1
|
Bourgade B, Islam MA. Progresses and challenges of engineering thermophilic acetogenic cell factories. Front Microbiol 2024; 15:1476253. [PMID: 39282569 PMCID: PMC11392765 DOI: 10.3389/fmicb.2024.1476253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Thermophilic acetogens are gaining recognition as potent microbial cell factories, leveraging their unique metabolic capabilities to drive the development of sustainable biotechnological processes. These microorganisms, thriving at elevated temperatures, exhibit robust carbon fixation abilities via the linear Wood-Ljungdahl pathway to efficiently convert C1 substrates, including syngas (CO, CO2 and H2) from industrial waste gasses, into acetate and biomass via the central metabolite acetyl-CoA. This review summarizes recent advancements in metabolic engineering and synthetic biology efforts that have expanded the range of products derived from thermophilic acetogens after briefly discussing their autotrophic metabolic diversity. These discussions highlight their potential in the sustainable bioproduction of industrially relevant compounds. We further review the remaining challenges for implementing efficient and complex strain engineering strategies in thermophilic acetogens, significantly limiting their use in an industrial context.
Collapse
Affiliation(s)
- Barbara Bourgade
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
2
|
Böer T, Engelhardt L, Lüschen A, Eysell L, Yoshida H, Schneider D, Angenent LT, Basen M, Daniel R, Poehlein A. Isolation and characterization of novel acetogenic Moorella strains for employment as potential thermophilic biocatalysts. FEMS Microbiol Ecol 2024; 100:fiae109. [PMID: 39118367 PMCID: PMC11328732 DOI: 10.1093/femsec/fiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.
Collapse
Affiliation(s)
- Tim Böer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Lisa Engelhardt
- Microbiology, Institute of Biological Sciences, University Rostock, 18059 Rostock, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Lena Eysell
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Hiroki Yoshida
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University Rostock, 18059 Rostock, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Baum C, Zeldes B, Poehlein A, Daniel R, Müller V, Basen M. The energy-converting hydrogenase Ech2 is important for the growth of the thermophilic acetogen Thermoanaerobacter kivui on ferredoxin-dependent substrates. Microbiol Spectr 2024; 12:e0338023. [PMID: 38385688 PMCID: PMC10986591 DOI: 10.1128/spectrum.03380-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Thermoanaerobacter kivui is the thermophilic acetogenic bacterium with the highest temperature optimum (66°C) and with high growth rates on hydrogen (H2) plus carbon dioxide (CO2). The bioenergetic model suggests that its redox and energy metabolism depends on energy-converting hydrogenases (Ech). Its genome encodes two Echs, Ech1 and Ech2, as sole coupling sites for energy conservation during growth on H2 + CO2. During growth on other substrates, its redox activity, the (proton-gradient-coupled) oxidation of H2 may be essential to provide reduced ferredoxin (Fd) to the cell. While Ech activity has been demonstrated biochemically, the physiological function of both Ech's is unclear. Toward that, we deleted the complete gene cluster encoding Ech2. Surprisingly, the ech2 mutant grew as fast as the wild type on sugar substrates and H2 + CO2. Hence, Ech1 may be the essential enzyme for energy conservation, and either Ech1 or another enzyme may substitute for H2-dependent Fd reduction during growth on sugar substrates, putatively the H2-dependent CO2 reductase (HDCR). Growth on pyruvate and CO, substrates that are oxidized by Fd-dependent enzymes, was significantly impaired, but to a different extent. While ∆ech2 grew well on pyruvate after four transfers, ∆ech2 did not adapt to CO. Cell suspensions of ∆ech2 converted pyruvate to acetate, but no acetate was produced from CO. We analyzed the genome of five T. kivui strains adapted to CO. Strikingly, all strains carried mutations in the hycB3 subunit of HDCR. These mutations are obviously essential for the growth on CO but may inhibit its ability to utilize Fd as substrate. IMPORTANCE Acetogens thrive by converting H2+CO2 to acetate. Under environmental conditions, this allows for only very little energy to be conserved (∆G'<-20 kJ mol-1). CO2 serves as a terminal electron acceptor in the ancient Wood-Ljungdahl pathway (WLP). Since the WLP is ATP neutral, energy conservation during growth on H2 + CO2 is dependent on the redox metabolism. Two types of acetogens can be distinguished, Rnf- and Ech-type. The function of both membrane-bound enzyme complexes is twofold-energy conversion and redox balancing. Ech couples the Fd-dependent reduction of protons to H2 to the formation of a proton gradient in the thermophilic bacterium Thermoanaerobacter kivui. This bacterium may be utilized in gas fermentation at high temperatures, due to very high conversion rates and the availability of genetic tools. The physiological function of an Ech hydrogenase in T. kivui was studied to contribute an understanding of its energy and redox metabolism, a prerequisite for future industrial applications.
