporesters A-C (1-3) and 5 new fatty acids cladosporacids A-E (4-8) were isolated from the ethyl acetate extract of the fermentation broth of OUCMDZ-187 in a hypersaline (10% salt) medium. Their structures were elucidated by UV, IR, MS, specific rotation, and 1D and 2D NMR data.
Collapse
Affiliation(s)
- Xiaoping Peng
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yi Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guoliang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
26
|
Guo L, Wang C. Optimized production and isolation of antibacterial agent from marine Aspergillus flavipes against Vibrio harveyi. 3 Biotech 2017; 7:383. [PMID: 29134160 DOI: 10.1007/s13205-017-1015-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 06/03/2017] [Indexed: 10/18/2022] Open
Abstract
Statistical methodologies, including Plackett-Burman design and Box-Behnken design, were employed to optimize the fermentation conditions for the production of active substances against aquatic pathogen Vibrio harveyi by marine-derived Aspergillus flavipes strain HN4-13. The optimal crucial fermentation values for maximum production of active substances against V. harveyi were obtained as follows: X1 (peptone) = 0.3%, X2 (KCl) = 0.25%, and X3 (inoculum size) = 4.5%. The predicted diameter of inhibitory zone against V. harveyi was 23.39 mm, and the practical value reached 23.71 ± 0.98 mm with a 62.3% increase. Bioassay-guided fractionation resulted in the acquisition of two compounds whose structures were identified as questin (1) and emodin (2). Questin exhibited the same antibacterial activity against V. harveyi as streptomycin (MIC 31.25 µg/mL). This is the first time to report questin as a potential antibacterial agent against aquatic pathogen V. harveyi.
Collapse
|
27
|
Peng X, Wang Y, Zhu T, Zhu W. Pyrazinone derivatives from the coral-derived Aspergillus ochraceus LCJ11-102 under high iodide salt. Arch Pharm Res 2017; 41:184-191. [DOI: 10.1007/s12272-017-0928-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
|
28
|
Harrison JP, Angel R, Cockell CS. Astrobiology as a framework for investigating antibiotic susceptibility: a study of Halomonas hydrothermalis. J R Soc Interface 2017; 14:20160942. [PMID: 28123098 PMCID: PMC5310740 DOI: 10.1098/rsif.2016.0942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023] Open
Abstract
Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics.
Collapse
Affiliation(s)
- Jesse P Harrison
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry Meets Microbiology', University of Vienna, Vienna 1090, Austria
| | - Roey Angel
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry Meets Microbiology', University of Vienna, Vienna 1090, Austria
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
| |
Collapse
|
29
|
El-Hossary EM, Cheng C, Hamed MM, El-Sayed Hamed AN, Ohlsen K, Hentschel U, Abdelmohsen UR. Antifungal potential of marine natural products. Eur J Med Chem 2016; 126:631-651. [PMID: 27936443 DOI: 10.1016/j.ejmech.2016.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022]
Abstract
Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source.
Collapse
Affiliation(s)
- Ebaa M El-Hossary
- National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, Cairo, Egypt
| | - Cheng Cheng
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Mostafa M Hamed
- Drug Design and Optimization Department, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | | | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
30
|
Yin Y, Ding Y, Feng G, Li J, Xiao L, Karuppiah V, Sun W, Zhang F, Li Z. Modification of artificial sea water for the mass production of (+)-terrein by Aspergillus terreus strain PF26 derived from marine sponge Phakellia fusca. Lett Appl Microbiol 2015; 61:580-7. [PMID: 26394071 DOI: 10.1111/lam.12496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED (+)-Terrein shows multiple bioactivities, however, its mass production is a big challenge. Aspergillus terreus strain PF26 derived from South China Sea sponge Phakellia fusca has been cultured to produce (+)-terrein successfully, but artificial sea water (ASW) of high salinity used in the fermentation medium may cause the corrosion risk of metal bioreactor, which limits the fermentation on a large scale. In this study, we modified the components of ASW by removing NaCl and CaCl2 from the original formula, which reduced about 80% salinity of ASW. As a result, 7·56 g l(-1) (+)-terrein production was achieved in shake flask, which was 78·72% higher than using the original ASW, and the cultivation time was decreased from 24 to 15 days. Then, the modified ASW was used for the fermentation of A. terreus strain PF26 in a 500 l stirred bioreactor, consequently 2·5 g l(-1) of (+)-terrein production was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY The fermentation of marine micro-organisms always needs to use sea water or artificial sea water (ASW), which limits the fermentation on a large scale, as the high-salinity medium may cause the corrosion risk of bioreactor. In this study, the ASW formula is simplified to reduce the sea water salinity and improve the yield of (+)-terrein, finally, the modified ASW was successfully used for the mass production of (+)-terrein by A. terreus strain PF26 in a 500 l bioreactor.
Collapse
Affiliation(s)
- Y Yin
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Y Ding
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - G Feng
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - J Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - L Xiao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - V Karuppiah
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - W Sun
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - F Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Z Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q. Antibacterial and antifungal compounds from marine fungi. Mar Drugs 2015; 13:3479-513. [PMID: 26042616 PMCID: PMC4483641 DOI: 10.3390/md13063479] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/17/2015] [Accepted: 05/20/2015] [Indexed: 12/23/2022] Open
Abstract
This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review.
