1
|
Bartholomäus A, Genderjahn S, Mangelsdorf K, Schneider B, Zamorano P, Kounaves SP, Schulze-Makuch D, Wagner D. Inside the Atacama Desert: uncovering the living microbiome of an extreme environment. Appl Environ Microbiol 2024; 90:e0144324. [PMID: 39540743 DOI: 10.1128/aem.01443-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The Atacama Desert in Chile is one of the driest and most inhospitable places on Earth. To analyze the diversity and distribution of microbial communities in such an environment, one of the most important and challenging steps is DNA extraction. Using commercial environmental DNA extraction protocols, a mixture of living, dormant, and dead cells of microorganisms is extracted, but separation of the different DNA pools is almost impossible. To overcome this problem, we applied a novel method on soils across a west-east moisture transect in the Atacama Desert to distinguish between extracellular DNA (eDNA) and intracellular DNA (iDNA) at the cell extraction level. Here, we show that a large number of living and potentially active microorganisms, such as Acidimicrobiia, Geodermatophilaceae, Frankiales, and Burkholderiaceae, occur in the hyperarid areas. We observed viable microorganisms involved as pioneers in initial soil formation processes, such as carbon and nitrogen fixation, as well as mineral-weathering processes. In response to various environmental stressors, microbes coexist as generalists or specialists in the desert soil environment. Our results show that specialists compete in a limited range of niches, while generalists tolerate a wider range of environmental conditions. Use of the DNA separation approach can provide new insights into different roles within viable microbial communities, especially in low-biomass environments where RNA-based analyses often fail.IMPORTANCEThe novel e- and iDNA separation technique offers insights into the living community at the cell extraction level in the hyperarid Atacama Desert. This approach provides a new framework for analyzing the composition and structure of the potentially active part of the microbial communities as well as their specialization, ecological network and community assembly process. Our findings underscore the significance of utilizing alternative genomic techniques in low-biomass environments where traditional DNA- and RNA-based analyses may not be feasible. The results demonstrate the viability of the proposed study framework and show that specialized microorganisms are important in initial soil formation processes, including microbial-driven mineral weathering, as well as the fixation of carbon and nitrogen.
Collapse
Affiliation(s)
| | - Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, Potsdam, Germany
| | - Beate Schneider
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, University of Antofagasta, Antofagasta, Chile
| | - Samuel P Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
- Department of Earth Science & Engineering, Imperial College London, London, United Kingdom
| | - Dirk Schulze-Makuch
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, Potsdam, Germany
| |
Collapse
|
2
|
Tidimalo C, Maximiliano O, Karen J, Lebre PH, Bernard O, Michelle G, Oagile D, Cowan DA. Microbial diversity in the arid and semi-arid soils of Botswana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70044. [PMID: 39535358 PMCID: PMC11558117 DOI: 10.1111/1758-2229.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
To date, little research has been conducted on the landscape-scale distribution of soil microbial communities and the factors driving their community structures in the drylands of Africa. We investigated the influence of landscape-scale variables on microbial community structure and diversity across different ecological zones in Botswana. We used amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacers (ITS) and a suite of environmental parameters to determine drivers of microbial community structure. Bacterial communities were dominated by Actinomycetota (21.1%), Pseudomonadota (15.9%), and Acidobacteriota (10.9%). The dominant fungal communities were Ascomycota (57.3%) and Basidiomycota (7.5%). Soil pH, mean annual precipitation, total organic carbon, and soil ions (calcium and magnesium) were the major predictors of microbial community diversity and structure. The co-occurrence patterns of bacterial and fungal communities were influenced by soil pH, with network-specific fungi-bacteria interactions observed. Potential keystone taxa were identified for communities in the different networks. Most of these interactions were between microbial families potentially involved in carbon cycling, suggesting functional redundancy in these soils. Our findings highlight the significance of soil pH in determining the landscape-scale structure of microbial communities in Botswana's dryland soils.
Collapse
Affiliation(s)
- Coetzee Tidimalo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Ortiz Maximiliano
- Clemson University Genomics & Bioinformatics FacilityClemson UniversitySouth CarolinaUSA
| | - Jordaan Karen
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Olivier Bernard
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Greve Michelle
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Dikinya Oagile
- Department of Environmental ScienceUniversity of BotswanaGaboroneBotswana
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
3
|
Bandeira L, Faria C, Cavalcante F, Mesquita A, Martins C, Martins S. Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01184-x. [PMID: 38961050 DOI: 10.1007/s12223-024-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil.
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| | | | - Fernando Cavalcante
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Ariel Mesquita
- Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Suzana Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| |
Collapse
|
4
|
Razmilic V, Nouioui I, Karlyshev A, Jawad R, Trujillo ME, Igual JM, Andrews BA, Asenjo JA, Carro L, Goodfellow M. Micromonospora parastrephiae sp. nov. and Micromonospora tarensis sp. nov., isolated from the rhizosphere of a Parastrephia quadrangularis plant growing in the Salar de Tara region of the Central Andes in Chile. Int J Syst Evol Microbiol 2023; 73. [PMID: 38059605 DOI: 10.1099/ijsem.0.006189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Two novel Micromonospora strains, STR1-7T and STR1S-6T, were isolated from the rhizosphere of a Parastrephia quadrangularis plant growing in the Salar de Tara region of the Atacama Desert, Chile. Chemotaxonomic, cultural and phenotypic features confirmed that the isolates belonged to the genus Micromonospora. They grew from 20 to 37 °C, from pH7 to 8 and in the presence of up to 3 %, w/v NaCl. The isolates formed distinct branches in Micromonospora gene trees based on 16S rRNA gene sequences and on a multi-locus sequence analysis of conserved house-keeping genes. A phylogenomic tree generated from the draft genomes of the isolates and their closest phylogenetic neighbours showed that isolate STR1-7T is most closely related to Micromonospora orduensis S2509T, and isolate STR1S-6 T forms a distinct branch that is most closely related to 12 validly named Micromonospora species, including Micromonospora saelicesensis the earliest proposed member of the group. The isolates were separated from one another and from their closest phylogenomic neighbours using a combination of chemotaxonomic, genomic and phenotypic features, and by low average nucleotide index and digital DNA-DNA hybridization values. Consequently, it is proposed that isolates STR1-7T and STR1S-6T be recognized as representing new species in the genus Micromonospora, namely as Micromonospora parastrephiae sp. nov. and Micromonospora tarensis sp. nov.; the type strains are STR1-7T (=CECT 9665T=LMG 30768T) and STR1S-6T (=CECT 9666T=LMG 30770T), respectively. Genome mining showed that the isolates have the capacity to produce novel specialized metabolites, notably antibiotics and compounds that promote plant growth, as well as a broad-range of stress-related genes that provide an insight into how they cope with harsh abiotic conditions that prevail in high-altitude Atacama Desert soils.