Collapse
Affiliation(s)
- Christoph Baum
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Benjamin Zeldes
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Mirko Basen
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Katsyv A, Essig M, Bedendi G, Sahin S, Milton RD, Müller V. Characterization of ferredoxins from the thermophilic, acetogenic bacterium Thermoanaerobacter kivui. FEBS J 2023; 290:4107-4125. [PMID: 37074156 DOI: 10.1111/febs.16801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
A major electron carrier involved in energy and carbon metabolism in the acetogenic model organism Thermoanaerobacter kivui is ferredoxin, an iron-sulfur-containing, electron-transferring protein. Here, we show that the genome of T. kivui encodes four putative ferredoxin-like proteins (TKV_c09620, TKV_c16450, TKV_c10420 and TKV_c19530). All four genes were cloned, a His-tag encoding sequence was added and the proteins were produced from a plasmid in T. kivui. The purified proteins had an absorption peak at 430 nm typical for ferredoxins. The determined iron-sulfur content is consistent with the presence of two predicted [4Fe4S] clusters in TKV_c09620 and TKV_c19530 or one predicted [4Fe4S] cluster in TKV_c16450 and TKV_c10420 respectively. The reduction potential (Em ) for TKV_c09620, TKV_c16450, TKV_c10420 and TKV_c19530 was determined to be -386 ± 4 mV, -386 ± 2 mV, -559 ± 10 mV and -557 ± 3 mV, respectively. TKV_c09620 and TKV_c16450 served as electron carriers for different oxidoreductases from T. kivui. Deletion of the ferredoxin genes led to only a slight reduction of growth on pyruvate or autotrophically on H2 + CO2 . Transcriptional analysis revealed that TKV_c09620 was upregulated in a ΔTKV_c16450 mutant and vice versa TKV_c16450 in a ΔTKV_c09620 mutant, indicating that TKV_c09620 and TKV_c16450 can replace each other. In sum, our data are consistent with the hypothesis that TKV_c09620 and TKV_c16450 are ferredoxins involved in autotrophic and heterotrophic metabolism of T. kivui.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Melanie Essig
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Giada Bedendi
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Selmihan Sahin
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Hocq R, Bottone S, Gautier A, Pflügl S. A fluorescent reporter system for anaerobic thermophiles. Front Bioeng Biotechnol 2023; 11:1226889. [PMID: 37476481 PMCID: PMC10355840 DOI: 10.3389/fbioe.2023.1226889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Owing to their inherent capacity to make invisible biological processes visible and quantifiable, fluorescent reporter systems have numerous applications in biotechnology. For classical fluorescent protein systems (i.e., GFP and derivatives), chromophore maturation is O2-dependent, restricting their applications to aerobic organisms. In this work, we pioneered the use of the oxygen-independent system FAST (Fluorescence Activating and absorption Shifting tag) in the thermophilic anaerobe Thermoanaerobacter kivui. We developed a modular cloning system that was used to easily clone a library of FAST expression cassettes in an E. coli-Thermoanaerobacter shuttle plasmid. FAST-mediated fluorescence was then assessed in vivo in T. kivui, and we observed bright green and red fluorescence for cells grown at 55°C. Next, we took advantage of this functional reporter system to characterize a set of homologous and heterologous promoters by quantifying gene expression, expanding the T. kivui genetic toolbox. Low fluorescence at 66°C (Topt for T. kivui) was subsequently investigated at the single-cell level using flow cytometry and attributed to plasmid instability at higher temperatures. Adaptive laboratory evolution circumvented this issue and drastically enhanced fluorescence at 66°C. Whole plasmid sequencing revealed the evolved strain carried functional plasmids truncated at the Gram-positive origin of replication, that could however not be linked to the increased fluorescence displayed by the evolved strain. Collectively, our work demonstrates the applicability of the FAST fluorescent reporter systems to T. kivui, paving the way for further applications in thermophilic anaerobes.