Collapse
Affiliation(s)
- Lijian Xu
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| | - Wei Meng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Cong Cao
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| | - Jian Wang
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| | - Wenjun Shan
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| | - Qinggui Wang
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
32
|
Kim SH, Shin Y, Lee SH, Oh KB, Lee SK, Shin J, Oh DC. Salternamides A-D from a Halophilic Streptomyces sp. Actinobacterium. JOURNAL OF NATURAL PRODUCTS 2015; 78:836-843. [PMID: 25700232 DOI: 10.1021/acs.jnatprod.5b00002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Salternamides A-D (1-4), the first secondary metabolites discovered from saltern-derived actinomycetes, were isolated from a halophilic Streptomyces strain isolated from a saltern on Shinui Island in the Republic of Korea. The planar structures of the salternamides, which are new members of the manumycin family, were elucidated by a combination of spectroscopic analyses. The absolute configurations of the salternamides were determined by chemical and spectroscopic methods, including the modified Mosher's method, J-based configuration analysis, and circular dichroism spectroscopy. Salternamide A (1), which is the first chlorinated compound in the manumycin family, exhibited potent cytotoxicity against a human colon cancer cell line (HCT116) and a gastric cancer cell line (SNU638) with submicromolar IC50 values. Salternamides A and D were also determined to be weak Na(+)/K(+) ATPase inhibitors.
Collapse
Affiliation(s)
- Seong-Hwan Kim
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Yoonho Shin
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - So-Hyoung Lee
- ‡Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Ki-Bong Oh
- ‡Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Sang Kook Lee
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jongheon Shin
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Dong-Chan Oh
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
33
|
The Chemical Constituents and Pharmacological Actions of Cordyceps sinensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:575063. [PMID: 25960753 PMCID: PMC4415478 DOI: 10.1155/2015/575063] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023]
Abstract
Cordyceps sinensis, also called DongChongXiaCao (winter worm, summer grass) in Chinese, is becoming increasingly popular and important in the public and scientific communities. This study summarizes the chemical constituents and their corresponding pharmacological actions of Cordyceps sinensis. Many bioactive components of Cordyceps sinensis have been extracted including nucleoside, polysaccharide, sterol, protein, amino acid, and polypeptide. In addition, these constituents' corresponding pharmacological actions were also shown in the study such as anti-inflammatory, antioxidant, antitumour, antiapoptosis, and immunomodulatory actions. Therefore can use different effects of C. sinensis against different diseases and provide reference for the study of Cordyceps sinensis in the future.
Collapse
|
34
|
Antibacterial products of marine organisms. Appl Microbiol Biotechnol 2015; 99:4145-73. [PMID: 25874533 DOI: 10.1007/s00253-015-6553-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
Marine organisms comprising microbes, plants, invertebrates, and vertebrates elaborate an impressive array of structurally diverse antimicrobial products ranging from small cyclic compounds to macromolecules such as proteins. Some of these biomolecules originate directly from marine animals while others arise from microbes associated with the animals. It is noteworthy that some of the biomolecules referred to above are structurally unique while others belong to known classes of compounds, peptides, and proteins. Some of the antibacterial agents are more active against Gram-positive bacteria while others have higher effectiveness on Gram-negative bacteria. Some are efficacious against both Gram-positive and Gram-negative bacteria and against drug-resistant strains as well. The mechanism of antibacterial action of a large number of the chemically identified antibacterial agents, possible synergism with currently used antibiotics, and the issue of possible toxicity on mammalian cells and tissues await elucidation. The structural characteristics pivotal to antibacterial activity have been ascertained in only a few studies. Demonstration of efficacy of the antibacterial agents in animal models of bacterial infection is highly desirable. Structural characterization of the active principles present in aqueous and organic extracts of marine organisms with reportedly antibacterial activity would be desirable.
Collapse
|
35
|
Abstract
Aspergillus section Circumdati or the Aspergillus ochraceus group, includes species with rough walled stipes, biseriate conidial heads, yellow to ochre conidia and sclerotia that do not turn black. Several species are able to produce mycotoxins including ochratoxins, penicillic acids, and xanthomegnins. Some species also produce drug lead candidates such as the notoamides. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. Based on this approach the section Circumdati is revised and 27 species are accepted, introducing seven new species: A. occultus, A. pallidofulvus, A. pulvericola, A. salwaensis, A. sesamicola, A. subramanianii and A. westlandensis. In addition we correctly apply the name A. fresenii (≡ A. sulphureus (nom. illeg.)). A guide for the identification of these 27 species is provided. These new species can be distinguished from others based on morphological characters, sequence data and extrolite profiles. The previously described A. onikii and A. petrakii were found to be conspecific with A. ochraceus, whilst A. flocculosus is tentatively synonymised with A. ochraceopetaliformis, despite extrolite differences between the two species. Based on the extrolite data, 13 species of section Circumdati produce large amounts of ochratoxin A: A. affinis, A. cretensis, A. fresenii, A. muricatus, A. occultus, A. ochraceopetaliformis (A. flocculosus), A. ochraceus, A. pseudoelegans, A. pulvericola, A. roseoglobulosus, A. sclerotiorum, A. steynii and A. westerdijkiae. Seven additional species produce ochratoxin A inconsistently and/or in trace amounts: A. melleus, A. ostianus, A. persii, A. salwaensis, A. sesamicola, A. subramanianii and A. westlandensis. The most important species regarding potential ochratoxin A contamination in agricultural products are A. ochraceus, A. steynii and A. westerdijkiae.
Collapse
|