Collapse
Affiliation(s)
- Valeria Razmilic
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
| | - Andrey Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames, KT1 2EE, UK
| | - Rana Jawad
- Department of Biomolecular Sciences, School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames, KT1 2EE, UK
| | - Martha E Trujillo
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
| | - Jose M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| | - Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| |
Collapse
|
5
|
Mlewski EC, Saona LA, Boidi FJ, Chiappero MF, Vaieretti MV, Soria M, Farías ME, Izquierdo AE. Exploring Soil Bacterial Diversity in Relation to Edaphic Physicochemical Properties of High-altitude Wetlands from Argentine Puna. MICROBIAL ECOLOGY 2023; 87:6. [PMID: 38030916 DOI: 10.1007/s00248-023-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
High Andean wetlands, particularly those known as vegas or bofedales, are essential conservation ecosystems due to their significant contribution to ecosystem services. The soil microbial communities in these ecosystems play a crucial role in fundamental processes such as decomposition and nutrient cycling, sustaining life in the region. However, at present, these microbial communities are poorly understood. In order to contribute to this knowledge, we aimed to characterize and compare the microbial communities from soils of seven Argentine Puna vegas and to analyze their association with soil physicochemical characteristics. Proteobacteria (Gamma and Alphaproteobacteria) was the dominant phylum across all vegas, followed in abundance by Actinobacteriota, Desulfobacterota, and Chloroflexi. Furthermore, the abundance of specific bacterial families and genera varied significantly between the vegas; some of them can be associated with plant growth-promoting bacteria such as Rhodomicrobium in La Quebradita and Quebrada del Diablo, Bacillus in Antofalla and Las Quinuas. Laguna Negra showed no shared ASVs with abundance in genera such as Sphingomonas and Pseudonocardia. The studied vegas also differed in their soil physicochemical properties; however, associations between the composition of microbial communities with the edaphic parameters measured were not found. These results suggest that other environmental factors (e.g., geographic, climatic, and plant communities' characteristics) could determine soil microbial diversity patterns. Further investigations are needed to be focused on understanding the composition and function of microorganisms in the soil associated with specific vegetation types in these high-altitude wetlands, which will provide valuable insights into the ecological dynamics of these ecosystems for conservation strategies.
Collapse
Affiliation(s)
- Estela Cecilia Mlewski
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Centro de Ecología y Recursos Naturales Renovables (CERNAR), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luis A Saona
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Flavia Jaquelina Boidi
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Rafaela, Rafaela, Argentina
- Instituto de Investigación de la Cadena Láctea (IDICAL, CONICET-INTA), Rafaela, Argentina
| | - M Fernanda Chiappero
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Victoria Vaieretti
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Soria
- PUNABIO S.A. Campus USP-T Av. Solano Vera y Camino a Villa Nougués San Pablo, Tucumán, Argentina
| | - María Eugenia Farías
- PUNABIO S.A. Campus USP-T Av. Solano Vera y Camino a Villa Nougués San Pablo, Tucumán, Argentina
| | - Andrea E Izquierdo
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
- Facultad de Ciencias Naturales y Exactas e Instituto M. Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
6
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Vagelas I, Reizopoulou A, Exadactylos A, Madesis P, Karapetsi L, Michail G. Stalactites Core Prospect as Environmental "Microbial Ark": The Actinomycetota Diversity Paradigm, First Reported from a Greek Cave. Pol J Microbiol 2023; 72:155-168. [PMID: 37314357 DOI: 10.33073/pjm-2023-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 06/15/2023] Open
Abstract
Speleothems found in caves worldwide are considered the natural libraries of paleontology. Bacteria found in these ecosystems are generally limited to Proteobacteria and Actinomycetota, but rare microbiome and "Dark Matter" is generally under-investigated and often neglected. This research article discusses, for the first time to our knowledge, the diachronic diversity of Actinomycetota entrapped inside a cave stalactite. The planet's environmental microbial community profile of different eras can be stored in these refugia (speleothems). These speleothems could be an environmental "Microbial Ark" storing rare microbiome and "Dark Matter" bacterial communities evermore.
Collapse
Affiliation(s)
- Ioannis Vagelas
- 2Laboratory of Plant Pathology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Angeliki Reizopoulou
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Athanasios Exadactylos
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Panagiotis Madesis
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Lefkothea Karapetsi
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
- 4Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), Thessaloniki, Greece
| | - George Michail
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
8
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Anand KP, Suthindhiran K. Microbial signature and biosynthetic gene cluster profiling of poly extremophilic marine actinobacteria isolated from Vhan Island, Tamil Nadu, India. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Escudeiro P, Henry CS, Dias RP. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100159. [PMID: 36561390 PMCID: PMC9764257 DOI: 10.1016/j.crmicr.2022.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eight-hundred thousand to one trillion prokaryotic species may inhabit our planet. Yet, fewer than two-hundred thousand prokaryotic species have been described. This uncharted fraction of microbial diversity, and its undisclosed coding potential, is known as the "microbial dark matter" (MDM). Next-generation sequencing has allowed to collect a massive amount of genome sequence data, leading to unprecedented advances in the field of genomics. Still, harnessing new functional information from the genomes of uncultured prokaryotes is often limited by standard classification methods. These methods often rely on sequence similarity searches against reference genomes from cultured species. This hinders the discovery of unique genetic elements that are missing from the cultivated realm. It also contributes to the accumulation of prokaryotic gene products of unknown function among public sequence data repositories, highlighting the need for new approaches for sequencing data analysis and classification. Increasing evidence indicates that these proteins of unknown function might be a treasure trove of biotechnological potential. Here, we outline the challenges, opportunities, and the potential hidden within the functional dark matter (FDM) of prokaryotes. We also discuss the pitfalls surrounding molecular and computational approaches currently used to probe these uncharted waters, and discuss future opportunities for research and applications.