Collapse
Affiliation(s)
- Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Sara Bottone
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Arnaud Gautier
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
6
|
Imaura Y, Okamoto S, Hino T, Ogami Y, Katayama YA, Tanimura A, Inoue M, Kamikawa R, Yoshida T, Sako Y. Isolation, Genomic Sequence and Physiological Characterization of Parageobacillus sp. G301, an Isolate Capable of Both Hydrogenogenic and Aerobic Carbon Monoxide Oxidation. Appl Environ Microbiol 2023; 89:e0018523. [PMID: 37219438 PMCID: PMC10304674 DOI: 10.1128/aem.00185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023] Open
Abstract
Prokaryotes that can oxidize carbon monoxide (CO oxidizers) can use this gas as a source of carbon or energy. They oxidize carbon monoxide with carbon monoxide dehydrogenases (CODHs): these are divided into nickel-containing CODH (Ni-CODH), which are sensitive to O2, and molybdenum-containing CODH (Mo-CODH), which can function aerobically. The oxygen conditions required for CO oxidizers to oxidize CO may be limited, as those which have been isolated and characterized so far contain either Ni- or Mo-CODH. Here, we report a novel CO oxidizer, Parageobacillus sp. G301, which is capable of CO oxidation using both types of CODH based on genomic and physiological characterization. This thermophilic, facultatively anaerobic Bacillota bacterium was isolated from the sediments of a freshwater lake. Genomic analyses revealed that strain G301 possessed both Ni-CODH and Mo-CODH. Genome-based reconstruction of its respiratory machinery and physiological investigations indicated that CO oxidation by Ni-CODH was coupled with H2 production (proton reduction), whereas CO oxidation by Mo-CODH was coupled with O2 reduction under aerobic conditions and nitrate reduction under anaerobic conditions. G301 would thus be able to thrive via CO oxidation under a wide range of conditions, from aerobic environments to anaerobic environments, even with no terminal electron acceptors other than protons. Comparative genome analyses revealed no significant differences in genome structures and encoded cellular functions, except for CO oxidation between CO oxidizers and non-CO oxidizers in the genus Parageobacillus; CO oxidation genes are retained exclusively for CO metabolism and related respiration. IMPORTANCE Microbial CO oxidation has received much attention because it contributes to global carbon cycling in addition to functioning as a remover of CO, which is toxic to many organisms. Some microbial CO oxidizers, including both bacteria and archaea, exhibit sister relationships with non-CO oxidizers even in genus-level monophyletic groups. In this study, we demonstrated that a new isolate, Parageobacillus sp. G301, is capable of both anaerobic (hydrogenogenic) and aerobic CO oxidation, which has not been previously reported. The discovery of this new isolate, which is versatile in CO metabolism, will accelerate research on CO oxidizers with diverse CO metabolisms, expanding our understanding of microbial diversity. Through comparative genomic analyses, we propose that CO oxidation genes are not essential genetic elements in the genus Parageobacillus, providing insights into the factors which shape the punctate distribution of CO oxidizers in the prokaryote tree, even in genus-level monophyletic groups.
Collapse
Affiliation(s)
| | | | - Taiki Hino
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yusuke Ogami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Ayumi Tanimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- R-GIRO, Ritsumeikan University, Kusatsu, Shiga, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Frolov EN, Elcheninov AG, Gololobova AV, Toshchakov SV, Novikov AA, Lebedinsky AV, Kublanov IV. Obligate autotrophy at the thermodynamic limit of life in a new acetogenic bacterium. Front Microbiol 2023; 14:1185739. [PMID: 37250036 PMCID: PMC10213532 DOI: 10.3389/fmicb.2023.1185739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
One of the important current issues of bioenergetics is the establishment of the thermodynamic limits of life. There is still no final understanding of what is the minimum value of the energy yield of a reaction that is sufficient to be used by an organism (the so-called "biological quantum of energy"). A reasonable model for determination of the minimal energy yield would be microorganisms capable of living on low-energy substrates, such as acetogenic prokaryotes. The most prominent metabolic feature of acetogens is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates, which is hardly competitive in environments. Most probably, that is why only facultative autotrophic acetogens have been known so far. Here, we describe the first obligately autotrophic acetogenic bacterium Aceticella autotrophica gen. nov., sp. nov., strain 3443-3AcT. Phylogenetically, the new genus falls into a monophyletic group of heterotrophic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, and Caldanaerobacter (hereinafter referred to as TTC group), where the sole acetogenic representative has so far been the facultatively autotrophic Thermoanaerobacter kivui. A. autotrophica and T. kivui both are acetogens employing energy-converting hydrogenase (Ech-acetogens) that are likely to have inherited the acetogenesis capacity vertically from common ancestor. However, their acetogenic machineries have undergone different adjustments by gene replacements due to horizontal gene transfers from different donors. Obligate autotrophy of A. autotrophica is associated with the lack of many sugar transport systems and carbohydrate catabolism enzymes that are present in other TTC group representatives, including T. kivui.