Collapse
Affiliation(s)
- Pedro Escudeiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Christopher S. Henry
- Argonne National Laboratory, Lemont, Illinois, USA
- University of Chicago, Chicago, Illinois, USA
| | - Ricardo P.M. Dias
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- iXLab - Innovation for National Biological Resilience, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
11
|
Composition and Potential Functions of Rhizobacterial Communities in a Pioneer Plant from Andean Altiplano. DIVERSITY 2021. [DOI: 10.3390/d14010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plant microbiota that associate with pioneer plants are essential to their growth and adaptation to harsh conditions found in the Central Volcanic Zone of the Andes. In this sense, the rhizosphere of pioneer species represents a unique opportunity to examine how bacterial communities are recruited and support the growth of plants under abiotic stress conditions, such low nutrient availability, high solar irradiation, water scarcity, soil salinity, etc. In this study, we explored the community composition and potential functions of rhizobacteria obtained from specimens of Parastrephia quadrangularis (Meyen) Cabrera, commonly called Tola, grown on the slopes of the Guallatiri, Isluga, and Lascar volcanoes in the Atacama Desert of Chile by using 16S rRNA amplicon sequencing. Sequence analysis showed that the Actinobacteria, Proteobacteria, Acidobacteria, and Bacteroidetes were the most abundant phyla of the rhizobacterial communities examined. A similar diversity, richness, and abundance of OTUs were also observed in rhizosphere samples obtained from different plants. However, most of OTUs were not shared, suggesting that each plant recruits a specific rhizobacterial communities independently of volcanoes slope. Analyses of predicted functional activity indicated that the functions were mostly attributed to chemoheterotrophy and aerobic chemoheterotrophy, followed by nitrogen cycling (nitrate reduction and denitrification), and animal parasites or symbionts. In addition, co-occurrence analysis revealed that complex rhizobacterial interactions occur in P. quadrangularis rhizosphere and that members of the Patulibacteraceae comprise a keystone taxon. This study extends our understanding on the composition and functions of the rhizobiome, which is pivotal for the adaptability and colonization of pioneer plant to harsh conditions of the Atacama Desert, widely recognized as the driest place on planet Earth.
Collapse
|
12
|
Villalobos AS, Wiese J, Borchert E, Rahn T, Slaby BM, Steiner LX, Künzel S, Dorador C, Imhoff JF. Micromonospora tarapacensis sp. nov., a bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 2021; 71. [PMID: 34787539 DOI: 10.1099/ijsem.0.005109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain Llam7T was isolated from microbial mat samples from the hypersaline lake Salar de Llamará, located in Taracapá region in the hyper-arid core of the Atacama Desert (Chile). Phenotypic, chemotaxonomic and genomic traits were studied. Phylogenetic analyses based on 16S rRNA gene sequences assigned the strain to the family Micromonosporaceae with affiliation to the genera Micromonospora and Salinispora. Major fatty acids were C17 : 1ω8c, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The cell walls contained meso-diaminopimelic acid and ll-2,6 diaminopimelic acid (ll-DAP), while major whole-cell sugars were glucose, mannose, xylose and ribose. The major menaquinones were MK-9(H4) and MK-9(H6). As polar lipids phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and several unidentified lipids, i.e. two glycolipids, one aminolipid, three phospholipids, one aminoglycolipid and one phosphoglycolipid, were detected. Genome sequencing revealed a genome size of 6.894 Mb and a DNA G+C content of 71.4 mol%. Phylogenetic analyses with complete genome sequences positioned strain Llam7T within the family Micromonosporaceae forming a distinct cluster with Micromonospora (former Xiangella) phaseoli DSM 45730T. This cluster is related to Micromonospora pelagivivens KJ-029T, Micromonospora craterilacus NA12T, and Micromonospora craniellae LHW63014T as well as to all members of the former genera Verrucosispora and Jishengella, which were re-classified as members of the genus Micromonospora, forming a clade distinct from the genus Salinispora. Pairwise whole genome average nucleotide identity (ANI) values, digital DNA-DNA hybridization (dDDH) values, the presence of the diamino acid ll-DAP, and the composition of whole sugars and polar lipids indicate that Llam7T represents a novel species, for which the name Micromonospora tarapacensis sp. nov. is proposed, with Llam7T (=DSM 109510T,=LMG 31023T) as the type strain.
Collapse
Affiliation(s)
- Alvaro S Villalobos
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany.,Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Beate M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Leon X Steiner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos Universidad de Antofagasta, Antofagasta, Chile
| | - Johannes F Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| |
Collapse
|
13
|
Wang Y, Shi J, Tang L, Zhang Y, Zhang Y, Wang X, Zhang X. Evaluation of Rpf protein of Micrococcus luteus for cultivation of soil actinobacteria. Syst Appl Microbiol 2021; 44:126234. [PMID: 34343788 DOI: 10.1016/j.syapm.2021.126234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
Rpf protein, a kind of resuscitation promoting factor, was first found in the culture supernatant of Micrococcus luteus. It can resuscitate the growth of M. luteus in "viable but non-culture, VBNC" state and promote the growth of Gram-positive bacteria with high G + C content. This paper investigates the resuscitating activity of M. luteus ACCC 41016T Rpf protein, which was heterologously expressed in E. coli, to cells of M. luteus ACCC 41016T and Rhodococcus marinonascens HBUM200062 in VBNC state, and examines the effect on the cultivation of actinobacteria in soil. The results showed that the recombinant Rpf protein had resuscitation effect on M. luteus ACCC 41016T and R. marinonascens HBUM200062 in VBNC state. 83 strains of actinobacteria, which were distributed in 9 families and 12 genera, were isolated from the experimental group with recombinant Rpf protein in the culture medium. A total of 41 strains of bacteria, which were distributed in 8 families and 9 genera, were isolated from the control group without Rpf protein. The experimental group showed richer species diversity than the control group. Two rare actinobacteria, namely HBUM206391T and HBUM206404T, were obtained in the experimental group supplemented with Rpf protein. Both may be potential new species of Actinomadura and Actinokineospora, indicating that the recombinant expression of M. luteus ACCC 41016T Rpf protein can effectively promote the isolation and culture of actinobacteria in soil.
Collapse
Affiliation(s)
- Yuhui Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Jiangli Shi
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Lingjie Tang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Yufan Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Yujia Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Xinyu Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Xiumin Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China.
| |
Collapse
|
14
|
Evidence for signatures of ancient microbial life in paleosols. Sci Rep 2020; 10:16830. [PMID: 33033361 PMCID: PMC7545160 DOI: 10.1038/s41598-020-73938-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
Loess-paleosol sequences are terrestrial archives of past climate change. They may host traces of ancient microbial life, but little information is available on the recovery of microbial biomarkers from such deposits. We hypothesized that microbial communities in soil horizons up to an age of 127 kyr carry information related to past environments. We extracted DNA from a loess-paleosol sequence near Toshan, Northern Iran, with 26 m thick deposits showing different degrees of soil development, performed quantitative PCR and 16S rRNA gene amplicon sequencing. Periods of soil formation archived within the loess sediment led to higher diversity and bacterial abundance in the paleosol horizons. Community composition fluctuated over the loess-paleosol sequence and was mainly correlated with age and depth, (ADONIS R2 < 0.14, P ≤ 0.002), while responses to paleosol soil traits were weaker. Phyla like Bacteriodetes, Proteobacteria or Acidobacteria were more prevalent in paleosol horizons characterized by intense soil formation, while weakly developed paleosols or loess horizons hosted a higher percentage and diversity of Actinobacteria. Taken together, our findings indicate that the microbial community in loess-paleosol sequences carries signatures of earlier environmental conditions that are preserved until today.
Collapse
|
15
|
Golińska P, Świecimska M, Montero-Calasanz MDC, Yaramis A, Igual JM, Bull AT, Goodfellow M. Modestobacter altitudinis sp. nov., a novel actinobacterium isolated from Atacama Desert soil. Int J Syst Evol Microbiol 2020; 70:3513-3527. [PMID: 32374252 DOI: 10.1099/ijsem.0.004212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three presumptive Modestobacter strains isolated from a high altitude Atacama Desert soil were the subject of a polyphasic study. The isolates, strains 1G4T, 1G51 and 1G52, were found to have chemotaxonomic and morphological properties that were consistent with their assignment to the genus Modestobacter. They formed a well supported clade in Modestobacter 16S rRNA gene trees and were most closely related to the type strain of 'Modestobacter excelsi' (99.8-99.9% similarity). They were also closely related to the type strains of Modestobacter caceresii (99.6 % similarity), Modestobacter italicus (99.7-99.9% similarity), Modestobacter lacusdianchii (98.4-99.2% similarity), Modestobacter marinus (99.4-99.5% similarity) and Modestobacter roseus (99.3-99.5% similarity), but were distinguished from their closest relatives by a combination of phenotypic features. Average nucleotide identity and digital DNA:DNA hybridization similarities drawn from comparisons of draft genome sequences of isolate 1G4T and its closest phylogenetic neighbours mentioned above, were well below the threshold used to assign closely related strains to the same species. The close relationship between isolate 1G4T and the type strain of M. excelsi was showed in a phylogenomic tree containing representative strains of family Geodermatophilaceae. The draft genome sequence of isolate 1G4T (size 5.18 Kb) was shown to be rich in stress related genes providing further evidence that the abundance of Modestobacter propagules in Atacama Desert habitats reflects their adaptation to the harsh environmental conditions prevalent in this biome. In light of all of these data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter. The name proposed for this taxon is Modestobacter altitudinis sp. nov., with isolate 1G4T (=DSM 107534T=PCM 3003T) as the type strain.
Collapse
Affiliation(s)
- Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | | | - Adnan Yaramis
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jose M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
16
|
Breuer H, Berényi A, Mari L, Nagy B, Szalai Z, Tordai Á, Weidinger T. Analog Site Experiment in the High Andes-Atacama Region: Surface Energy Budget Components on Ojos del Salado from Field Measurements and WRF Simulations. ASTROBIOLOGY 2020; 20:684-700. [PMID: 32048870 DOI: 10.1089/ast.2019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Remote sensing data are abundant, whereas surface in situ verification of atmospheric conditions is rare on Mars. Earth-based analogs could help gain an understanding of soil and atmospheric processes on Mars and refine existing models. In this work, we evaluate the applicability of the Weather Research and Forecasting (WRF) model against measurements from the Mars analog High Andes-Atacama Desert. Validation focuses on the surface conditions and on the surface energy budget. Measurements show that the average daily net radiation, global radiation, and latent heat flux amount to 131, 273, and about 10 W/m2, respectively, indicating extremely dry atmospheric conditions. Dynamically, the effect of topography is also well simulated. One of the main modeling problems is the inaccurate initial soil and surface conditions in the area. Correction of soil moisture based on in situ and satellite soil moisture measurements, as well as the removal of snow coverage, reduced the surface skin temperature root mean square error from 9.8°C to 4.3°C. The model, however, has shortcomings when soil condition modeling is considered. Sensible heat flux estimations are on par with the measurements (daily maxima around 500 W/m2), but surface soil heat flux is greatly overestimated (by 150-500 W/m2). Soil temperature and soil moisture diurnal variations are inconsistent with the measurements, partially due to the lack of water vapor representation in soil calculations.
Collapse
Affiliation(s)
- Hajnalka Breuer
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Berényi
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| | - László Mari
- Department of Physical Geography, Eötvös Loránd University, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Szalai
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Budapest, Hungary
- Geographical Research Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágoston Tordai
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Weidinger
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
17
|
Astorga-Eló M, Zhang Q, Larama G, Stoll A, Sadowsky MJ, Jorquera MA. Composition, Predicted Functions and Co-occurrence Networks of Rhizobacterial Communities Impacting Flowering Desert Events in the Atacama Desert, Chile. Front Microbiol 2020; 11:571. [PMID: 32322245 PMCID: PMC7156552 DOI: 10.3389/fmicb.2020.00571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Flowering desert (FD) events consist of the rapid flowering of a wide variety of native plants in the Atacama Desert of Chile, which is categorized as the driest desert in the world. While ephemeral plants are an integral part of the desert ecosystem, there is little knowledge on plant-microbe interactions that occur during FD events. Consequently, the overall goals of this present study were to investigate changes in the composition and potential functions of rhizobacterial community of Cistanthe longiscapa (Montiaceae) during the 2014 and 2015 FD events and determine the composition, potential functions, and co-occurrence networks of rhizobacterial community associated with the root zone of C. longiscapa during pre- (PF) and full-flowering (FF) phenological stages. Results of this study showed that the Proteobacteria and Actinobacteria were the dominant taxa in rhizosphere soils during the three FD events (2014, 2015, and 2017) examined. In general, greater microbial richness and diversity were observed in rhizosphere soils during the 2015-, compared with the 2014-FD event. Similarly, predicted functional analyses indicated that a larger number of sequences were assigned to information processing (e.g., ion channel, transporters and ribosome) and metabolism (e.g., lipids, nitrogen, and sulfur) during 2015 compared with 2014. Despite the lack of significant differences in diversity among PF and FF stages, the combined analysis of rhizobacterial community data, along with data concerning rhizosphere soil properties, evidenced differences among both phenological stages and suggested that sodium is a relevant abiotic factor shaping the rhizosphere. In general, no significant differences in predicted functions (most of them assigned to chemoheterotrophy, magnesium metabolisms, and fermentation) were observed among PF and FF. Co-occurrence analysis revealed the complex rhizobacterial interactions that occur in C. longiscapa during FD, highlighting to Kouleothrixaceae family as keystone taxa. Taken together this study shows that the composition and function of rhizobacteria vary among and during FD events, where some bacterial groups and their activity may influence the growth and flowering of native plants, and therefore, the ecology and trophic webs in Atacama Desert.