Collapse
Affiliation(s)
- Evgenii N. Frolov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Elcheninov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra V. Gololobova
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V. Toshchakov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Andrei A. Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Alexander V. Lebedinsky
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kublanov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Zeldes B, Poehlein A, Jain S, Baum C, Daniel R, Müller V, Basen M. DNA uptake from a laboratory environment drives unexpected adaptation of a thermophile to a minor medium component. ISME COMMUNICATIONS 2023; 3:2. [PMID: 37938748 PMCID: PMC9834392 DOI: 10.1038/s43705-022-00211-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
DNA uptake is widespread among microorganisms and considered a strategy for rapid adaptation to new conditions. While both DNA uptake and adaptation are referred to in the context of natural environments, they are often studied in laboratories under defined conditions. For example, a strain of the thermophile Thermoanaerobacter kivui had been adapted to growth on high concentrations of carbon monoxide (CO). Unusual phenotypes of the CO-adapted strain prompted us to examine it more closely, revealing a horizontal gene transfer (HGT) event from another thermophile, Thermoanaerobacter sp. strain X514, being cultured in the same laboratory. The transferred genes conferred on T. kivui the ability to utilize trehalose, a trace component of the yeast-extract added to the media during CO-adaptation. This same HGT event simultaneously deleted a native operon for thiamine biosynthesis, which likely explains why the CO-adapted strain grows poorly without added vitamins. Attempts to replicate this HGT by providing T. kivui with genomic DNA from Thermoanaerobacter sp. strain X514 revealed that it is easily reproducible in the lab. This subtle form of "genome contamination" is difficult to detect, since the genome remains predominantly T. kivui, and no living cells from the original contamination remain. Unexpected HGT between two microorganisms as well as simultaneous adaptation to several conditions may occur often and unrecognized in laboratory environments, requiring caution and careful monitoring of phenotype and genotype of microorganisms that are naturally-competent for DNA uptake.
Collapse
Affiliation(s)
- Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Surbhi Jain
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt/Main, Germany
| | - Christoph Baum
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt/Main, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.
| |
Collapse
|
9
|
Katsyv A, Müller V. A purified energy-converting hydrogenase from Thermoanaerobacter kivui demonstrates coupled H +-translocation and reduction in vitro. J Biol Chem 2022; 298:102216. [PMID: 35779632 PMCID: PMC9356269 DOI: 10.1016/j.jbc.2022.102216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Energy-converting hydrogenases (Ech) are ancient, membrane-bound enzymes that use reduced ferredoxin (Fd) as an electron donor to reduce protons to molecular H2. Experiments with whole cells, membranes and vesicle-fractions suggest that proton reduction is coupled to proton translocation across the cytoplasmatic membrane, but this has never been demonstrated with a purified enzyme. To this end, we produced a His-tagged Ech complex in the thermophilic and anaerobic bacterium Thermoanaerobacter kivui. The enzyme could be purified by affinity chromatography from solubilized membranes with full retention of its eight subunits, as well as full retention of physiological activities, i.e., H2-dependent Fd reduction and Fd2--dependent H2 production. We found the purified enzyme contained 34.2 ± 12.2 mol of iron/mol of protein, in accordance with seven predicted [4Fe-4S]-clusters and one [Ni-Fe]-center. The pH and temperature optima were at 7 to 8 and 66 °C, respectively. Notably, we found that the enzymatic activity was inhibited by N,N′-dicyclohexylcarbodiimide, an agent known to bind ion-translocating glutamates or aspartates buried in the cytoplasmic membrane and thereby inhibiting ion transport. To demonstrate the function of the Ech complex in ion transport, we further established a procedure to incorporate the enzyme complex into liposomes in an active state. We show the enzyme did not require Na+ for activity and did not translocate 22Na+ into the proteoliposomal lumen. In contrast, Ech activity led to the generation of a pH gradient and membrane potential across the proteoliposomal membrane, demonstrating that the Ech complex of T. kivui is a H+-translocating, H+-reducing enzyme.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Abstract
Carbon dioxide is a major greenhouse gas, and its fixation and transformation are receiving increasing attention. Biofixation of CO2 is an eco–friendly and efficient way to reduce CO2, and six natural CO2 fixation pathways have been identified in microorganisms and plants. In this review, the six pathways along with the most recent identified variant pathway were firstly comparatively characterized. The key metabolic process and enzymes of the CO2 fixation pathways were also summarized. Next, the enzymes of Rubiscos, biotin-dependent carboxylases, CO dehydrogenase/acetyl-CoA synthase, and 2-oxoacid:ferredoxin oxidoreductases, for transforming inorganic carbon (CO2, CO, and bicarbonate) to organic chemicals, were specially analyzed. Then, the factors including enzyme properties, CO2 concentrating, energy, and reducing power requirements that affect the efficiency of CO2 fixation were discussed. Recent progress in improving CO2 fixation through enzyme and metabolic engineering was then summarized. The artificial CO2 fixation pathways with thermodynamical and/or energetical advantages or benefits and their applications in biosynthesis were included as well. The challenges and prospects of CO2 biofixation and conversion are discussed.
Collapse
|