Collapse
Affiliation(s)
- Marcia Astorga-Eló
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Química y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Qian Zhang
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Giovanni Larama
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Química y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States.,Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States.,Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Química y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,The Network for Extreme Environment Research (NEXER), Scientific and Biotechnological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Bull AT, Goodfellow M. Dark, rare and inspirational microbial matter in the extremobiosphere: 16 000 m of bioprospecting campaigns. MICROBIOLOGY-SGM 2020; 165:1252-1264. [PMID: 31184575 DOI: 10.1099/mic.0.000822] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of 'the uncultured microbial majority' has now revealed enormous taxonomic diversity among 'dark' and 'rare' actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify 'gifted' organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.
Collapse
Affiliation(s)
- Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
19
|
Astorga-Eló M, Zhang Q, Larama G, Stoll A, Sadowsky MJ, Jorquera MA. Composition, Predicted Functions and Co-occurrence Networks of Rhizobacterial Communities Impacting Flowering Desert Events in the Atacama Desert, Chile. Front Microbiol 2020. [PMID: 32322245 DOI: 10.3389/fmicb.2020.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Flowering desert (FD) events consist of the rapid flowering of a wide variety of native plants in the Atacama Desert of Chile, which is categorized as the driest desert in the world. While ephemeral plants are an integral part of the desert ecosystem, there is little knowledge on plant-microbe interactions that occur during FD events. Consequently, the overall goals of this present study were to investigate changes in the composition and potential functions of rhizobacterial community of Cistanthe longiscapa (Montiaceae) during the 2014 and 2015 FD events and determine the composition, potential functions, and co-occurrence networks of rhizobacterial community associated with the root zone of C. longiscapa during pre- (PF) and full-flowering (FF) phenological stages. Results of this study showed that the Proteobacteria and Actinobacteria were the dominant taxa in rhizosphere soils during the three FD events (2014, 2015, and 2017) examined. In general, greater microbial richness and diversity were observed in rhizosphere soils during the 2015-, compared with the 2014-FD event. Similarly, predicted functional analyses indicated that a larger number of sequences were assigned to information processing (e.g., ion channel, transporters and ribosome) and metabolism (e.g., lipids, nitrogen, and sulfur) during 2015 compared with 2014. Despite the lack of significant differences in diversity among PF and FF stages, the combined analysis of rhizobacterial community data, along with data concerning rhizosphere soil properties, evidenced differences among both phenological stages and suggested that sodium is a relevant abiotic factor shaping the rhizosphere. In general, no significant differences in predicted functions (most of them assigned to chemoheterotrophy, magnesium metabolisms, and fermentation) were observed among PF and FF. Co-occurrence analysis revealed the complex rhizobacterial interactions that occur in C. longiscapa during FD, highlighting to Kouleothrixaceae family as keystone taxa. Taken together this study shows that the composition and function of rhizobacteria vary among and during FD events, where some bacterial groups and their activity may influence the growth and flowering of native plants, and therefore, the ecology and trophic webs in Atacama Desert.
Collapse
Affiliation(s)
- Marcia Astorga-Eló
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Química y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Qian Zhang
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Giovanni Larama
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Química y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Química y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- The Network for Extreme Environment Research (NEXER), Scientific and Biotechnological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
20
|
Modestobacter excelsi sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Syst Appl Microbiol 2019; 43:126051. [PMID: 31892483 DOI: 10.1016/j.syapm.2019.126051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022]
Abstract
A polyphasic study was undertaken to establish the taxonomic status of three Modestobacter strains isolated from a high altitude Atacama Desert soil. The isolates, strains 1G6T, 1G14 and 1G50, showed chemotaxonomic and morphological properties characteristic of members of the genus Modestobacter. The peptidoglycan contained meso-diaminopimelic acid, the whole cell sugars were glucose and ribose (diagnostic sugars) and arabinose, the predominant menaquinone was MK-9(H4), polar lipid patterns contained diphosphatidylglycerol, glycophosphatidylinositol, phosphatidylethanolamine (diagnostic component), phosphatidylglycerol and phosphatidylinositol while whole cellular fatty acid profiles consisted of complex mixtures of saturated, unsaturated iso- and anteiso-components. The isolates were shown to have different BOX-PCR fingerprint and physiological profiles. They formed a distinct phyletic line in Modestobacter 16S rRNA gene trees, were most closely related to the type strain of Modestobacter italicus (99.9 % similarity) but were distinguished from this and other closely related Modestobacter type strains using a combination of phenotypic properties. Average nucleotide identity and digital DNA:DNA hybridization similarities between the draft genome sequences of isolate 1G6T and M. italicus BC 501T were 90.9 % and 42.3 %, respectively, indicating that they belong to different species. Based on these phenotypic and genotypic data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter, namely as Modestobacter excelsi with isolate 1G6T (=DSM 107535T =PCM 3004T) as the type strain. Analysis of the whole genome sequence of M. excelsi 1G6T (genome size of 5.26 Mb) showed the presence of genes and gene clusters that encode for properties that are in tune with its adaptation to extreme environmental conditions that prevail in the Atacama Desert biome.
Collapse
|
21
|
Carro L, Golinska P, Nouioui I, Bull AT, Igual JM, Andrews BA, Klenk HP, Goodfellow M. Micromonospora acroterricola sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Int J Syst Evol Microbiol 2019; 69:3426-3436. [PMID: 31395106 DOI: 10.1099/ijsem.0.003634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Micromonospora strain, designated 5R2A7T, isolated from a high altitude Atacama Desert soil was examined by using a polyphasic approach. Strain 5R2A7T was found to have morphological, chemotaxonomic and cultural characteristics typical of members of the genus Micromonospora. The cell wall contains meso- and hydroxy-diaminopimelic acid, the major whole-cell sugars are glucose, ribose and xylose, the predominant menaquinones MK-10(H4), MK-10(H6), MK-10(H8) and MK-9(H6), the major polar lipids diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and an unknown glycolipid, and the predominant cellular fatty acids iso-C16 : 0, iso-C15 : 0 and 10-methyl C17 : 0. The digital genomic DNA G+C content is 72.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain 5R2A7T was closely related to Micromonospora coriariae DSM 44875T (99.8 %) and Micromonospora cremea CR30T (99.7 %), and was separated readily from the latter, its closest phylogenetic neighbour, based on gyrB and multilocus sequence data, by low average nucleotide identity (92.59 %) and in silico DNA-DNA relatedness (51.7 %) values calculated from draft genome assemblies and by a range of chemotaxonomic and phenotypic properties. Consequently, strain 5R2A7T is considered to represent a novel species of Micromonospora for which the name Micromonospora acroterricola sp. nov. is proposed. The type strain is 5R2A7T (=LMG 30755T=CECT 9656T).
Collapse
Affiliation(s)
- Lorena Carro
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.,Departamento de Microbiología y Genética, Edificio Departamental, Lab. 214, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Patrycja Golinska
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Jose Mariano Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Barbara A Andrews
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB) University of Chile, Santiago, Chile
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
22
|
New genus-specific primers for PCR identification of Rubrobacter strains. Antonie Van Leeuwenhoek 2019; 112:1863-1874. [PMID: 31407134 PMCID: PMC6834744 DOI: 10.1007/s10482-019-01314-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/01/2019] [Indexed: 12/02/2022]
Abstract
A set of oligonucleotide primers, Rubro223f and Rubro454r, were found to amplify a 267 nucleotide sequence of 16S rRNA genes of Rubrobacter type strains. The primers distinguished members of this genus from other deeply-rooted actinobacterial lineages corresponding to the genera Conexibacter, Gaiella, Parviterribacter, Patulibacter, Solirubrobacter and Thermoleophilum of the class Thermoleophilia. Amplification of DNA bands of about 267 nucleotides were generated from environmental DNA extracted from soil samples taken from two locations in the Atacama Desert. Sequencing of a DNA library prepared from the bands showed that all of the clones fell within the evolutionary radiation occupied by the genus Rubrobacter. Most of the clones were assigned to two lineages that were well separated from phyletic lines composed of Rubrobacter type strains. It can be concluded that primers Rubro223f and Rubro454r are specific for the genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes.
Collapse
|
23
|
Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2019; 128:630-657. [PMID: 31310419 DOI: 10.1111/jam.14386] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
The prevalence of multidrug-resistant microbial pathogens due to the continued misuse and overuse of antibiotics in agriculture and medicine is raising the prospect of a return to the preantibiotic days of medicine at the time of diminishing numbers of drug leads. The good news is that an increased understanding of the nature and extent of microbial diversity in natural habitats coupled with the application of new technologies in microbiology and chemistry is opening up new strategies in the search for new specialized products with therapeutic properties. This review explores the premise that harsh environmental conditions in extreme biomes, notably in deserts, permafrost soils and deep-sea sediments select for micro-organisms, especially actinobacteria, cyanobacteria and fungi, with the potential to synthesize new druggable molecules. There is evidence over the past decade that micro-organisms adapted to life in extreme habitats are a rich source of new specialized metabolites. Extreme habitats by their very nature tend to be fragile hence there is a need to conserve those known to be hot-spots of novel gifted micro-organisms needed to drive drug discovery campaigns and innovative biotechnology. This review also provides an overview of microbial-derived molecules and their biological activities focusing on the period from 2010 until 2018, over this time 186 novel structures were isolated from 129 representatives of microbial taxa recovered from extreme habitats.
Collapse
Affiliation(s)
- A M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - M H A Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - H A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - H M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
24
|
Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads? Int J Microbiol 2019; 2019:5283948. [PMID: 31354829 PMCID: PMC6636559 DOI: 10.1155/2019/5283948] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 01/20/2023] Open
Abstract
Antimicrobial resistance (AR) is recognized as one of the greatest threats to public health and in global concern. Consequently, the increased morbidity and mortality, which are associated with multidrug resistance bacteria, urgently require the discovery of novel and more efficient drugs. Conversely, cancer is a growing complex human disease that demands new drugs with no or fewer side effects. Most of the drugs currently used in the health care systems were of Streptomyces origin or their synthetic forms. Natural product researches from Streptomyces have been genuinely spectacular over the recent years from extreme environments. It is because of technical advances in isolation, fermentation, spectroscopy, and genomic studies which led to the efficient recovering of Streptomyces and their new chemical compounds with distinct activities. Expanding the use of the last line of antibiotics and demand for new drugs will continue to play an essential role for the potent Streptomyces from previously unexplored environmental sources. In this context, deep-sea, desert, cryo, and volcanic environments have proven to be a unique habitat of more extreme, and of their adaptation to extreme living, environments attribute to novel antibiotics. Extreme Streptomyces have been an excellent source of a new class of compounds which include alkaloids, angucycline, macrolide, and peptides. This review covers novel drug leads with antibacterial and cytotoxic activities isolated from deep-sea, desert, cryo, and volcanic environment Streptomyces from 2009 to 2019. The structure and chemical classes of the compounds, their relevant bioactivities, and the sources of organisms are presented.
Collapse
|
25
|
Tanner K, Martorell P, Genovés S, Ramón D, Zacarías L, Rodrigo MJ, Peretó J, Porcar M. Bioprospecting the Solar Panel Microbiome: High-Throughput Screening for Antioxidant Bacteria in a Caenorhabditis elegans Model. Front Microbiol 2019; 10:986. [PMID: 31134025 PMCID: PMC6514134 DOI: 10.3389/fmicb.2019.00986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Microbial communities that are exposed to sunlight typically share a series of adaptations to deal with the radiation they are exposed to, including efficient DNA repair systems, pigment production and protection against oxidative stress, which makes these environments good candidates for the search of novel antioxidant microorganisms. In this research project, we isolated potential antioxidant pigmented bacteria from a dry and highly-irradiated extreme environment: solar panels. High-throughput in vivo assays using Caenorhabditis elegans as an experimental model demonstrated the high antioxidant and ultraviolet-protection properties of these bacterial isolates that proved to be rich in carotenoids. Our results suggest that solar panels harbor a microbial community that includes strains with potential applications as antioxidants.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Juli Peretó
- Darwin Bioprospecting Excellence S.L., Paterna, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Spain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| |
Collapse
|
26
|
Mehetre GT, J S V, Burkul BB, Desai D, B S, Dharne MS, Dastager SG. Bioactivities and molecular networking-based elucidation of metabolites of potent actinobacterial strains isolated from the Unkeshwar geothermal springs in India. RSC Adv 2019; 9:9850-9859. [PMID: 35520740 PMCID: PMC9062624 DOI: 10.1039/c8ra09449g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/15/2019] [Indexed: 02/03/2023] Open
Abstract
The bioactive potential of Actinobacteria endemic to hot springs has rarely been investigated. This study highlights the cultivable diversity and bioactivities of Actinobacteria associated with the Unkeshwar hot springs, India. Potent strains were evaluated for their biosynthetic potentials and metabolite analysis was performed using effective dereplication molecular networking tools. A total of 86 actinobacterial strains were isolated and grouped into 21 distinct genera, based on 16S rRNA gene sequence analysis. These strains included rare members such as Micromonospora, Marmoricola, Actinomadura, Cellulomonas, Cellulosimicrobium, Janibacter, Rothia, Barrentisimonas, Dietzia and Glycomyces. In antimicrobial screening, Micromonospora sp. strain GH99 and Streptomyces sp. strain GH176 were found to be potent antimicrobial strains. The metabolic extracts of these strains exhibited strong antimicrobial activity against Staphylococcus epidermidis (NCIM 2493), Shigella flexneri (NCIM 5265), Klebsiella pneumonia (NCIM 2098), and Salmonella abony (NCIM 2257). The extracts also displayed strong anti-biofilm and anticancer activities against Pseudomonas aeruginosa (NCIM 5029), Acinetobacter junii (NCIM 5188) and breast cancer cell line MCF7, respectively. Both strains also tested positive for the presence of the PKS biosynthetic gene cluster in their genomes. To effectively delineate the secondary metabolites, the extracts were subjected to MS/MS-guided molecular networking analysis. Structurally diverse compounds including the polyketides 22-dehydroxymethyl-kijanolide (GH99 strain) and Abyssomicin I (GH176 strain) were detected in the extracts. Interestingly, Brevianamide F was detected in the extract of Micromonospora, which has previously been mostly found in fungal species. Other compounds such as cyclic tripeptides, Cyclo(l-Pro-d-Ile) and Cyclo(d-Pro-l-Phe), were also identified in this strain. In summary, for the first time, we explored the diversity of Actinobacteria and evaluated their bioactive potential from the Unkeshwar hot springs. The potent strains isolated in the study could be useful in drug discovery programs. The bioactive potential of Actinobacteria endemic to hot springs has rarely been investigated.![]()
Collapse
Affiliation(s)
- Gajanan T Mehetre
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Vinodh J S
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Bhushan B Burkul
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Pune India
| | - D Desai
- National Center for Nanoscience and Nanotechnology, University of Mumbai India
| | - Santhakumari B
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Pune India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Syed G Dastager
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
27
|
Carro L, Castro JF, Razmilic V, Nouioui I, Pan C, Igual JM, Jaspars M, Goodfellow M, Bull AT, Asenjo JA, Klenk HP. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama Desert soil. Sci Rep 2019; 9:4678. [PMID: 30886188 PMCID: PMC6423291 DOI: 10.1038/s41598-019-38789-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
The taxonomic status, biotechnological and ecological potential of several Micromonospora strains isolated from an extreme hyper arid Atacama Desert soil were determined. Initially, a polyphasic study was undertaken to clarify the taxonomic status of five micromonosporae, strains LB4, LB19, LB32T, LB39T and LB41, isolated from an extreme hyper-arid soil collected from one of the driest regions of the Atacama Desert. All of the isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Micromonospora. Isolates LB32T and LB39T were distinguished from their nearest phylogenetic neighbours and proposed as new species, namely as Micromonospora arida sp. nov. and Micromonospora inaquosa sp. nov., respectively. Eluted methanol extracts of all of the isolates showed activity against a panel of bacterial and fungal indicator strains, notably against multi-drug resistant Klebsiella pneumoniae ATCC 700603 while isolates LB4 and LB41 showed pronounced anti-tumour activity against HepG2 cells. Draft genomes generated for the isolates revealed a rich source of novel biosynthetic gene clusters, some of which were unique to individual strains thereby opening up the prospect of selecting especially gifted micromonosporae for natural product discovery. Key stress-related genes detected in the genomes of all of the isolates provided an insight into how micromonosporae adapt to the harsh environmental conditions that prevail in extreme hyper-arid Atacama Desert soils.
Collapse
Affiliation(s)
- Lorena Carro
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain.
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK.
| | - Jean Franco Castro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Valeria Razmilic
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - Che Pan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
- Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca, Unidad Asociada al CSIC, Spain
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - Alan T Bull
- School of Biosciences, University of Kent Canterbury, Canterbury, UK
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| |
Collapse
|
28
|
Cockell CS, Harrison JP, Stevens AH, Payler SJ, Hughes SS, Kobs Nawotniak SE, Brady AL, Elphic R, Haberle CW, Sehlke A, Beaton KH, Abercromby AF, Schwendner P, Wadsworth J, Landenmark H, Cane R, Dickinson AW, Nicholson N, Perera L, Lim DS. A Low-Diversity Microbiota Inhabits Extreme Terrestrial Basaltic Terrains and Their Fumaroles: Implications for the Exploration of Mars. ASTROBIOLOGY 2019; 19:284-299. [PMID: 30840501 PMCID: PMC6442273 DOI: 10.1089/ast.2018.1870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A major objective in the exploration of Mars is to test the hypothesis that the planet hosted life. Even in the absence of life, the mapping of habitable and uninhabitable environments is an essential task in developing a complete understanding of the geological and aqueous history of Mars and, as a consequence, understanding what factors caused Earth to take a different trajectory of biological potential. We carried out the aseptic collection of samples and comparison of the bacterial and archaeal communities associated with basaltic fumaroles and rocks of varying weathering states in Hawai'i to test four hypotheses concerning the diversity of life in these environments. Using high-throughput sequencing, we found that all these materials are inhabited by a low-diversity biota. Multivariate analyses of bacterial community data showed a clear separation between sites that have active fumaroles and other sites that comprised relict fumaroles, unaltered, and syn-emplacement basalts. Contrary to our hypothesis that high water flow environments, such as fumaroles with active mineral leaching, would be sites of high biological diversity, alpha diversity was lower in active fumaroles compared to relict or nonfumarolic sites, potentially due to high-temperature constraints on microbial diversity in fumarolic sites. A comparison of these data with communities inhabiting unaltered and weathered basaltic rocks in Idaho suggests that bacterial taxon composition of basaltic materials varies between sites, although the archaeal communities were similar in Hawai'i and Idaho. The taxa present in both sites suggest that most of them obtain organic carbon compounds from the atmosphere and from phototrophs and that some of them, including archaeal taxa, cycle fixed nitrogen. The low diversity shows that, on Earth, extreme basaltic terrains are environments on the edge of sustaining life with implications for the biological potential of similar environments on Mars and their exploration by robots and humans.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Address correspondence to: Charles S. Cockell, School of Physics and Astronomy, University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, UK
| | - Jesse P. Harrison
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Samuel J. Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Scott S. Hughes
- Department of Geosciences, Idaho State University, Pocatello, Idaho, USA
| | | | - Allyson L. Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Canada
| | - R.C. Elphic
- NASA Ames Research Center, Mountain View, California, USA
| | | | | | | | - Andrew F.J. Abercromby
- Biomedical Research & Environmental Sciences Division (SK), NASA Johnson Space Center, Houston, Texas, USA
| | - Petra Schwendner
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jennifer Wadsworth
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Hanna Landenmark
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Rosie Cane
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Andrew W. Dickinson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Liam Perera
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Darlene S.S. Lim
- NASA Ames Research Center, Mountain View, California, USA
- Bay Area Environmental Research Institute (BAERI), Moffett Field, California, USA
| |
Collapse
|
29
|
Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. ACTA ACUST UNITED AC 2019; 46:281-299. [DOI: 10.1007/s10295-018-2115-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Natural product discovery from microorganisms provided important sources for antibiotics, anti-cancer agents, immune-modulators, anthelminthic agents, and insecticides during a span of 50 years starting in the 1940s, then became less productive because of rediscovery issues, low throughput, and lack of relevant new technologies to unveil less abundant or not easily detected drug-like natural products. In the early 2000s, it was observed from genome sequencing that Streptomyces species encode about ten times as many secondary metabolites as predicted from known secondary metabolomes. This gave rise to a new discovery approach—microbial genome mining. As the cost of genome sequencing dropped, the numbers of sequenced bacteria, fungi and archaea expanded dramatically, and bioinformatic methods were developed to rapidly scan whole genomes for the numbers, types, and novelty of secondary metabolite biosynthetic gene clusters. This methodology enabled the identification of microbial taxa gifted for the biosynthesis of drug-like secondary metabolites. As genome sequencing technology progressed, the realities relevant to drug discovery have emerged, the conjectures and misconceptions have been clarified, and opportunities to reinvigorate microbial drug discovery have crystallized. This perspective addresses these critical issues for drug discovery.
Collapse
|
30
|
Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 2018; 111:1315-1332. [PMID: 29721711 DOI: 10.1007/s10482-018-1088-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
An "in house" taxonomic approach to drug discovery led to the isolation of diverse actinobacteria from hyper-arid, extreme hyper-arid and very high altitude Atacama Desert soils. A high proportion of the isolates were assigned to novel taxa, with many showing activity in standard antimicrobial plug assays. The application of more advanced taxonomic and screening strategies showed that strains classified as novel species of Lentzea and Streptomyces synthesised new specialised metabolites thereby underpinning the premise that the extreme abiotic conditions in the Atacama Desert favour the development of a unique actinobacterial diversity which is the basis of novel chemistry. Complementary metagenomic analyses showed that the soils encompassed an astonishing degree of actinobacterial 'dark matter', while rank-abundance analyses showed them to be highly diverse habitats mainly composed of rare taxa that have not been recovered using culture-dependent methods. The implications of these pioneering studies on future bioprospecting campaigns are discussed.
Collapse
|
31
|
Carro L, Razmilic V, Nouioui I, Richardson L, Pan C, Golinska P, Asenjo JA, Bull AT, Klenk HP, Goodfellow M. Hunting for cultivable Micromonospora strains in soils of the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1375-1387. [PMID: 29480426 DOI: 10.1007/s10482-018-1049-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/16/2018] [Indexed: 02/01/2023]
Abstract
Innovative procedures were used to selectively isolate small numbers of Micromonospora strains from extreme hyper-arid and high altitude Atacama Desert soils. Micromonosporae were recognised on isolation plates by their ability to produce filamentous microcolonies that were strongly attached to the agar. Most of the isolates formed characteristic orange colonies that lacked aerial hyphae and turned black on spore formation, whereas those from the high altitude soil were dry, blue-green and covered by white aerial hyphae. The isolates were assigned to seven multi- and eleven single-membered groups based on BOX-PCR profiles. Representatives of the groups were assigned to either multi-membered clades that also contained marker strains or formed distinct phyletic lines in the Micromonospora 16S rRNA gene tree; many of the isolates were considered to be putatively novel species of Micromonospora. Most of the isolates from the high altitude soils showed activity against wild type strains of Bacillus subtilis and Pseudomonas fluorescens while those from the rhizosphere of Parastrephia quadrangulares and from the Lomas Bayas hyper-arid soil showed resistance to UV radiation.
Collapse
Affiliation(s)
- Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Valeria Razmilic
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Beauchef 850, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lee Richardson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Che Pan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | - Juan A Asenjo
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Beauchef 850, Santiago, Chile
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
Idris H, Nouioui I, Pathom-Aree W, Castro JF, Bull AT, Andrews BA, Asenjo JA, Goodfellow M. Amycolatopsis vastitatis sp. nov., an isolate from a high altitude subsurface soil on Cerro Chajnantor, northern Chile. Antonie van Leeuwenhoek 2018; 111:1523-1533. [PMID: 29428970 DOI: 10.1007/s10482-018-1039-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
The taxonomic position of a novel Amycolatopsis strain isolated from a high altitude Atacama Desert subsurface soil was established using a polyphasic approach. The strain, isolate H5T, was shown to have chemical properties typical of members of the genus Amycolatopsis such as meso-diaminopimelic acid as the diamino acid in the cell wall peptidoglycan, arabinose and galactose as diagnostic sugars and MK-9(H4) as the predominant isoprenologue. It also has cultural and morphological properties consistent with its classification in the genus, notably the formation of branching substrate hyphae which fragment into rod-like elements. 16S rRNA gene sequence analyses showed that the strain is closely related to the type strain of Amycolatopsis mediterranei but could be distinguished from this and other related Amycolatopsis strains using a broad range of phenotypic properties. It was separated readily from the type strain of Amycolatopsis balhymycina, its near phylogenetic neighbour, based on multi-locus sequence data, by low average nucleotide identity (92.9%) and in silico DNA/DNA relatedness values (51.3%) calculated from draft genome assemblies. Consequently, the strain is considered to represent a novel species of Amycolatopsis for which the name Amycolatopsis vastitatis sp. nov. is proposed. The type strain is H5T (= NCIMB 14970T = NRRL B-65279T).
Collapse
Affiliation(s)
- Hamidah Idris
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.,Biology Department, Sultan Idris Education University, 35900, Tanjung Malim, Perak, Malaysia
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Wasu Pathom-Aree
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jean Franco Castro
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.,Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beaucheff 851, Santiago, Chile
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Barbara A Andrews
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beaucheff 851, Santiago, Chile
| | - Juan A Asenjo
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beaucheff 851, Santiago, Chile
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
33
|
The 'gifted' actinomycete Streptomyces leeuwenhoekii. Antonie van Leeuwenhoek 2018; 111:1433-1448. [PMID: 29397490 DOI: 10.1007/s10482-018-1034-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/28/2018] [Indexed: 10/18/2022]
Abstract
Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.
Collapse
|